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Abstract

This paper corresponds to the second part of a study that aims at modeling

helical structures accounting for translational invariance. In the Part 1 of this

paper, the static behavior has been addressed using a helical homogenization

approach which provides the stress state corresponding to axial loads. The lat-

ter is considered as a prestressed state, for elastic wave propagation analysis

in helical waveguides, which is the subject of the Part 2 of this paper. Non

destructive testing of springs and multi-wire strands is a potential application

of the proposed model. Accounting for translational invariance, the elasto-

dynamic equations of prestressed helical structures yield a 2D problem posed

on the cross-section, corresponding to a so-called semi-analytical finite element

(SAFE) formulation. For helical springs, the numerical model is validated with

an analytical solution corresponding to a Timoshenko beam approximation. It

is shown that the influence of the prestressed state is significant at low frequen-

cies. Finally, a seven-wire strand subjected to axial loads is considered. The

computed dispersion curves are compared to experimental data. Good agree-

ment is obtained for the first compressional-like modes and their veering central

frequency.
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Strands; Springs.

1. Introduction

This paper is the second part of a study that aims at modeling helical struc-

tures accounting for translational invariance. In Part 1, the static state in the

case of axial loads has been addressed. Taking into account the effects of pre-

stress and geometry deformation due to these static loads, the objective of Part

2 is the computation of wave modes guided by the helical structures.

Inspection methods based on elastic guided waves are among the most pop-

ular techniques of non destructive testing. Due to the complexity of signals, this

technique is often restricted to simple geometries such as plates and pipes. The

computation of modes of propagation in more complex geometries (arbitrary

cross-section, curved axis,...) requires appropriate simulation tools, typically

based on finite element methods.

A first method based on the Floquet conditions, applicable to periodic struc-

tures, has been used for straight structures (Gry and Gontier (1997); Duhamel

et al. (2006); Mencik and Ichchou (2007)) and for helical waveguides (Treyssède

(2007)). A more efficient method, valid for translationally invariant structures

and often referred to as the semi-analytical finite element (SAFE) method,

has also been developed. This technique has been proposed in early works

in Dong and Nelson (1972). With this method, the problem is reduced on

the cross-section, which decreases the computation time. More recently, the

SAFE method has been used for straight waveguides with arbitrary cross-section

(Gavric (1995); Damljanovic and Weaver (2004); Hayashi et al. (2006); Jezzine

(2006)) or material complexity (Rattanawangcharoen et al. (1992); Zhuang et al.

(1999); Bartoli et al. (2006); Marzani (2008)). This approach has also been

applied to curved waveguides: twisted in Onipede and Dong (1996), toroidal

in Demma et al. (2005) and Finnveden and Fraggstedt (2008) and helical in

Treyssède (2008). Finally, a SAFE method modeling the propagation of elas-

tic waves in seven-wire strands has been developed in Treyssède and Laguerre
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(2010).

Helical structures such as springs and strands are generally subjected to

axial loads. The above-mentioned works are restricted to the propagation of

guided waves in unloaded structures. Only few studies have extended the SAFE

method to loaded waveguides. Straight waveguides under axial loads have been

considered in Chen and Wilcox (2007) and Loveday (2009). To the authors

knowledge, there is no general model in the literature that allows to determine

guided modes propagating in prestressed curved waveguides.

Therefore the goal of this paper is to propose a numerical model for the

propagation of guided waves in helical structures subjected to axial loads, par-

ticularly in prestressed multi-wire strands. This study is limited to linear elas-

tic materials. The SAFE method is adopted, which allows to solve the 3D

elastodynamic equations of motion thanks to a 2D model and without beam

approximation.

The method developed in this paper is restricted to multi-wire helical struc-

tures composed of a stack of helical wires wrapped with the same twisting rate

around a straight axis. As explained in Section 3 of Part 1, this excludes the case

of double helical structures (such as independent wire rope core for instance)

and cross-lay strands.

The paper is organized as follows. Considering the static state computed

in Part 1 as the prestressed state, the variational formulation associated with

the superimposed linear dynamics is first described in Section 2. The twisting

coordinate system is then introduced and differential operators are expressed in

this system in Section 3. Exploiting the translational invariance property, the 3D

variational formulation is then reduced in Section 4 to a 2D problem posed on the

cross-section, which is classical in the framework of SAFE methods. In Section

5, an energy velocity expression is derived for prestressed waveguides. Using

SAFE matrices, the equality between group and energy velocities is proved for

undamped materials. Then for helical springs, numerical results are compared in

Section 6 to those of a beam model proposed in Frikha et al. (2011). For seven-

wire strands subjected to axial loads, using stick contact conditions between the

3



core and peripheral wires, numerical results are compared to experimental data

in Section 7.

2. Dynamic motion of prestressed structures

The analysis of the dynamics of prestressed structures can be decomposed

into a static problem, solved in Part 1 of this paper, and the motion superim-

posed on this prestressed state, which is the aim of Part 2. Therefore, three

configurations must be distinguished: the initial configuration (without initial

stress), the prestressed static configuration (which is denoted V0) and the final

configuration including dynamics. An updated Lagrangian formulation is used,

the variables being expressed in the prestressed static configuration.

