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This paper corresponds to the second part of a study that aims at modeling helical structures accounting for translational invariance. In the Part 1 of this paper, the static behavior has been addressed using a helical homogenization approach which provides the stress state corresponding to axial loads. The latter is considered as a prestressed state, for elastic wave propagation analysis in helical waveguides, which is the subject of the Part 2 of this paper. Non destructive testing of springs and multi-wire strands is a potential application of the proposed model. Accounting for translational invariance, the elastodynamic equations of prestressed helical structures yield a 2D problem posed on the cross-section, corresponding to a so-called semi-analytical finite element (SAFE) formulation. For helical springs, the numerical model is validated with an analytical solution corresponding to a Timoshenko beam approximation. It is shown that the influence of the prestressed state is significant at low frequencies. Finally, a seven-wire strand subjected to axial loads is considered. The computed dispersion curves are compared to experimental data. Good agreement is obtained for the first compressional-like modes and their veering central frequency.
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Introduction

This paper is the second part of a study that aims at modeling helical structures accounting for translational invariance. In Part 1, the static state in the case of axial loads has been addressed. Taking into account the effects of prestress and geometry deformation due to these static loads, the objective of Part 2 is the computation of wave modes guided by the helical structures.

Inspection methods based on elastic guided waves are among the most popular techniques of non destructive testing. Due to the complexity of signals, this technique is often restricted to simple geometries such as plates and pipes. The computation of modes of propagation in more complex geometries (arbitrary cross-section, curved axis,...) requires appropriate simulation tools, typically based on finite element methods.

A first method based on the Floquet conditions, applicable to periodic structures, has been used for straight structures [START_REF] Gry | Dynamic modelling of railway track: A periodic model based on a generalised beam formulation[END_REF]; [START_REF] Duhamel | Finite element analysis of the vibrations of waveguides and periodic structures[END_REF]; [START_REF] Mencik | Wave finite elements in guided elastodynamics with internal fluid[END_REF]) and for helical waveguides [START_REF] Treyssède | Numerical investigation of elastic modes of propagation in helical waveguides[END_REF]). A more efficient method, valid for translationally invariant structures and often referred to as the semi-analytical finite element (SAFE) method, has also been developed. This technique has been proposed in early works in [START_REF] Dong | On natural vibrations and waves in laminated orthotropic plates[END_REF]. With this method, the problem is reduced on the cross-section, which decreases the computation time. More recently, the SAFE method has been used for straight waveguides with arbitrary cross-section [START_REF] Gavric | Computation of propagative waves in free rail using a finite element technique[END_REF]; [START_REF] Damljanovic | Propagating and evanescent elastic waves in cylindrical waveguides of arbitrary cross section[END_REF]; [START_REF] Hayashi | Wave structure analysis of guided waves in a bar with an arbitrary cross-section[END_REF]; [START_REF] Jezzine | Approche modale pour la simulation globale de contrôles nondestructifs par ondes élastiques guidées (Modal approach for the full simulation of nondestructive tests by elastic guided waves[END_REF]) or material complexity [START_REF] Rattanawangcharoen | Wave propagation in laminated composite circular cylinders[END_REF]; [START_REF] Zhuang | Elastodynamic green's function for laminated anisotropic circular cylinders[END_REF]; [START_REF] Bartoli | Modeling wave propagation in damped waveguides of arbitrary cross-section[END_REF]; [START_REF] Marzani | Time-transient response for ultrasonic guided waves propagating in damped cylinders[END_REF]). This approach has also been applied to curved waveguides: twisted in [START_REF] Onipede | Propagating waves and end modes in pretwisted beams[END_REF], toroidal in [START_REF] Demma | The effect of bends on the propagation of guided waves in pipes[END_REF] and [START_REF] Finnveden | Waveguide finite elements for curved structures[END_REF] and helical in [START_REF] Treyssède | Elastic waves in helical waveguides[END_REF]. Finally, a SAFE method modeling the propagation of elastic waves in seven-wire strands has been developed in [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF].

Helical structures such as springs and strands are generally subjected to axial loads. The above-mentioned works are restricted to the propagation of guided waves in unloaded structures. Only few studies have extended the SAFE method to loaded waveguides. Straight waveguides under axial loads have been considered in [START_REF] Chen | The effect of load on guided wave propagation[END_REF] and [START_REF] Loveday | Semi-analytical finite element analysis of elastic waveguides subjected to axial loads[END_REF]. To the authors knowledge, there is no general model in the literature that allows to determine guided modes propagating in prestressed curved waveguides.

Therefore the goal of this paper is to propose a numerical model for the propagation of guided waves in helical structures subjected to axial loads, particularly in prestressed multi-wire strands. This study is limited to linear elastic materials. The SAFE method is adopted, which allows to solve the 3D elastodynamic equations of motion thanks to a 2D model and without beam approximation.

The method developed in this paper is restricted to multi-wire helical structures composed of a stack of helical wires wrapped with the same twisting rate around a straight axis. As explained in Section 3 of Part 1, this excludes the case of double helical structures (such as independent wire rope core for instance) and cross-lay strands.

