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Abstract—Chemoinformatics aims to predict molecular prop-
erties using informational methods. Computer science’s research
fields concerned by this domain are machine learning and graph
theory. An interesting approach consists in using graph kernels
which allow to combine graph theory and machine learning
frameworks. Graph kernels allow to define a similarity measure
between molecular graphs corresponding to a scalar product in
some Hilbert space. Most of existing graph kernels proposed
in chemoinformatics do not allow to explicitly encode cyclic
information, hence limiting the efficiency of these approaches. In
this paper, we propose to define a cyclic representation encoding
the relative positioning of substituents around a cycle. We also
propose a graph kernel taking into account this information.
This contribution has been tested on three classification problems
proposed in chemoinformatics.

I. INTRODUCTION

Chemoinformatics aims to predict molecular properties
from their structural similarities. Most of existing methods
are based on fingerprints defined as collections of descriptors
such as the boiling point, logP, molar refractivity, etc. An
alternative strategy consists in computing a set of descrip-
tors directly from the molecular graph G of a molecule. A
molecular graph G = (V,E, µ, ν) consists of an unlabeled
graph (V,E) encoding the structure of a molecule and two
labeling functions µ and ν mapping respectively each node
to a label encoding atom’s chemical element and each edge
to a label identifying a type of atomic bond (single, double,
triple or aromatic). Considering this molecular representation,
the similarity between molecules can be directly deduced from
the similarity of their molecular graphs instead of using a set
of descriptors chosen a priori.

Graph kernels can be understood as symmetric graph simi-
larity measures. Using a semi definite positive kernel, the value
k(G,G′), where G and G′ encode two graphs, corresponds to
a scalar product between two vectors ψ(G) and ψ(G′) in an
Hilbert space. This latter property allows us to combine graph
kernels with widely-used machine learning algorithms, such as
SVM, thanks to the kernel trick which consists in replacing the
scalar product 〈ψ(G), ψ(G′)〉 by the value of k(G,G′) in these
algorithms. Graph kernels provide thus a natural connection
between molecular graphs and machine learning frameworks.
A large family of kernels is based on bags of patterns. These
methods consist in extracting a bag of patterns from a graph
and deducing the similarity between two graphs from the
similarity between their respective bags. The Hilbert space
associated to the computed kernel is directly induced by the
space associated to the set of extracted patterns. Therefore,
the similarity measure encoded by a kernel mostly depends on
the patterns extracted from molecular graphs. Most of existing

methods are defined on linear patterns [1]. Such methods are
generally associated to a low complexity but they are limited
by the lack of expressivity of linear patterns. Nevertheless, in
order to encode more structural information, some kernels are
based on non-linear acyclic patterns [2], [3]. However, kernels
defined directly on molecular graphs do not explicitly take
into account the cyclic similarities of molecules. For example,
treelet kernel [3] deduces the similarity of two molecules from
the similarity of two bags of patterns corresponding to the set
of all labeled subtrees composed of at most 6 nodes (figure 4).
Obviously, considering a set of acyclic structures extracted
from the molecular graph does not allow to encode the cyclic
information. Nonetheless, cycles have an important impact
on molecules’ properties since they reduce atoms’ degrees
of freedom. Therefore, this information must be taken into
account in order to define accurate similarity measures.

Considering this, Horváth proposed in [4] to combine a ker-
nel encoding an acyclic similarity with an intersection kernel
defined on the set of simple cycles of a graph. Despite the high
complexity of the enumeration of all simple cycles of a graph,
this method can be efficiently used when graphs have a low
number of cycles. In order to tackle the complexity induced by
the enumeration of all simple cycles, Horváth proposed in [5]
to use a subset of simple cycles. This set is first initialized
using the set of relevant cycles [6] of a graph. Then, additional
simple cycles are iteratively enumerated by combining relevant
cycles and newly discovered cycles. Horváth shown that a low
number of iterations is sufficient to obtain results similar to
the ones obtained using all simple cycles. In order to encode
a finer cyclic information, Gaüzère et al. proposed in [7]
to deduce the cyclic similarity of two molecules from the
similarity of their relevant cycle graphs [8]. This approach
allows to encode adjacency relationships between cycles in
addition to isolated cycles as proposed by Horváth. However,
this molecular representation does not include any acyclic
information. Such information may be encoded by the relevant
cycle hypergraph as defined in [9]. This molecular represen-
tation defines a global representation of a molecule while
explicitly encoding cyclic information. Treelet kernel can then
be adapted in order to define a similarity measure based on
this molecular representation.