One assumes a linear and elastic material behavior and a time-harmonic

e−iωt evolution of the solution. Considering small-amplitude waves as perturba-

tions onto the prestressed static state, the 3D variational formulation governing

elastodynamics is given by (see e.g. Bathe (1996) and Yang and Kuo (1994)):

∀δu,

∫

V0

δǫ : C0 : ǫ dV0 +

∫

V0

tr(∇0δu · σ0 · ∇0u
T )dV0

−ω2

∫

V0

ρ0δu · udV0 = 0,

(1)

with δu kinematically admissible and where u and ǫ = 1/2(∇0u+∇0u
T ) denote

the displacement and the strain tensor, respectively. The subscript 0 refer to

the prestressed static configuration: C0, ρ0 and V0 denote the elasticity tensor,

the material density and the structural volume in the prestressed configuration.

tr(·) is the trace and ∇0 is the gradient operator with respect to the prestressed

configuration. σ0 is the Cauchy prestress, i.e. the stress tensor associated with

the prestressed state. The second term of the formulation, related to σ0, is

sometimes referred to as the geometric stiffness in the literature.

In the context of non-linear mechanics, Eq. (1) is the so-called linearized up-

dated Lagrangian formulation, representing the motion of small perturbations

superimposed on a given state. Its derivation requires a non-linear geometrical
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analysis (large displacement or strain). This implies that the prestressed config-

uration should correspond to a non-linear geometrical state. Yet in this paper,

one will assume that the effects of non-linearity of the prestressed state can be

neglected on dynamics, and the linear computations of Part 1 will be used for

simplicity.

3. Formulation in the curvilinear coordinate system

For the wave propagation analysis in curved waveguides, the variational for-

mulation described in Section 2 must be expressed in an appropriate curvilinear

coordinate system. In this paper, a coordinate system that satisfies translational

invariance both for helical single-wire and multi-wire waveguides is required.

Therefore, the twisted basis is chosen. The translational invariance property

will be checked in Section 4. The reader may refer to Part 1 of this paper for

more details.

3.1. Twisted basis

One considers a helical single-wire waveguide (see Fig. 1 in Part 1). Let

(eX , eY , eZ) denotes the Cartesian orthonormal basis. The centreline is defined

by a helix of radius R in the Cartesian plane (eX , eY ) and pitch L along the

Z-axis. The helix lay angle Φ is defined by tanΦ = 2πR/L.

The twisted basis (ex, ey, eZ) has been defined in Part 1, as an orthonormal

basis rotating around the Z-axis. It corresponds to a particular case of helical

system with κ = 0 and τ = 2π/L, where κ and τ denote the curvature and the

torsion respectively. The unit vectors ex and ey are expressed in the Cartesian

basis by Eq. (3) of Part 1.

However throughout Part 2, geometrical parameters R, L, Φ, κ and τ are

now associated with the prestressed configuration, i.e. the deformed helix under

the action of the static axial load. Rigorously, these parameters should be

denoted with subscripts 0, omitted for brevity’s sake of notations throughout

Part 2. When needed, we will use subscripts i (Ri or Φi for instance) to refer
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to the initial geometrical parameters, i.e. parameters associated with the initial

configuration (without initial stress).

In order to express differential operators in the twisted basis, one has to de-

velop them in the covariant and contravariant bases, (g1,g2,g3) and (g1,g2,g3),

which have been defined by Eqs. (5) and (7) in Part 1.

One recalls that the Christoffel symbol of the second kind Γ k
ij can be cal-

culated from Γ k
ij = gi,j · gk, where gi,j corresponds to the derivatives of the

covariant basis. Its expression in the twisted basis has been obtained in Eq. (8)

of Part 1.

As a side remark, note that twisting coordinates have also been used for

elastic wave propagation in pretwisted beams (Onipede and Dong (1996)), for

electromagnetic waves in optical helical waveguides (Nicolet et al. (2004); Nicolet

and Zola (2007)) and for twisted electrostatic problems (Nicolet et al. (2007)).

3.2. Differential operators

The differential operators involved in the variational formulation (1) are the

gradient and the strain operators. As explained in Part 1 of this study, they have

first to be expressed in the covariant and contravariant bases (see e.g. Chapelle

and Bathe (2003), Synge and Schild (1978), Wempner (1981)).

The gradient tensor ∇0 is defined in the contravariant basis as:

∇0u = γijg
i ⊗ gj , γij = ui,j − Γk

ijuk, (2)

where ui denotes the covariant displacement.

Using the relation between the contravariant and the twisted vectors (Eq.

(7) of Part 1), the gradient tensor can be expressed in the twisted basis under

the following vector form:

{γ} = (Gxy + GZ

∂

∂Z
){u}, (3)

with:
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, (4)

where Λ = τ(y∂/∂x − x∂/∂y). The column vectors {u} = [ux uy uZ ]T and

{γ} = [γxx γxy γxZ γyx γyy γyZ γZx γZy γZZ ]T are the displacement and gradient

components respectively.

Following Part 1, the strain vector is related to the displacement vector in the

twisted basis through: {ǫ} = (Lxy+LZ

∂

∂Z
){u}, where {ǫ} = [ǫxx ǫyy ǫZZ 2ǫxy 2ǫxZ 2ǫyZ ]T

is the strain vector. Lxy and LZ have the expression given by Eq. (10) of Part

1, recalling that this time the geometrical parameter τ corresponds the torsion

of the geometry in the prestressed state.

