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SHARP WEIGHTS IN THE CAUCHY PROBLEM FOR NONLINEAR

SCHRÖDINGER EQUATIONS WITH POTENTIAL

RÉMI CARLES

ABSTRACT. We review different properties related to the Cauchy problem for the (non-

linear) Schrödinger equation with a smooth potential. For energy-subcritical nonlinearities

and at most quadratic potentials, we investigate the necessary decay in space in order for

the Cauchy problem to be locally (and globally) well-posed. The characterization of the

minimal decay is different in the case of super-quadratic potentials.

1. GENERALITIES

We consider the nonlinear Schrödinger equation

(1.1) i∂tu = Hu+ λ|u|2σu, (t, x) ∈ R× Rd, H = −1

2
∆ + V (x),

with λ ∈ R, σ > 0, for some smooth, real-valued potential V . In order to work at the

level of regularity L2 or H1, we suppose that the nonlinearity is energy-subcritical, that

is, σ < 2/(d − 2) when d > 3 (see e.g. [7]). Such models appear in various fields of

Physics, such as laser propagation or Bose-Einstein Condensation (see e.g. [16, 19]): for

instance the potential V can be quadratic (harmonic potential), linear (Stark effect), or

super-quadratic to ensure a strong confinement.

Assumption 1.1. We suppose that V is smooth and real-valued, V ∈ C∞(Rd;R), and,

• Either V is at most quadratic, ∂αV ∈ L∞(Rd) for all α ∈ Nd with |α| > 2,

• Or V > 0 is super-quadratic, in the sense that V (x) → ∞ as |x| → ∞ and there

exists m > 2 such that

|∂αV (x)| 6 Cα 〈x〉m−|α|
, ∀α ∈ Nd.

Typically, the second case addresses potentials of the form V (x) = 〈x〉m, m > 2. Of

course, the second case is formally compatible with the first one, but should be thought of

as rather complementary. The borderline case corresponds to quadratic potentials. The fact

that quadratic potentials play a special role has been known for many years: as established

in [21], the fundamental solution associated to the linear solution is smooth and bounded

except at the initial time if V (x) = o(|x|2) at infinity, while at least if d = 1, the fun-

damental solution associated to super-quadratic potentials is nowhere C1. In the limiting

exactly quadratic case, the fundamental solution has isolated singularities ([24]). Finally,

the linear Schrödinger flow is not uniquely defined for non-positive super-quadratic poten-

tials: if for instance d = 1 and V (x) = −x4, then H is not essentially self-adjoint on

C∞
0 (Rd), due to infinite speed of propagation in the classical trajectories (see e.g. [10]).

From this point of view, for smooth potentials, the assumption that there exist a, b > 0
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such that V (x) > −a|x|2 − b is sharp in order to ensure that H is essentially self-adjoint

on C∞
0 (Rd) ([17]).

In this note, we review known results concerning the Cauchy problem for (1.1) with

a level of regularity H1(Rd). The only new result is Theorem 4.2, which shows that the

sharp weights in space, at the level of regularity H1, have different characterizations for at

most quadratic potentials and for super-quadratic potentials. The sharpness of the required

decay in space is presented in Proposition 4.3.

2. STRICHARTZ ESTIMATES

For at most quadratic potentials, a parametrix for e−itH has been constructed in [11]

(see also [13]). We simply emphasize that as a consequence, the propagator e−itH , which

is unitary on L2(Rd), satisfies the following local dispersive estimate: there exist C, δ > 0
such that

‖e−itH‖L1(Rd)→L∞(Rd) 6
C

|t|d/2 , |t| 6 δ.

Recall that under the general Assumption 1.1, such an estimate is necessarily local in time,

since typically in the case of the harmonic potential, the flow e−itH is periodic in time.

The case of super-quadratic potentials has been addressed in [22, 23], and in [14] (see

also [9, 18, 20]). We summarize the main results on Strichartz estimates for e−itH in the

following statement.

Proposition 2.1 (From [11, 14]). Let d > 1 and V satisfying Assumption 1.1. Let (q, r)
be an admissible pair, that is, satisfying

2

q
= d

(
1

2
− 1

r

)
,

with 2 6 q, r 6 ∞ and q > 2 is d = 2. Let T > 0.