However, these approaches can not encode the relative
positioning of the set of substituents around a given cycle.
This information is particularly important in chemoinformatics
since it characterizes the spatial configuration of a molecule
which in turn strongly influences many biological properties.
Therefore, we propose in this paper to define a graph kernel
encoding this information. To this end, we first review in
section II the different approaches to encode cyclic information



into graph kernels. Then, we propose in section III-A a repre-
sentation, called augmented cycles, which allows to encode the
relative positioning of substituents for each relevant cycle of a
molecule. Then, we propose in section III-B a kernel based on
the treelet kernel which includes the information encoded by
augmented cycles. This approach relies on increasing the in-
formation carried by a treelet. Finally, section IV demonstrates
the insight of our contribution.

II. MOLECULAR CYCLIC INFORMATION

A. Encoding cyclic information

Considering a molecular graph G = (V,E, µ, ν), a simple
cycle C is defined as a connected subgraph C = (V ′, E′, µ, ν)
of G where each vertex v ∈ V ′ has a degree equal to
2. In order to explicitly encode the cyclic information of a
molecule, Horváth proposed to consider all simple cycles [4].
However, this first approach has an high complexity which
restricts its use to molecules having a low number of cycles.
A less complex approach consists in considering a subset of
simple cycles such as the set of relevant cycles [6]. In order
to define the notion of relevant cycle, let us first introduce
the notion of cyclic vector space. Each cycle C ⊆ G can be
represented as a vector C ∈ {0, 1}|E| where Ci equals 1 if i
is an edge of C and 0 otherwise. The set of vectors encoding
the cycles of G defines a vector space where the addition
of two cycles C and C ′ corresponds to a XOR bitwise [6].
The set of relevant cycles of a graph G, denoted CR(G),
is defined by the union of all bases of the vector space of
minimum length, the length of a base being defined as the
sum of lengths of its cycles. Therefore, a relevant cycle can
not be encoded by a combination of cycles having a lower
size. Intuitively, the set of relevant cycles corresponds to a
canonical set of elementary cycles which allows to retrieve
all cycles included in a molecule. This set of cycles can be
enumerated in polynomial time with the number of nodes of
the graph. Therefore, enumerating the set of relevant cycles
instead of the set of all simple cycles allows to obtain a reduced
complexity.

The first approach which consists in encoding a molecule
by a set of cycles allows to explicitly characterize an important
part of the cyclic information. However, this approach is only
based on isolated cycles which do not allow to identify the
cyclic system of a molecule. This system is defined by the
relevant cycle graph (figure 1(c)), initially proposed by [8]
and modified by [7]. The relevant cycle graph defines a graph
representation which encodes the set of relevant cycles and
their adjacency relationships:

Definition 1 (Relevant cycle graph). Let us consider a graph
G = (V,E, µ, ν). The relevant cycle graph associated to G is
defined by a graph GC(G) = (VC , EC , µC , νC) such that :

• Each vertex v ∈ VC corresponds to a relevant cycle
cv ∈ CR(G);

• two nodes (u, v) ∈ V 2
C are connected by an edge

(u, v) ∈ EC if the corresponding cycles cu and cv
share at least one vertex in G.

The relevant cycle graph allows to encode the cyclic system
of a given molecule by mapping each relevant cycle to a node.

Each node v ∈ VC is then labeled by a label’s sequence µ(v)
identifying the set of atoms and atomic bonds included within
the cycle cv encoded by v. Similarly, each edge e ∈ EC is
labeled by a label’s sequence identifying the set of nodes
and edges common to the two cycles incident to e. Including
cycles’ adjacency relationships allows to encode a finer cyclic
information than the one encoded by a set of isolated cycles.
However, we can note that this representation encodes the
cyclic system of a molecule by removing all acyclic parts.
Therefore, an important part of the molecule, such as adjacency
relationships between cycles and acyclic parts, is not encoded.