3.3. Material properties

Mechanical properties are strain-dependent but under the small strain as-

sumption, which is used in this paper, the elasticity tensor is the same in the

reference and prestressed configurations, hence C0 = C (Bathe (1996); Yang

and Kuo (1994)). Its expression in the twisted basis, which is orthonormal, has

been given in Eq. (12) of Part 1.

Besides the change of material density between the reference and prestressed

states can also be neglected (ρ0 = ρ).

3.4. Variational formulation

The variational formulation given by Eq. (1), is now rewritten in a suitable

matrix form based on the displacement, strain and gradient vectors previously
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defined. It can be shown that one has:

tr(∇0δu · σ0 · ∇0u
T ) = {δγ}T [Σ0]{γ}, (5)

where the matrix [Σ0] is defined as follows:

[Σ0] =











[σ0] 0 0

0 [σ0] 0

0 0 [σ0]











, [σ0] =











σ0xx
σ0xy

σ0xZ

σ0yx
σ0yy

σ0yZ

σ0Zx
σ0Zy

σ0ZZ











. (6)

Note that the components of [σ0] must be expressed in the twisted basis asso-

ciated with the prestressed configuration.

Finally, the variational formulation of the elastodynamics of prestressed

structures (1) becomes:

∀δu,

∫

V0

{δǫ}T [C0]{ǫ}dxdydZ +

∫

V0

{δγ}T [Σ0]{γ}dxdydZ

−ω2

∫

V0

ρ0{δu}T {u}dxdydZ = 0.

(7)

4. SAFE method

In this section, a SAFE method is applied starting from the formulation (7).

This method consists in assuming wave fields with a harmonic axial dependence.

The displacement field is thus of the form:

u = u(x, y)ei(kZ−ωt). (8)

The first term represents the displacement field in the cross-section. The sec-

ond corresponds to an exponential eikZ representing wave traveling along the

axis, k being the axial wavenumber, and to the time-harmonic dependence as al-

ready mentioned in Section 2. SAFE methods only require finite element (FE)

discretization of the cross-section, which is advantageous since it reduces the

problem from three to two dimensions.

The SAFE method has been thoroughly presented for straight waveguides in

the literature (see for instance Gavric (1995); Hayashi et al. (2006); Bartoli et al.

(2006)). For details on the extension of the SAFE method to helical waveguides,

the reader may refer to Treyssède (2008) or Treyssède and Laguerre (2010).
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4.1. Translational invariance

Assuming an eikZ dependence implies that axial and transverse variables

must be separable in the governing equations of motion. This requires that

the problem must be translationally invariant along the Z-axis in the twisted

coordinate system.

As proved in Treyssède (2011), three conditions are sufficient for transla-

tional invariance of curved waveguides. These conditions, checked in Part 1 for

the statics of springs and seven-wire strands, are recalled here for clarity:

1. The material properties do not vary along the Z-axis in the twisted

coordinate system;

2. The coefficients of the differential operators are independent on the axial

variable Z;

3. The cross-section does not varies along the Z-axis in the twisted coordi-

nate system.

Conditions 1 and 3 have already been proved in Part 1. Condition 2 must

be checked for the dynamics of prestressed waveguides. A closer look at Eq. (1)

shows that ∇0u and the Cauchy prestress tensor σ0 must be independent on Z.

With regard to the gradient operator, its coefficients do not depend on Z

in the twisted coordinate system (this is due to the independence on Z of the

Christoffel symbol, as already noticed in Part 1). As for σ0, we have to require

that the prestressed state does not vary along the Z-axis. In practice, under ax-

ial loads applied at the end cross-sections of the helical structure, this condition

is fulfilled far from the ends. Therefore, the static prestressed state is invariant

along the axis.

As already examined in Section 3 of Part I, translational invariance in multi-

layer wire ropes is also satisfied if the torsion of each wire remains identical

(the numerical method proposed in this paper is still applicable). However,

translational invariance is not fulfilled in cross-lay strands as well as double

helical structures such as independent wire rope core.
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4.2. SAFE formulation

Following the SAFE approach, the displacement vector and its test field

are rewritten under the form (8) (Treyssède (2008); Treyssède and Laguerre

(2010)). The displacement fields dependence in eikZ allows to replace the axial

derivatives ∂/∂Z by ik. The variational formulation (7) then reduces to a 2D

problem posed on the cross-section S0. The SAFE variational formulation is:

∀{δu},
∫

S0

{δu}T (LT
xy[C0]Lxy + GT

xy[Σ0]Gxy){u}dxdy

+ik

∫

S0

{δu}T (LT
xy[C0]LZ − LT

Z [C0]Lxy + GT
xy[Σ0]GZ

−GT
Z [Σ0]Gxy){u}dxdy

+k2

∫

S0

{δu}T (LT
Z [C0]LZ + GT

Z [Σ0]GZ){u}dxdy

−ω2

∫

S0

ρ0{δu}T {u}dxdy = 0.