• If V is at most quadratic, there exists C = C(q, d, T ) such that

‖e−itHf‖Lq([−T,T ];Lr(Rd)) 6 C‖f‖L2(Rd), ∀f ∈ L2(Rd).

• If d > 3 and V is super-quadratic, there exists C = C(q, d, T ) such that

‖e−itHf‖Lq([−T,T ];Lr(Rd)) 6 C‖f‖
B

1
q (1− 2

m ) , ∀f ∈ B
1
q (1−

2
m ),

where for s > 0,

Bs =
{
f ∈ L2(Rd) ; ‖f‖Bs := ‖Hs/2f‖L2(Rd) < ∞

}
.

We refer to [22] and [14] for local in time Strichartz estimates with super-quadratic po-

tentials in the case d = 1 and d = 2, respectively. We omit them for the sake of concision.

Similar estimates are available for retarded terms, which appear in the Duhamel’s formula

associated to inhomogeneous Schrödinger equations. In the same fashion as above, these

estimates are necessarily local in time without extra assumption on V , since H may possess

eigenvalues (this is the case if V → +∞ as |x| → ∞).

The following equivalence of norms is established, in [23] when V grows like 〈x〉m as

|x| → ∞, and in [1] under assumptions on V which are weaker than in Assumption 1.1,

(2.1) ‖Hs/2f‖L2(Rd) ≈ ‖f‖Hs(Rd) + ‖V s/2f‖L2(Rd), s > 0.

As shown by the second case of Proposition 2.1, a loss of regularity must be expected

for super-quadratic potentials. reminiscent of what happens on compact manifolds without

boundary, [2, 3]. Formally, as k ranges from 2 to ∞, the loss of regularity varies between
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0 and 1/q derivative, this limiting case corresponding to the estimate established in [3] for

general compact manifolds. This is in agreement with the property, used in Physics, that

for V (x) = 〈x〉m, the larger the m, the more confining H .

3. NONLINEAR CAUCHY PROBLEM

Formally, (1.1) enjoys the conservations of mass and energy:

d

dt
‖u(t)‖2L2(Rd) =

d

dt

(
〈Hu, u〉+ λ

σ + 1
‖u(t)‖2σ+2

L2σ+2

)
= 0.

For V > 0 and at most quadratic, a local in time solution to (1.1) was constructed by

Oh [15] with data in
√
H . We emphasize that the proof there does not rely on a fixed point

argument, but on an approximation procedure, as in [12]. In particular, it is not necessary

to understand the action of the pseudo-differential operator
√
H on the nonlinear term

|u|2σu. The case of the focusing, L2-subcritical nonlinearity considered in [15] can easily

be generalized in view of the known results for V = 0.

Theorem 3.1 (From [15]). Let V > 0 be at most quadratic, and u0 ∈
√
H = B1.

• There exists a unique solution u ∈ C([−T, T ];
√
H)∩L 4σ+4

dσ ([−T, T ];L2σ+2(Rd))
to (1.1), with initial datum u0, for some T > 0 depending on ‖u0‖B1 .

• This solution is global in time, u ∈ C(R;
√
H)∩L

4σ+4

dσ

loc (R;L2σ+2(Rd)), in either

of the following cases:

– σ < 2/d,

– σ > 2/d and λ > 0.

The assumption on the sign of V has been removed for initial data in

Σ =
{
f ∈ H1(Rd), ‖f‖Σ := ‖f‖H1(Rd) + ‖xf‖L2(Rd) < ∞

}
.

In [6], the global Cauchy problem for (1.1) was considered:

Theorem 3.2 (From [6]). Let V be at most quadratic, and u0 ∈ Σ.

• There exists a unique solution u ∈ C([−T, T ]; Σ) to (1.1), with initial datum u0,

such that

u, xu,∇u ∈ L
4σ+4

dσ ([−T, T ];L2σ+2(Rd)),

for some T > 0 depending on ‖u0‖Σ.

• This solution is global in time, u ∈ C(R; Σ), u, xu,∇u ∈ L
4σ+4

dσ

loc (R;L2σ+2(Rd)),
in either of the following cases:

– σ < 2/d,

– σ > 2/d and λ > 0.