In order to encode a finer cyclic information, Gaüzère
et al. proposed in [9] a molecular representation, called
relevant cycle hypergraph (figure 1(d)), which allows to
add acyclic parts to the representation defined by the rele-
vant cyclic graph. A relevant cycle hypergraph HCH(G) =
(VCH , ECH , µCH , νCH) can be defined from a molecular
graph G = (V,E, µ, ν) and its relevant cycle graph GC(G) =
(VC , EC , µC , νC). The set of nodes VC can be associated to
the set VCR

⊆ V which corresponds to the set of nodes of G
included within a cycle. Similarly, ECR

⊆ E encodes the set of
edges included in at least one relevant cycle. The complement
of VCR

and ECR
in V and E corresponds thus to the acyclic

parts of the molecular graph G which are not encoded by its
relevant cycle graph. In order to define a complete molecular
representation including both cyclic and acyclic parts, the set
of nodes VCH of the relevant cycle hypergraph is defined by
the union of two subsets. A first subset VC corresponding to
the set of relevant cycles and thus encoding an explicit cyclic
information, and a second subset V − VCR

corresponding to
the set of atoms not included within a cycle. Considering the
set of vertices VCH , [9] defines a function p : V → P(VCH)
as p(u) = {u} if u /∈ VCR

and p(u) = {c ∈ VC | u ∈ V (c)}
if not, where V (c) corresponds to the set of nodes included
within the relevant cycle encoded by c. In other words, if
u ∈ VCR

, p(u) is defined as all nodes v ∈ VC whose associated
relevant cycle includes u. This function p encodes thus the
print of vertex v ∈ V on VCH . In the same way as for vertices,
the set of hyperedges ECH is composed of two subsets:

1) A set of edges Ee
CH composed of:

• edges between relevant cycle vertices, cor-
responding to the set of edges EC included
within the relevant cycle graph,

• edges e = (p(u), p(v)) such that (u, v) ∈
E − ECR

, |p(u)| = 1 and |p(v)| = 1.
This set of edges corresponds to edges of
the molecular graph G connecting two acyclic
atoms or two relevant cycles or a relevant
cycle to an acyclic part of G,

2) and a set Eh
CH composed of oriented hyperedges

e = (p(u), p(v)) such that (u, v) ∈ E − ECR
,

|p(u)| > 1 or |p(v)| > 1. This set of hyperedges
corresponds to special cases where an edge connects
at least two distinct relevant cycles to another part
of the molecule. Such an edge connects two sets of
vertices s1 = p(u) and s2 = p(v) and is thus encoded
by an oriented hyperedge e = (s1, s2) ∈ Eh

CH .

Thanks to the use of hyperedges, the relevant cycle hypergraph
allows to encode adjacency relationships between cycles and
acyclic parts. These relationships may be useful to identify
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Fig. 1. Different molecular representations encoding explicitly the cyclic information.

some particular substructures which have an important influ-
ence on some molecular properties. Note that, by adding the
acyclic parts to the cycles encoded by the relevant cycle graph,
each node and each edge of the original molecular graph is
encoded within the relevant cycle hypergraph, either by the
node or the edge itself or by a node encoding a relevant
cycle. Therefore, this representation corresponds to a complete
molecular representation and acyclic, cyclic and acyclic/cyclic
adjacency relationships are included into the relevant cycle
hypergraph. In addition, since this representation is based on
the relevant cycle graph, the cyclic information is explicitly
encoded.

B. Kernels computing a cyclic similarity

The different representations presented in the previous
section allow to encode different levels of cyclic information.
These different representations can thus be used to define
different similarity measures. First graph kernels introduced
in chemoinformatics consists in extracting a bag of patterns
composed of acyclic sub-structures directly from the original
molecular graph [10], [11], [3]. The similarity of the two
molecules being compared is then deduced from the similarity
of the two extracted bags of patterns. For example, the treelet
kernel [3] is based on a bag of patterns T (G), called treelets,
defined as all labeled subtrees composed of at most 6 nodes
(figure 4). Given two bags of treelets T (G) and T (G′)
extracted from two molecular graphs G and G′, the similarity
between G and G′ is encoded by a kernel k(G,G′) defined
as:

k(G,G′) =
∑

t∈T (G)∩T (G′)

k′(ft(G), (ft(G
′)) (1)

where each term of the sum corresponds to a subkernel k′

encoding a similarity measure between the number of occur-
rences of treelet t in G (encoded by ft(G)) and G′ (encoded
by ft(G

′)). This kernel allows to take into account most of the
information encoded within a molecular graph by considering
labeled and nonlinear patterns. However, since the similarity is
computed from acyclic structures extracted from the molecular
graph, such kernels can only partially and implicitly encode the
cyclic information included in molecular graphs.