(9)

The finite element approximation is defined by {u} = [Ne]{Ue}, where [Ne]

is the matrix of the shape functions and {Ue} the vector of nodal displacements,

with 3 degrees of freedom per node. The FE discretization of Eq. (9) leads to

the following eigenvalue problem:

{[K1σ] − ω2[M ] + ik([K2σ] − [K2σ]T ) + k2[K3σ]}{U} = 0, (10)
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where the element matrices are expressed as:

[Me] =

∫

Se
0

ρ0[N
e]T [Ne]dxdy,

[Ke
1σ] = [Ke

1 ] +

∫

Se
0

[Ne]T GT
xy[Σ0]Gxy[Ne]dxdy,

[Ke
2σ] = [Ke

2 ] +

∫

Se
0

[Ne]T GT
xy[Σ0]GZ [Ne]dxdy,

[Ke
3σ] = [Ke

3 ] +

∫

Se
0

[Ne]T GT
Z [Σ0]GZ [Ne]dxdy,

[Ke
1 ] =

∫

Se
0

[Ne]T LT
xy[C0]Lxy[Ne]dxdy,

[Ke
2 ] =

∫

Se
0

[Ne]T LT
xy[C0]LZ [Ne]dxdy,

[Ke
3 ] =

∫

Se
0

[Ne]T LT
Z [C0]LZ [Ne]dxdy.

(11)

The second term of the right hand side in the expressions of [Ke
1σ], [Ke

2σ]

and [Ke
3σ] correspond to the so-called geometric stiffness effect (second term of

formulation (1)), related to the presence of a prestress field (σ0 6= 0). Note that

the SAFE formulation given by Eqs. (10)-(11) for prestressed helical structures

degenerates to the unprestressed case (Treyssède and Laguerre (2010)) if [Σ0] =

0 and S0 = S.

The matrice [Ke
1 ] is the same as the matrix [Ke] defined in Part 1 for the

static problem, except that the integration is now performed on the prestressed

configuration S0 (instead of S), accounting for the geometry deformation.

In practice, the cross-section mesh of the prestressed structure is obtained as

follows. The cross-section of the structure without initial stress is first meshed.

The prestressed state is computed based on this mesh. Then, the position of

nodes is updated to provide the mesh of the cross-section S0 in the prestressed

configuration. The guided modes are computed on this updated mesh.

The solution of the eigensystem (10) yields the modes of propagation. It can

be noticed that [K1σ], [K3σ] and [M ] are symmetric. Hence for an eigenvalue

k, −k is also an eigenvalue. This problem has then two kinds of eigensolu-

tions: (ki, U
+
i ) and (−ki, U

−

i ) for i = 1, ..., n (n being the number of degrees
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of freedom), representing n modes traveling in the positive direction and n

modes in the negative direction. For undamped materials, pure real and imag-

inary wavenumbers represent propagating and evanescent modes, respectively.

Complex wavenumber are referred to as inhomogeneous modes (such modes are

oscillatory but decay after a few oscillations). Pure real and imaginary solutions

appear in pairs of opposite signs and complex solutions appear in quadruple of

opposite signs and complex conjugates.

The eigensystem (10) can be solved by setting the wavenumber k and finding

the frequency ω or inversely. For propagating modes in undamped materials,

the eigenvalue system can be solved by setting a real positive wavenumber k.

The system is then linear in ω2. For non-propagating modes or for damped

materials, wavenumbers become complex and the problem must be solved by

setting ω and finding k. The eigensystem is then quadratic in k and the system

should be linearized (Tisseur and Meerbergen (2001)).

In this study our concern is propagating modes. Thereafter, eigensolutions

are obtained by finding frequencies associated with real wavenumbers.

5. Modal velocities

The goal of this section is to formally derive group and energy modal veloc-

ities expressions in prestressed waveguides.

5.1. Group velocity

For a real wavenumber k, the phase and group velocities are defined by

Vφ = ω/k and Vg = ∂ω/∂k, respectively. For undamped materials and prop-

agating modes, the SAFE expression of group velocity has been obtained for

unprestressed structures in Bartoli et al. (2006) and Finnveden (2004). The

method consists in differentiating with respect to k the SAFE eigenproblem. In

the presence of prestress, the eigenproblem (10) to be solved remains quadratic

and keeps the same general form as its unprestressed counterpart. As a conse-

quence, the expression derived in the above-mentioned references can be directly
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extended to the prestress case, which yields:

Vg =
1

2ω

{U}T∗(i([K2σ] − [K2σ]T ) + 2k[K3σ]){U}
{U}T∗[M ]{U} , (12)

where as shown in Section 4.2, matrices [Ke
2σ] and [Ke

3σ] account for geometric

stiffness effects. The above expression has also been used in Loveday (2009) for

straight waveguides subjected to axial loads.

5.2. Energy velocity

The energy velocity is defined as the ratio between the transmitted power and

the stored energy, averaged in time and in the cross-section (see e.g. Achenbach

(1973)):

Ve =

∫

S0

P · ndS0
∫

S0

(Ek + Ep)dS0

, (13)

where the bar denotes time average and n is the unit vector normal to the cross-

section. P, Ek and Ep are the Poynting vector, the kinetic energy density and

the potential energy density, respectively.

To the authors knowledge, the above definition has mainly been applied to

structures without initial stress. Hence, one needs to properly define P, Ek and

Ep in the presence of prestress.

For prestressed structures, the strong form corresponding to the variational

formulation (1) is:

∇0 · (C0 : ǫ + ∇0u · σ0) = ρ0ü. (14)

It can be checked that this equilibrium equation indeed derives from a La-

grangian density L, where L = Ek − Ep with:

Ek =
1

2
ρ0u̇ · u̇, (15)

and:

Ep =
1

2
ǫ : C0 : ǫ +

1

2
tr(∇0u · σ0 · ∇0u

T ). (16)

Concerning the Poynting vector (i.e. the power flow per unit area), it can be

calculated thanks to the Lagrangian density from: PJ = u̇I∂L/∂uI,J (here,
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index notation is used in the Cartesian coordinate system with the Einstein

summation convention). Calculations yield:

P = −u̇ · (C0 : ǫ + ∇0u · σ0). (17)

When σ0 = 0, Eqs. (16) and (17) degenerate to the well known energy and

power flow expressions without prestress (see Achenbach (1973) for instance).