For V > 0 at most quadratic, (2.1) shows that Σ ⊂
√
H , and in the case where V > 0 is

a non-degenerate quadratic form (e.g. isotropic harmonic potential), Σ =
√
H . Therefore,

the above result removes the sign assumption in Theorem 3.1, up to possibly requiring

stronger decay in space on the initial datum u0. Note also that in the framework of Theo-

rem 3.2, even if λ > 0, the energy functional

E = 〈Hu, u〉+ λ

σ + 1
‖u(t)‖2σ+2

L2σ+2

=
1

2
‖∇u(t)‖2L2 +

∫

Rd

V (x)|u(t, x)|2dx+
λ

σ + 1
‖u(t)‖2σ+2

L2σ+2 ,
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is not necessarily positive: it turns out that a negative (at most quadratic) potential is not

an obstruction to the existence of a solution to (1.1). It may actually prevent finite time

blow-up (see e.g. [6] and references therein).

We now turn to the case of a super-quadratic potential. It follows from the analysis in

[1] that Bs is a Banach algebra for s > d/2 (see (2.1)), and the following result is proved:

Theorem 3.3 (From [1]). Let V be super-quadratic, s > d/2 and u0 ∈ Bs. Then for any

σ > 0 and λ ∈ C, there exist T > 0 and a unique solution u ∈ C([−T, T ];Bs) to (1.1)

with initial datum u0.

To decrease the regularity, Strichartz inequalities make it possible to prove:

Theorem 3.4 (From [23] and [14]). Let V be super-quadratic and s > 0 with

s >
d

2
− 1

σ

(
1

2
+

1

m

)
.

Let u0 ∈ Bs. There exist T > 0 and a unique solution C([−T, T ];Bs) to (1.1) with initial

datum u0. (Uniqueness is actually granted in smaller spaces, involving a mixed time-space

norm which we omit to simplify the presentation.)

Here again, for m = 2, the above condition on s is the standard one in the case without

potential ([8]), and letting m → ∞, we recover the condition established in [3] on compact

manifolds without boundary. To work at the level of H1-regularity (s = 1), the above

condition reads

σ <
m+ 2

m(d− 2)+
.

Both Theorem 3.3 and Theorem 3.4 imply, in view of the conservation of the energy:

Corollary 3.5. Let d = 1, and V be super-quadratic. If s > 1 and u0 ∈ Bs, then (1.1) has

a unique, global solution u ∈ C(R;Bs) with initial datum u0, in either of the following

cases:

• σ < 2 and λ ∈ R,

• σ > 2 and λ > 0.

4. SHARP WEIGHT FOR AT MOST QUADRATIC POTENTIALS

As noticed in [5], if V is at most quadratic and ∇V is bounded, then Theorem 3.2

remains valid with Σ replaced by H1(Rd) (and no property involving xu). Note that

typically if V (x) = 〈x〉, this shows that the assumptions on the space decay of the initial

datum are sharp neither in Theorem 3.1 nor in Theorem 3.2, when one wants to deal with

an H1-regularity. More generally, set

Σ̃ = {f ∈ H1(Rd) ; ‖f‖Σ̃ := ‖f‖H1(Rd) + ‖f∇V ‖L2(Rd) < ∞}.

Since V is at most quadratic, we have Σ ⊂ Σ̃, and the inclusion is strict unless V is

quadratric (and non-degenerate). Typically, when ∇V ∈ L∞, we have Σ̃ = H1(Rd).

When V > 0, we also have
√
H ⊂ Σ̃, from the following elementary result.

Lemma 4.1. Let f ∈ C2(R;R) be such that f > 0 and f ′′ is bounded. Then

f ′(x)2 6 2‖f ′′‖L∞f(x), ∀x ∈ R.
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Proof. Taylor’s formula yields, for x, y ∈ R,

f(x+ y) = f(x)+ yf ′(x)+ y2
∫ 1

0

(1− θ)f ′′(x+ θy)dθ 6 f(x)+ yf ′(x)+
y2

2
‖f ′′‖L∞ .

Since by assumption f(x+ y) > 0, the discriminant of f(x) + yf ′(x) + y2

2 ‖f ′′‖L∞ , seen

as a polynomial in y, must be non-positive, hence the result. �

Theorem 4.2. Let V be at most quadratic, and u0 ∈ Σ̃.

• There exists a unique solution u ∈ C([−T, T ]; Σ̃) to (1.1), with initial datum u0,

such that

u, u∇V,∇u ∈ L
4σ+4

dσ ([−T, T ];L2σ+2(Rd)),

for some T > 0 depending on ‖u0‖Σ̃.