In order to compute a graph kernel taking into account
the cyclic similarity of molecules, Horváth proposed in [5] to
define a kernel on a set of cycles extracted from both graphs to

be compared. This kernel is defined as an intersection kernel
on the set of relevant cycles, hence computing the number
of common relevant cycles of two molecular graphs. Acyclic
similarity is then included by a second kernel computing the
number of common subtrees extracted from the bridges of the
two molecules to be compared. While providing a first kernel
including cyclic similarity, this approach is only based on a
set of isolated cycles and can not take into account adjacency
relationships between cycles.

An alternative graph kernel, defined in [7], consists in
applying the treelet kernel on relevant cycle graphs instead of
original molecular graphs in order to compute a cyclic system
similarity measure. This kernel consists thus in extracting the
set of treelets from the relevant cycle graphs associated to the
molecules. This set of patterns allows us to encode most of the
adjacency relationships encoded within relevant cycle graphs
and thus the cyclic system of molecules. Considering this bag
of patterns, similarity between relevant cycle graphs is defined
analogously as the case of the original treelet kernel:

kC(G,G
′) =

∑

t∈T (GC(G))∩

T (GC(G′))

k′(ft(GC(G)), (ft(GC(G
′))) (2)

The main difference with the kernel defined in equation 1 is
that treelets are extracted from the relevant cycle graph, hence
encoding an explicit cyclic information and cycle’s adjacency
relationships.

Similarly to the method proposed by Horváth, the cyclic
system similarity measure can be combined with an acyclic
similarity measure, such as the treelet kernel applied on the
molecular graph, in order to define a global similarity measure
between molecules including both cyclic and acyclic similari-
ties. Despite the fact that this approach leads to good results on
experiments involving cyclic molecules, this representation, as
the one proposed by Horváth [5], separates cyclic and acyclic
information by using two different molecular representations.
Then, global similarity between molecules is computed by the
combination of two distinct similarity measures, each of them
being applied on one representation. This separation induces
thus a loss of adjacency relationships between cyclic and
acyclic parts in the similarity measure.

Adjacency relationships between a cycle and its sub-
stituents can be encoded within the relevant cycle hypergraph
(section II-A). In the same way as the adaptation of the treelet
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Fig. 2. Two cycles and their respective sets of substituents having a different
relative positioning.

kernel to relevant cycle graph comparisons, [9] proposed to
adapt the treelet kernel to the comparison of relevant cycle
hypergraphs. The set of treelets extracted from the relevant
cycle hypergraph then encodes adjacency relationships be-
tween a cycle and its substituents in addition to the infor-
mation encoded by the relevant cycle graph. This additional
information allows to define a finer similarity measure which
leads to an increasing accuracy on several molecular property
prediction problems [9]. This last contribution defines thus
a global similarity measure based on an unique molecular
representation encoding the whole molecule and an explicit
cyclic information.

III. KERNEL BASED ON AUGMENTED CYCLES

A. Definition of augmented cycles

Previous approaches allow to encode an important part
of the cyclic information by defining different molecular
representations encoding different levels of cyclic information.
While these representations encode most of the cyclic informa-
tion, they do not allow to distinguish the relative positioning
of substituents around a given cycle. Indeed, the two patterns
displayed in figure 2 are composed of a same cycle, denoted
C1, surrounded by a same set of substituents R1, R2 and R3.
However, we can note that these substituents are not positioned
in the same way around C1. Using a molecular representation
encoding cycles adjacency relationships such as the relevant
cycle hypergraph, these two patterns can not be distinguished
since their representations are isomorphic. However, a molec-
ular cycle is a planar structure and the relative positioning of
its substituents characterizes the spatial configuration of the
whole pattern. Since different spatial configurations may lead
to different molecular properties, the relative positioning of the
substituents should be taken into account in order to define an
accurate similarity measure.