From SAFE matrices, it can be easily checked that:

∫

S0

EkdS0 =
ω2

4
Re({U}T∗[M ]{U}),

∫

S0

EpdS0 =

1

4
Re

(

{U}T∗([K1σ] + ik([K2σ] − [K2σ]T ) + k2[K3σ]){U}
)

.

(18)

The computation of the cross-section and time averaged Poynting vector

requires further developments (Treyssède (2008); Benmeddour et al. (2011)).

Replacing the normal vector n by eZ and averaging the Poynting vector, we

obtain:

∫

S0

P · ndS0 =
ω

2
Im

(
∫

S0

u∗

α(C0 : ǫ + ∇0u · σ0)αZdS0

)

, (19)

where α = x, y, Z. The integrand can be written as u∗

α(C0 : ǫ + ∇0u · σ0)αZ =

{u}T∗(LT
Z [C0](Lxy + ikLZ) + GT

Z [Σ0](Gxy + ikGZ)){u}. Eq. (19) becomes:

∫

S0

P · ndS0 =
ω

2
Im

(

{U}T∗([K2σ]T + ik[K3σ]){U}
)

. (20)

Finally, Eqs. (18) and (20) yield a direct computation of energy velocity

from SAFE matrices:

Ve =
2ωIm

(

{U}T∗([K2σ]T + ik[K3σ]){U}
)

Re ({U}T∗(ω2[M ] + [K1σ] + ik([K2σ] − [K2σ]T ) + k2[K3σ]){U}) . (21)

This equation degenerates to the unprestressed case, for which [K1σ] = [K1],

[K2σ] = [K2] and [K3σ] = [K3] becomes the SAFE matrices of non-prestressed

structures found in Treyssède (2008) and Treyssède and Laguerre (2010).

Under prestress, the expression (21) is checked in the Appendix by showing

the equality between the energy velocity and the group velocity for propagating

modes in undamped materials.
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6. Validation for a helical spring

The purpose of this section is to validate the SAFE model for prestressed

helical springs.

The dispersion curves of prestressed helical waveguides obtained from the

SAFE model will be compared to results obtained by the authors in Frikha et al.

(2011), here used as a reference. In Frikha et al. (2011) the propagation modes

in helical beams under axial loads are computed based on a Timoshenko model

approximation. This model is limited to large helix radius of curvature (1/κ)

compared to the cross-section radius a. Moreover the static prestressed state is

calculated from a non-linear analytical solution derived in Wahl (1963), which

is valid only for large helix angle Φ (Φ ≥ 65◦) and large ratio R/a (R/a ≥ 5).

The reader may refer to Frikha et al. (2011) for a detailed study of load effects

for various angles and radii.

In this section, the following data are chosen: the initial parameters of the

helix (without initial stress) are Ri/a = 10 and Φi = 75◦. The prestress cor-

responds to a macroscopic axial deformation: EE = 40% and ET = 0. It is

important to note that with these data both the effects of prestress and geom-

etry deformation are important and thus need to be properly accounted for, as

shown in Frikha et al. (2011).

The static analysis of a helical waveguide with these data has been presented

in Section 6.1 of Part 1, where local displacements have been computed. The

prestress matrix [σ0] is then determined from these local displacements. The

geometry deformation is taken into account in the SAFE method by integration

on the deformed cross-section S0 (updating the node position, see Section 4.2).

Fig. 1 illustrates the initial and the updated cross-sections FE mesh under

EE = 40% and ET = 0, yielding an updated lay angle Φ = 68.8◦ and helix

radius R/a = 9.71.

In a low frequency range (ωa/cs ∈ [0; 0.005]), Fig. 2 shows the dimensionless

dispersion curves, ωa/cs vs. ka, obtained from the SAFE model, where cs =
√

E/2ρ(1 + ν) is the shear velocity with Poisson ratio ν equal to 0.3. Grey and
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Figure 1: Cross-section FE mesh of a helical waveguide with Ri/a = 10 and Φi = 75◦. Grey:

initial mesh (EE = 0), black: updated mesh (EE = 40%), plotted in the initial and updated

twisting coordinate system respectively.

black curves refer to unloaded (EE = 0 and ET = 0) and loaded (EE = 40% and

ET = 0) cases, respectively. It can be observed that four modes are propagating

in the frequency range considered. The tensile load has an effect on the four

propagating modes. The load effect is found to be the most important for mode

2, its dispersion curve shifting to higher frequencies.

Figs. 3 and 4 compare the dispersion curves obtained from both SAFE

method and the analytical model of Frikha et al. (2011) when the spring is

loaded (EE = 40% and ET = 0). Good agreement is found between both

models in the two frequency ranges [0; 0.005] and [0; 0.25]. As shown in Frikha

et al. (2011), the loading effect becomes smaller at higher frequencies. One

points out that the wavenumber k presented in Figs. 2-4 is measured with

respect to the curved helical axis, instead of the straight axis. This means that

the wavenumber computed in the twisting basis with the SAFE method has

been transformed to the helical system by multiplying ka with the ratio L/l

where l =
√

L2 + 4π2R2 (see Treyssède and Laguerre (2010) for more details).