• This solution is global in time, u ∈ C(R; Σ̃), u, u∇V,∇u ∈ L
4σ+4

dσ

loc (R;L2σ+2(Rd)),
in either of the following cases:

– σ < 2/d,

– σ > 2/d and λ > 0.

Proof. We sketch the main steps of the proof, which follow classical arguments. Duhamel’s

formula for (1.1) with initial datum u0 reads

u(t) = e−itHu0 − iλ

∫ t

0

e−i(t−s)H
(
|u|2σu

)
(s)ds =: Φ(u)(t).

Local existence stems from a fixed point argument in a ball of the space

XT =
{
u ∈ C([−T, T ]; Σ̃) ; u, u∇V,∇u ∈ L

4σ+4

dσ

(
[−T, T ];L2σ+2(Rd)

)}
,

for T > 0 sufficiently small. Since local in time Strichartz estimates are available for at

most quadratic potentials, the only aspect which differs from the usual approach where

V = 0 is that ∇ does not commute with H , hence does not commute with e−itH for t 6= 0.

However, we have the following commutator formulas,

[i∂t −H,∇] = ∇V, [i∂t −H,∇V ] = −∇2V · ∇ − 1

2
∇∆V.

Since ∇2V and ∇∆V are bounded by assumption, we get a closed system of estimates. In

terms of Φ, we have:

∇Φ(u)(t) = e−itH∇u0 − iλ

∫ t

0

e−i(t−s)H∇
(
|u|2σu

)
(s)ds

− i

∫ t

0

e−i(t−s)H (Φ(u)(s)∇V ) ds,

Φ(u)(t)∇V = e−itH (u0∇V )− iλ

∫ t

0

e−i(t−s)H
((
|u|2σu

)
(s)∇V

)
ds

+i

∫ t

0

e−i(t−s)H
(
∇2V · ∇Φ(u)(s)

)
ds+

i

2

∫ t

0

e−i(t−s)H (Φ(u)(s)∇∆V ) ds.

We refer to [6, 7] for details on the fixed point argument.



6 R. CARLES

Showing that the solution is global if the nonlinearity is not both focusing and mass

critical or super-critical, follows from the following remark, which stems from the formal

conservation of the energy, and justified by a regularizing argument:

d

dt

(
1

2
‖∇u(t)‖2L2 +

λ

σ + 1
‖u(t)‖2σ+2

L2σ+2

)
= − d

dt

∫

Rd

V (x)|u(t, x)|2dx

= −2Re

∫

Rd

V (x)ū(t, x)∂tu(t, x)dx

= Im

∫

Rd

V (x)ū(t, x)∆u(t, x)dx

= − Im

∫

Rd

ū(t, x)∇V (x) · ∇u(t, x)dx.

On the other hand, we compute

d

dt

∫

Rd

|∇V (x)|2|u(t, x)|2dx = −2Re

∫

Rd

|∇V (x)|2ū(t, x)∂tu(t, x)dx

= Im

∫

Rd

|∇V (x)|2ū(t, x)∆u(t, x)dx

= −2 Im

∫

Rd

ū(t, x)∇2V (x)∇V (x) · ∇u(t, x)dx.

Let

Eλ(t) =
1

2
‖∇u(t)‖2L2 +

λ

σ + 1
‖u(t)‖2σ+2

L2σ+2 +

∫

Rd

|∇V (x)|2|u(t, x)|2dx.

In view of the above computations, Cauchy-Schwarz and Young inequalities yield

dEλ
dt

6
(
1 + 2‖∇2V ‖L∞

)
‖u(t)∇V ‖L2‖∇u(t)‖L2 . E0(t).

Global existence readily follows from the local theory when λ > 0. In the mass sub-critical

focusing case, one can invoke either Gagliardo-Nirenberg inequality, or global existence at

the L2-level (see e.g. [7]). �

To conclude, we outline that if ∇V is unbounded, then for (1.1) to possess an H1 local

solution, one has to assume that u0 ∈ Σ̃. This phenomenon is geometrical, in the sense that

it is present in the linear case λ = 0. It remains in the nonlinear setting, in the same spirit

as in [5]. We shall therefore present the linear result, and refer to [5] for the adaptation to

the nonlinear framework of (1.1).