Let us consider a molecular graph G and its associated
relevant cycle hypergraph HCH(G). Given a relevant cycle C
of G encoded by c in HCH(G), the set of substituents of C is
defined as the neighbourhood Γ(c) of c. For example, N and
C2 are two substituents of C3 in figure 1(a). Since a cycle is
a planar structure, we can define a coherent orientation on its
boundary and hence a cyclic order on the neighbourhood Γ(c)
of each vertex c ∈ VCH encoding a cycle.

Our basic idea to encode the relative positioning of the sub-
stituents of a cycle C consists in associating each substituent
to a position on the boundary of C. Given the node c ∈ VCH

R1

R3

R3

R2

R1

Fig. 3. Encoding of positions around a cycle.

associated to C, edges encoding the adjacency between c
and nodes belonging to Γ(c) may either correspond to an
edge of the original molecular graph G or to an edge of the
relevant cycle graph encoding a cycle’s adjacency relationship.
The position of substituents incident to edges of the original
molecular graph may be easily defined since these edges are
incident to a single atom of C (e.g. (C3, N) in figure 1(a)).
However, edges of the relevant cycle graph correspond to a
common path between two cycles (e.g. (C3, C2) in figure 1(a)).
In such cases we fix the position of the substituents incident
to such edges to the middle of the shared path. Since this last
position may not correspond to a cycle’s atom but to the middle
of an edge, the number of possible positions is equal to twice
the number of edges of the cycle (figure 3). Using an arbitrary
origin and orientation on C, these positions may be efficiently
encoded by a function posC : Γ(c) → N counting the number
of half-edges between our origin and any substituent.

The relative positioning of two substituents according to
C may be encoded by their angle. The angle between two
substituents of C is defined as the number of half-edges sepa-
rating them using the orientation fixed on C. This number of
half-edges is directly retrieved from the substituents’ positions
encoded by the function posC :

Definition 2 (Angle between substituents). Using the above
notations and hypothesis, given two nodes s1 and s2 of Γ(c),
the angle between s1 and s2 according to c is defined by:

angc(s1, s2) = (posC(s2)− posC(s1)) mod (2|C|) (3)

where |C| denotes the number of edges of the cycle C of G.

We can note that equation 3 does not depend on the origin
but only on the orientation defined on C. The combination of
a cycle c and a function angc : Γ(c)

2 → N defines the notion
of augmented cycle.

Let us denote by π(Γ(c)) the set of possible orderings of
Γ(c). Using equation 3, any ordering σ ∈ π(Γ(c)) may be
associated to a sequence of angles, each angle being defined
between two successive elements of σ. Such a sequence is
encoded by the function angles(σ):

Definition 3 (Angle’s sequence). Given a cycle encoded by
c ∈ VCH and an ordering σ = (s1, . . . , sn) on Γ(c), the
angle’s sequence angles(σ) = α1

c . . . . α
n−1
c is defined by

αi
c = angc(si, si+1), ∀i ∈ {1, . . . , n− 1}. (4)

For example in figure 3, the ordering σ = (R1, R3, C1) of
Γ(C2) corresponds to the sequence of angle’s (6, 5). Choosing



the alternative orientation on C2 or a different origin leads to
another ordering associated to a different angle’s sequence. Let
us consider a sequence of substituents σ = (s1, . . . , sn) and
its associated sequence angles(σ). We can define a coherent
function pos′c from both sequences by setting pos′c(s1) = 0
and pos′c(si) =

∑i−1
j=1 α

j
c mod 2|C| for each i ∈ {2, . . . , n}.

Such a function corresponds thus simply to a shift of the
original function posc where pos′c(s1) is set to the origin.

B. Augmented treelets

A treelet is defined by a subtree T = (VT , ET , µT , νT )
extracted from a graph G = (V,E, µ, ν). Each treelet extracted
from a graph is canonically identified by a function key(T )
defined as the combination of an index encoding its structure
(VT , ET ) (figure 4) and a code encoding the labels associated
to each node and edge of T given a particular treelet’s
structure. This function is defined such as two isomorphic
treelets T and T ′ are associated to the same key, i.e. T ≃
T ′ ⇔ key(T ) = key(T ′) [3]. The code identifying the labeling
information of a treelet is defined as a node and edges’ label
sequence. When applied to relevant cycle hypergraph, each
node of an extracted treelet may encode either an atom or a
cycle and this node is labeled by the labeling function µCH

defined on the relevant cycle hypergraph (section II-A). Two
treelets encoding the two configurations shown in figure 2 are
associated to a same structure and the same set of node labels.
Therefore, these two treelets are isomorphic since the label of
a node encoding a relevant cycle does not include the relative
positioning of its adjacent nodes.