This allows a direct comparison with the results of Frikha et al. (2011), obtained

in a helical coordinate system.
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Figure 2: Plot of dimensionless frequency ωa/cs vs. wavenumber ka for Ri/a = 10, Φi = 75◦,

ωa/cs ∈ [0; 0.005], EE = 0 (grey) and EE = 40% (black).

  

b)

Figure 3: Plot of dimensionless frequency ωa/cs vs. wavenumber ka for Ri/a = 10, Φi = 75◦,

ωa/cs ∈ [0; 0.005], EE = 40%. Grey: reference model, black: SAFE model.
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Figure 4: Plot of dimensionless frequency vs. wavenumber for Ri/a = 10, Φi = 75◦, ωa/cs ∈

[0; 0.25], EE = 40%. Grey: reference model, black: SAFE model.

In Fig. 3, a slight difference for mode 1 and ka ∈ [0.1; 0.15] is found between

SAFE and analytical results. Note however that the static state is computed

using a non-linear solution in the reference model while the SAFE model is

linear. Moreover the analytical solution is based on a Timoshenko beam model

while the SAFE method starts from a 3D formulation without beam assumption.

Therefore, this difference is small for such a validation test, with a large load

applied on a helical spring of large helix angle.

7. Dispersion analysis of seven-wire strands

In this section, results for guided wave propagation in multi-wire structures

are presented. The study is restricted to seven-wire strands, with a central

straight wire and one layer of six helical wires, for which some experimental

data are available (Laguerre et al. (2002); Kwun et al. (1998)). In Laguerre

et al. (2002), the effect of axial load on a seven-wire strand was studied for

different axial loads of 2%, 10% and 60% of the Ultimate Tensile Strength

(UTS). Experimental results showed the existence of a frequency band (’notch

frequency’) for different axial loads, where the first compressional mode does
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not seem to propagate. For an unloaded strand with a nominal outer diameter

15.7mm, the notch frequency is around 67kHz. This frequency shifts to 88kHz

under 60% of the UTS. Also in the experiments of Kwun et al. (1998), the notch

frequency of a seven-wire strand was found to vary linearly with log(T ), where

T is the axial load.

Though numerical results will be presented in a dimensionless form, we focus

on seven-wire strands with geometrical and material data experimented in the

above-mentioned references. Thus in the following we will consider two strands

which will be denoted Strand 1 and Strand 2. Characteristics are given in Table

1, the geometrical parameters corresponding to the initial configuration, without

initial stress. For both strands, one will assume: Ri/a = 1.967, Φi = 7.9◦,

ν = 0.28 and ρ = 7800kg/m3. As already explained in Part I, the contact

between wires is modeled with perfect bonding conditions for simplicity (slip or

friction effects are neglected).

Parameter Strand 1 Strand 2

Nominal diameter (mm) 15.7 12.7

Core radius a (mm) 2.7 2.16

Young’s modulus (Pa) 2.17e11 2.1e11

Table 1: Strand characteristics.

7.1. Preliminary results for unprestressed strands

In order to make this paper self-contained, the main results presented in

Treyssède and Laguerre (2010), for strands without initial stress, and obtained

with a SAFE method are recalled in this section.

Strand 1 is considered. There is no contact between two peripheral helical

wires, and the contact between central and peripheral wires is assumed to be

perfectly stick, see Part 1.

Dispersion curves have been computed by fixing a real wavenumber ka for

the dimensionless frequency range [0; 2]. Fig. 5 presents the energy velocity vs.

frequency curves for this unloaded seven-wire strand. Due to inter-wire coupling,
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the dynamic behavior is quite complex compared to single-wire waveguides.

Yet, a noticeable phenomenon can be observed: a veering frequency of the

fastest mode occurs around ωa/cs = 0.33, corresponding to 65kHz for Strand

1. This veering frequency leads to an abrupt velocity decrease and the fastest

mode corresponds to the first compressional-like mode in the strand, as shown

in Treyssède and Laguerre (2010). Therefore, this veering frequency can be

actually identified as the notch frequency observed in experiments, i.e. 67kHz

(Laguerre et al. (2002); Treyssède and Laguerre (2010)).

  

0.33

Figure 5: Dimensionless energy velocity Ve/cs vs. frequency ωa/cs for an unloaded seven-wire

strand (EE = 0).

Other experimental results are reported in Kwun et al. (1998) with a notch

frequency found around 80kHz. In that reference, the strand diameter is

12.7mm. Using the SAFE approach with Strand 2, the dimensionless frequency

ωa/cs = 0.33 yields a dimensional value of 79kHz, which is again in good

agreement with the experimental notch frequency.

In the following, the validation of the SAFE model proposed in this paper

for loaded strands will be performed using the notch frequency as the quantity

of interest, because experimental results are available.
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7.2. Prestressed strand with line contact approximation

A seven-wire strand subjected to an axial tensile strain EE = 0.6% (ET = 0)

is now considered. As a first step, one assumes that the contact area between the

central and peripheral wires is a line, which is exact in the initial configuration

(without any loading). This assumptions means a point-to-point contact for

the 2D microscopic problem derived in the Part 1 of this paper. Moreover, this

contact is supposed to be stick, see Part 1.