Proposition 4.3. Let V be at most quadratic, with ∇V 6∈ L∞(Rd). If u0 ∈ H2(Rd) \ Σ̃,

then for arbitrarily small time τ > 0, the solution u ∈ C([0, τ ];L2(Rd)) to

(4.1) i∂tu = Hu ; u|t=0 = u0,

satisfies ∇u(τ, ·) 6∈ L2(Rd).

Proof. The phenomenon related to Proposition 4.3 is a rotation in phase space: the pres-

ence of V with an unbounded gradient causes the appearance of oscillations. To filter out

these oscillations, introduce the eikonal equation

(4.2) ∂tφ+
1

2
|∇φ|2 + V = 0 ; φ|t=0 = 0.

It is classically solved locally in time thanks to the Hamiltonian flow

ẋ(t, y) = ξ(t, y), ξ̇(t, y) = −∇V (x(t, y)) , x(0, y) = y, ξ(0, y) = 0.
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For V at most quadratic, there exists T > 0 such that the map y 7→ x(t, y) is invertible

for (t, y) ∈ [0, T ] × Rd. Such a time T must be expected to be necessarily finite in

general, due to the formation of caustics. Then (4.2) has a unique local smooth solution

φ ∈ C∞([0, T ]× Rd), which is at most quadratic in space,

∂α
xφ ∈ L∞([0, T ]× Rd), ∀α ∈ Nd, |α| > 2.

Details can be found for instance in [4]. Introduce a given by u(t, x) = a(t, x)eiφ(t,x). On

[0, T ]× Rd, (4.1) is equivalent to

(4.3) ∂ta+∇φ · ∇a+
1

2
a∆φ =

i

2
∆a ; a|t=0 = u0.

This equation is a transport equation (left hand side), plus a skew-symmetric term (right

hand side). Since φ is at most quadratic in space and u0 ∈ H2(Rd), we check that (4.3) has

a unique solution a ∈ C([0, T ];H2(Rd)). On the other hand, since φ ∈ C∞([0, T ]×Rd),
(4.2) implies

|∂t∇φ+∇V | = |∇2φ · ∇φ| . |∇φ| . |∇φ+ t∇V |+ |t∇V |.
Gronwall lemma yields

|∇φ(t, x) + t∇V (x)| . |∇V (x)|
∫ t

0

seCsds 6 CT t
2|∇V (x)|, t ∈ [0, T ].

To conclude, we approximate a for short time. Introduce ã solution to

(4.4) ∂tã+∇φ · ∇ã+
1

2
ã∆φ = 0 ; ã|t=0 = u0.

It is given explicitly by the expression (see e.g. [4])

ã(t, x) =
1√

Jt (y(t, x))
u0 (y(t, x)) ,

where y(t, x) is the inverse map of y 7→ x(t, y) (well-defined on [0, T ]×Rd), and Jt is the

Jacobi determinant

Jt(y) = det∇yx(t, y),

which is bounded away from zero and infinity on [0, T ]×Rd. Subtracting (4.4) from (4.3),

multiplying by the conjugate of a− ã and integrating by parts, we get

d

dt
‖a(t)− ã(t)‖2L2 = Im

∫

Rd

(a(t, x) − ã(t, x))∆ā(t, x)dx.

Cauchy-Schwarz inequality and Gronwall lemma yield (recall that a ∈ C([0, T ];H2) since

we have assumed u0 ∈ H2(Rd))

‖a(t)− ã(t)‖L2 6 Ct‖a‖L∞([0,T ];H2(Rd)).

Now

∇u(t, x) = eiφ(t,x)∇a(t, x) + eiφ(t,x)a(t, x)∇φ(t, x),

with ∇φ(t, x) = t (1 +O(t))∇V (x) pointwise, and a = ã +O(t) in L2(Rd), as t → 0.

Therefore, for arbitrarily small time τ > 0, ∇u(τ, ·) 6∈ L2(Rd), hence the result. �

Remark 4.4. In the case V (x) = 〈x〉k, k > 2, (2.1) shows that Σ̃ ( B1 =
√
H ( Σ. In

view of Proposition 2.1, and since the proof of Proposition 4.3 heavily relies on the fact

that V is at most quadratic, this suggests that for super-quadratic potentials, the weakest

possible weight in space at the H1 level of regularity corresponds to
√
H , that is, the

property u0

√
V ∈ L2(Rd) (as in Theorems 3.3 and 3.4).
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