In order to encode this information, we propose to in-
troduce the notion of augmented treelets by encoding the
relative positioning of substituents into the notion of treelet.
Given a treelet T = (VT , ET , µT , νT ) let us consider an
order {v1, . . . , vn} on VT induced by our key construction
scheme [3]. This order is unique up to the automorphisms of T
and induces an order on the neighborhood Γ(c) of each vertex
c ∈ VT encoding a cycle. Let us denote by Σc(T ) the sequence
of subtrees incident to c, the order being deduced from the
one defined on the neighborhood Γ(c). Each automorphism
τi ∈ Aut(T ) of T induces a new numbering of the vertices of
T and hence a new order on the neighborhood of vertices c
corresponding to a relevant cycle. Let us denote by Σc(τi(T ))
the new ordering of Σc(T ) induced by τi. By definition of
automorphism if Σc(T ) = t1 . . . .tp and Σc(τi(T )) = t′1 . . . .t

′
p

we have ti ≃ t′i for all i ∈ {1, . . . , p}. In other words, if a
tree automorphism maps two branches of a tree one onto the
other, these branches should be isomorphic. However, these
trees may be attached differently on the cycle encoded by c
and thus correspond to different sequences of angles. We thus
define the canonical sequence of angles angles⋆(c) for each
node c ∈ VT encoding a relevant cycle as:

angles⋆(c) = min
τi∈Aut(T )

angles(σc(τi(T ))) (5)

where σc(τi(T )) corresponds to the order on Γ(c) induced by
Σc(τi(T )). Let us consider a canonical sequence angles⋆(c) =
α1
c . . . α

p
c and the initial order of subtrees Σc(T ) = t1 . . . .tp

defined on Γ(c) in T . Each angle αi
c encodes an angle between

a subtree isomorphic to ti and a subtree isomorphic to ti+1.
Hence, the sequence angles⋆(c) encodes the angles between
the different subtrees of T incident to c. Using Section II-A,

the position of each subtree on the cycle associated to c may
be retrieved up to a shift.

In order to include the relative positioning of substituents
into our augmented treelets, we define a new labeling function
µ′
T (v) as the concatenation of µT (v) and angles⋆(v). The

key associated to an augmented treelet is then computed in
the same way as in [3] according to the augmented treelet
Ta = (VT , ET , µ

′
T , νT ). Two augmented treelets with a same

key are thus isomorphic. Hence two vertices c and c′ corre-
sponding to relevant cycles and mapped one onto the other
have the same label and hence the same set of connected
subtrees and the same sequence of angles. According to our
previous considerations, the positions of each subtree may be
retrieved without ambiguities from the sequence of angles in
both graphs. Both vertices encode thus cycles with the same
connected subtrees separated by the same angles. Considering
such a labeling function, the two configurations depicted in
figure 2 may thus be distinguished. The set of augmented
treelets allows us to extract a set of patterns encoding cyclic,
acyclic and cyclic/acyclic adjacency relationships. In addition,
our bag of treelets allows to distinguish configurations having
a different subtituents’ relative positioning, hence encoding a
finer cyclic information than the set of treelets extracted from
the relevant cycle hypergraph.

IV. EXPERIMENTS

Our extension has been tested on three classification ex-
periments involving molecular graphs composed of cycles.
Results obtained by different kernels using SVM are displayed
in table I. The first experiment, denoted PAH, consists in
94 molecules only composed of carbons. This experiment
aims to predict if a molecule is carcinogenic or not. Results
displayed in table I correspond to the best results obtained by
using a 10-fold cross classification over a grid of parameters
including both machine learning and kernel parameters. The
second experiment, denoted Mutag, is taken from [12] and
is composed of 4 337 molecules identified as mutagen or
nonmutagen. This set of molecules is divided into 3 distinct
subsets: 1 500 molecules are used to train our model, 500 as a
validation set used to tune the parameters and the accuracy is
evaluated on the remaining 2 337 molecules, hence composing
the testset. Finally, the last experiment corresponds to the
PTC [13] dataset which consists in predicting the toxicity
of different molecules on four classes of animals: male mice
(MM), female mice (FM), male rats (MR) and female rats
(FR). Each class of animal is composed of ten trainsets and
ten testsets and, similarly to the first experiment, parameters
are tuned over the testset for each trainset for all methods.
Table I displays the mean accuracy over the ten testsets of
each class of animals.