As in Section 6, the computation of modes of propagation in prestressed

strands requires the computation of the static prestressed state, which is then

used into the computation of propagation modes. Similarly to helical single

wire waveguides, the static state has been already computed in Part 1, using the

cross-section mesh of the unloaded strand (Fig. 6(a)). The nodes position is then

updated to provide the mesh of the deformed cross-section S0. Propagations

modes are computed from this geometry.

The strand characteristics are those of Strand 1. Fig. 6(a) shows the su-

perposition of the undeformed cross-section, in gray, and the updated mesh, in

black. Differences between both meshes are negligible. In particular, Fig. 6(b)

confirms that there is no contact between peripheral wires, even as a tensile

load is applied.

Note that for better accuracy of numerical results, the mesh has been refined

at contact points, yielding 17019 dofs. From the static solution given in Part

1, an axial strain of EE = 0.6% (with ET = 0) for this seven-wire strand

corresponds to an axial force T = 190.3kN . This value provides a mean axial

stress equal to 1260MPa, corresponding to the mean stress applied in Laguerre

et al. (2002) (i.e. 60% of the UTS).

Fig. 7 shows the dispersion curves (energy velocity vs. frequency). Except

at low frequencies (below 0.1), we note that there is no difference between these

results and those obtained for unloaded strand (see Fig. 5). In particular, the

notch frequency remains around the dimensionless frequency ωa/cs = 0.33, as

opposed to experimental results.

However a closer analysis of the deformed configuration due to the static
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Figure 6: Cross-section FE mesh of a seven-wire strand with Ri/a = 1.967 and Φi = 7.9◦.

Grey: initial mesh (EE = 0), black: updated mesh (EE = 0.6%), plotted in the initial and

updated twisting coordinate system respectively. (a): overview, (b): interwire view.

  

0.33

Figure 7: Dimensionless energy velocity Ve/cs vs. frequency ωa/cs for a seven-wire strand

subjected to a tensile strain EE = 0.6% with line contact approximation.

load in the wire-wire contact zone shows that the impenetrability condition is

violated for the nodes in the vicinity of the contact points. This result is in

line with Jiang et al. (2008) in which it is reported that contact area increases

with the strand extension. Thus the line contact assumption is not valid and

at this step it is suspected that this wrong assumption is responsible for the

discrepancy between SAFE results and experimental data. Therefore hereafter

a new model which properly takes into account the contact conditions will be

used.
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7.3. Surface Contact consideration

The new contact procedure is as follows. First, it has to be noticed that

matching meshes are used for potentially contact lines of the central wire and

each helical wire. This easily allows to address the line-to-line contact through

individual node-to-node contacts for the 2D model. Thus contact pairs of nodes

are formed on both sides of the initial point-to-point contact zone. Starting

with the initial configuration from only one point-to-point contact between the

core and each helical wire, the axial strain value gradually increases and the

nodes position is updated. When the distance between the nodes of the same

pair vanishes, the stick contact condition is imposed through the continuity of

the displacement between these two nodes. Finally, when EE = 0.6%, we have

obtained an updated geometry with eleven pairs of nodes in contact between

the central wire and each peripheral wire.

With this contact procedure, note that a tensile strain EE = 0.6% applied on

a seven-wire strand with nominal diameter 15.7mm (Strand 1) yields a resultant

force T = 189.4kN and moment M = 116.9N.m. These values are quite close

to those obtained in Part 1 from a point-to-point contact approximation: T =

190.3kN and M = 118.1N.m. This is consistent with the results obtained in

Ghoreishi et al. (2007), where it has been shown that the global static behavior

is very little sensitive to contact assumptions.

Fig. 8 shows the energy velocity Ve/cs with respect to the dimensionless

frequency ωa/cs. Under an applied tensile strain EE = 0.6%, the notch fre-

quency now shifts around the dimensionless frequency ωa/cs = 0.44. This value

corresponds to 86kHz for a seven-wire strand with a nominal diameter 15.7mm,

which is in good agreement with experimental results (approximately 88kHz in

Laguerre et al. (2002)). If we compare these dispersion curves with those ob-

tained in Fig. 7, we can conclude that the shift of the notch frequency is mainly

due to contact effects and more precisely to the increasing of the contact area.

As shown for unloaded strands in Treyssède and Laguerre (2010), the notch

frequency phenomenon corresponds to a veering frequency between two exten-

sional modes interchanging their behavior. Under axial loads, one can check
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Figure 8: Dimensionless energy velocity Ve/cs vs. frequency ωa/cs of a seven-wire strand

subjected to a tensile strain EE = 0.6% with surface contact consideration (no interpenetra-

tion).

that this phenomenon still occurs, as illustrated in Fig. 9 showing the mode

shapes at points 1 and 2 (see Fig. 8), corresponding to solutions (ka, ωa/cs,

Ve/cs) = (0.1, 0.16, 1.57) and (0.60, 0.96, 1.56) respectively. These mode shapes

are quite close to those found in Treyssède and Laguerre (2010). Indeed, modes

1 and 2 belong to two distinct branches. Their global axial motion confirms

that they are compressional-like modes, which have interchanged their shapes

(for more details, the reader may refer to Treyssède and Laguerre (2010)). How-

ever, these modes are not exactly similar because the real parts of their axial

displacement have opposite signs.

Comparing the dispersion curves of a prestressed strand (Fig. 8) with the

unprestressed ones (Fig. 5), at low frequencies (ωa/cs < 0.1), large differences

are found for some fundamental branches. For instance, the torsional mode

(which quickly tends to Ve/cs = 1 at higher frequencies), is found to be very

sensitive to the tensile load. However, these results need to be confirmed by

experiments, which is beyond the scope of this paper. We can observe also

that dispersion curves shift to higher frequencies under the effect of tensile load,

even at high frequencies. Due to contact effects, this contrasts with the results
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Figure 9: Mode shapes of a seven-wire strand subjected to a tensile strain EE = 0.6%

calculated at points 1, real (a) and imaginary (b) parts, and at point 2, real (c) and imaginary

(d) parts. Grey meshes refer to the cross-section in its static configuration.

obtained for helical springs for which it was shown that the effects of axial load

was significant only on low frequencies.

Finally, the SAFE results are now compared to other experimental results

provided in Kwun et al. (1998), in which it has been found that the notch

frequency varies linearly with log(T ). Considering Strand 2, Fig. 10 shows the

variation of the notch frequency as a function of the applied load computed

from our SAFE model. The SAFE results have been obtained from the first

node-to-node contacts formed on both side of initial contact points, yielding

notch frequencies from 95 to 108 kHz in Fig. 10. Note that the low tension

part of the experimental curve has not been explored with the numerical model

because a much finer mesh would have been required around initial contact

points. As it can be seen, the SAFE numerical results are in very good agreement

with the experimental measurements of Kwun et al. (1998). The fact that

the computed result for 100 kHz crosses the test result can be explained by

simplifying assumptions used in the model (linear prestress state, frictionless

contact).

Thus one can conclude to a validation of the SAFE approach with surface
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Figure 10: Variation of the notch frequency (kHz) vs. the applied load (kg-force) for a seven-

wire strand of nominal diameter 12.7mm. Circles: SAFE computation, crosses: experimental

values of Kwun et al. (1998).

contact by comparison with the experimental results of Laguerre et al. (2002)

and Kwun et al. (1998).

8. Conclusions

In this paper, elastic wave propagation in prestressed helical waveguides has

been studied. The prestressed state is taken into account through the prestress

(static Cauchy stress) and the deformed static geometry within an updated

Lagrangian formulation. This prestressed static state, corresponding to axial

loads, is computed thanks to the homogenization method proposed in Part 1

of this study. In Part 2, a SAFE formulation has been developed accounting

for the translational invariance property, hence reducing the 3D elastodynamic

equations of prestressed structures, written in the twisted coordinate system, to

a 2D problem posed on the static deformed cross-section.

The present approach has been first applied to prestressed helical springs

and the results have been compared to those obtained from an analytical so-

lution based on a Timoshenko beam model. Good agreement has been found
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on dispersion curves. Moreover it was shown that the effect of the prestressed

state was significant at low frequencies.

Next a seven-wire strand subjected to axial loads has been considered. In

this case the important role of the contact area has been highlighted, which thus

requires its updating. Including this feature, we have shown that the SAFE

model can reproduce experimental results with respect to the notch frequency

of the fundamental compressional-like mode, which increases with the tensile

load. From a physical point of view, a complex behavior is observed due to

interwire coupling. Moreover, numerical results show that over a wide spectrum

of frequencies, dispersion curves shift to high frequencies under the effect of

tensile loads.

Appendix: Equality between group and energy velocities

For propagating modes in undamped materials, group and energy velocities

of guided modes must be equal, as opposed to damped cases (Bernard et al.

(2001)). Hence, let us assume that the material is undamped in order to show

the equality between expressions (12) and (21).

Multiplying the eigenproblem (10) by {U}T∗, we get:

{U}T∗
(

[K1σ] + ik([K2σ] − [K2σ]T ) + k2[K3σ]
)

{U}

= ω2{U}T∗[M ]{U}.
(22)

This equation shows the equality between the kinetic and potential energies.

Therefore, Eq. (18) becomes:

∫

S0

EkdS0 =

∫

S0

EpdS0 =
ω2

4
Re({U}T∗[M ]{U}). (23)

From Eqs. (20) and (23), the energy velocity expression (13) becomes:

Ve =
Im

(

{U}T∗([K2σ]T + ik[K3σ]){U}
)

ωRe({U}T∗[M ]{U}) . (24)

Besides, the imaginary part can be rewritten as:
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Im
(

{U}T∗([K2σ]T + ik[K3σ]){U}
)

=

{U}T∗
1

2i
([K2σ]T + ik[K3σ]){U}−

{U}T∗
1

2i
([K2σ]∗ − ik∗[K3σ]T∗){U}.

(25)

For undamped materials, the matrix [K3σ] is real symmetric ([K3σ]T∗ = [K3σ]

and the matrix [K2σ] is real ([K2σ]∗ = [K2σ]). Then, Eq. (25) becomes:

Im{{U}T∗([K2σ]T + ik[K3σ]){U}} =

1

2
{U}T∗(i([K2σ] − [K2σ]T ) + (k + k∗)[K3σ]){U}.

(26)

For propagating modes, wavenumbers are real (k = k∗) and Eq. (26) be-

comes equal to the numerator of the group velocity (12). Also, the denominator

of Eq. (12) is always real because [M ] is real symmetric. Therefore, the energy

velocity is equal to the group velocity.
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