In order to evaluate our contribution, we compare it with
different kernels. Treelet kernel (Line 1) is a kernel based
on a bag of patterns (section II-B) which do not explicitly
encode cyclic information. The second kernel (Line 2) is
computed by applying a gaussian kernel on an approximate
edit distance [14] which thus do not explicitly encode cyclic
information. Note that this kernel may need some regulariza-
tion step in order to define a positive definite kernel. Next
kernels explicitly include different levels of cyclic information
(sections II-A and II-B). Line 3 corresponds to the kernel



Fig. 4. Augmented treelets and the set of angles (α1, . . . , αn) associated to each potential relevant cycle having at least one pair of substituents.

TABLE I. ACCURACY ON MUTAG, PAH AND PTC DATASETS.

Method Mutag PAH
PTC

MM FM MR FR

Treelet Kernel [3] 77.1 71.3 61.9 58.7 60.8 60.4

Graph edit distance [14] 71.5 72 66.4 60.7 56.4 66.7

Cycles [5] 64.5 63.0 62.2 59.3 58.7 65.0

Relevant cycle graph [7] 67.8 77.7 62.8 60.2 59.0 66.0

Relevant cycle hypergraph [9] 78.3 76.3 64.6 64.2 60.2 66.4

Augmented cycle 80.2 80.7 67.9 64.8 61.3 68.7

defined by Horváth in [5] which only compares the set of
relevant cycles extracted from molecules to be compared. The
kernel based on the relevant cycle graph (Line 4) allows to
encode cycle adjacency relationships and the one based on
the relevant cycle hypergraph (Line 5) encodes in addition the
acyclic parts of molecules. Finally, line 6 corresponds to our
contribution which encodes the position of each substituent
along the boundary of each relevant cycle.

First, we can observe that the similarity measures which
do not include explicitly the cyclic information are generally
outperformed by the treelet kernel on relevant cycle hypergraph
(line 5) which explicitly includes the cyclic information. This
observation allows to highlight the relevancy of explicitly
encoding cyclic information. However, we can note that con-
sidering only the cyclic system (Horváth and relevant cycle
graph kernels) do not allow to obtain a good accuracy. Second,
we can note that finer the cyclic information is encoded, better
are the results. This observation is systematically observed on
PTC and Mutag dataset whereas we observe a lower accuracy
for the relevant cycle hypergraph on PAH dataset. This can
be explained by the fact that the molecules included within
PAH dataset are mainly cyclic. In this case, the addition of the
acyclic information without including the relative positioning
of substituents induces some irrelevant features. Conversely,
adding acyclic parts together with the relative positioning of
substituents lead to the best results on this dataset. In addition,
we can note that our contribution allows to systematically out-
perform the results obtained by other kernels, hence showing
the usefulness of our contribution. From a computational point
of view, computing a Gram matrix on 150 molecules of kernel
including the relative positioning of substituents requires about
1 s whereas it requires about 0.5 s for the kernel on relevant
cycle hypergraph. These experiments have been performed
thanks to the resources of computer center CRIHAN.

V. CONCLUSION

In this paper, we proposed a new cycle representation,
called augmented cycles, which allows to encode cyclic infor-
mation of molecules in a finer way. Our contribution consists
in including the relative positioning of substituents around
a cycle. This new representation can be used in molecular

representations where the cyclic information is explicitly en-
coded, such as the relevant cycle hypergraph. In order to use
this additional information, we also proposed to adapt the
treelet kernel to encode the relative positioning of substituents
by defining the augmented treelets. The different experiments
show the relevancy of this additional information to solve
classification problems in chemoinformatics. Our contribution
defines only locally this orientation for a given cycle. Further
works will aim to study the insight of using a coherent
orientation, when it exists, between adjacent cycles. To that
end, we will have to determine for each cycle its maximal
planar connected component.
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