The paper is organized as follows. Considering the static state computed in Part 1 as the prestressed state, the variational formulation associated with the superimposed linear dynamics is first described in Section 2. The twisting coordinate system is then introduced and differential operators are expressed in this system in Section 3. Exploiting the translational invariance property, the 3D variational formulation is then reduced in Section 4 to a 2D problem posed on the cross-section, which is classical in the framework of SAFE methods. In Section 5, an energy velocity expression is derived for prestressed waveguides. Using SAFE matrices, the equality between group and energy velocities is proved for undamped materials. Then for helical springs, numerical results are compared in Section 6 to those of a beam model proposed in [START_REF] Frikha | Effect of axial load on the propagation of elastic waves in helical beams[END_REF]. For sevenwire strands subjected to axial loads, using stick contact conditions between the core and peripheral wires, numerical results are compared to experimental data in Section 7.

Dynamic motion of prestressed structures

The analysis of the dynamics of prestressed structures can be decomposed into a static problem, solved in Part 1 of this paper, and the motion superimposed on this prestressed state, which is the aim of Part 2. Therefore, three configurations must be distinguished: the initial configuration (without initial stress), the prestressed static configuration (which is denoted V 0 ) and the final configuration including dynamics. An updated Lagrangian formulation is used, the variables being expressed in the prestressed static configuration.

One assumes a linear and elastic material behavior and a time-harmonic e -iωt evolution of the solution. Considering small-amplitude waves as perturbations onto the prestressed static state, the 3D variational formulation governing elastodynamics is given by (see e.g. [START_REF] Bathe | Finite Element Procedures[END_REF] and [START_REF] Yang | Nonlinear Framed Structures[END_REF]):

∀δu,

V0 δǫ : C 0 : ǫ dV 0 + V0 tr(∇ 0 δu • σ 0 • ∇ 0 u T )dV 0 -ω 2 V0 ρ 0 δu • udV 0 = 0, (1)
with δu kinematically admissible and where u and ǫ = 1/2(∇ 0 u+∇ 0 u T ) denote the displacement and the strain tensor, respectively. The subscript 0 refer to the prestressed static configuration: C 0 , ρ 0 and V 0 denote the elasticity tensor, the material density and the structural volume in the prestressed configuration. tr(•) is the trace and ∇ 0 is the gradient operator with respect to the prestressed configuration. σ 0 is the Cauchy prestress, i.e. the stress tensor associated with the prestressed state. The second term of the formulation, related to σ 0 , is sometimes referred to as the geometric stiffness in the literature.

In the context of non-linear mechanics, Eq. ( 1) is the so-called linearized updated Lagrangian formulation, representing the motion of small perturbations superimposed on a given state. Its derivation requires a non-linear geometrical analysis (large displacement or strain). This implies that the prestressed configuration should correspond to a non-linear geometrical state. Yet in this paper, one will assume that the effects of non-linearity of the prestressed state can be neglected on dynamics, and the linear computations of Part 1 will be used for simplicity.

Formulation in the curvilinear coordinate system

For the wave propagation analysis in curved waveguides, the variational formulation described in Section 2 must be expressed in an appropriate curvilinear coordinate system. In this paper, a coordinate system that satisfies translational invariance both for helical single-wire and multi-wire waveguides is required.

Therefore, the twisted basis is chosen. The translational invariance property will be checked in Section 4. The reader may refer to Part 1 of this paper for more details.

Twisted basis

One considers a helical single-wire waveguide (see Fig. 1 However throughout Part 2, geometrical parameters R, L, Φ, κ and τ are now associated with the prestressed configuration, i.e. the deformed helix under the action of the static axial load. Rigorously, these parameters should be denoted with subscripts 0, omitted for brevity's sake of notations throughout Part 2. When needed, we will use subscripts i (R i or Φ i for instance) to refer to the initial geometrical parameters, i.e. parameters associated with the initial configuration (without initial stress).

In order to express differential operators in the twisted basis, one has to develop them in the covariant and contravariant bases, (g 1 ,g 2 ,g 3 ) and (g 1 ,g 2 ,g 3 ), which have been defined by Eqs. ( 5) and ( 7) in Part 1.

One recalls that the Christoffel symbol of the second kind Γ k ij can be calculated from Γ k ij = g i,j • g k , where g i,j corresponds to the derivatives of the covariant basis. Its expression in the twisted basis has been obtained in Eq. ( 8) of Part 1.

As a side remark, note that twisting coordinates have also been used for elastic wave propagation in pretwisted beams [START_REF] Onipede | Propagating waves and end modes in pretwisted beams[END_REF]), for electromagnetic waves in optical helical waveguides [START_REF] Nicolet | Modeling of twisted optical waveguides with edge elements[END_REF]; [START_REF] Nicolet | Finite element analysis of helicoidal waveguides[END_REF]) and for twisted electrostatic problems (Nicolet et al. (2007)).

Differential operators

The differential operators involved in the variational formulation (1) are the gradient and the strain operators. As explained in Part 1 of this study, they have first to be expressed in the covariant and contravariant bases (see e.g. [START_REF] Chapelle | The Finite Element Analysis of Shells-Fundamentals[END_REF], [START_REF] Synge | Tensor Calculus[END_REF], [START_REF] Wempner | Mechanics of Solids with Applications to Thin Bodies[END_REF]).

The gradient tensor ∇ 0 is defined in the contravariant basis as:

∇ 0 u = γ ij g i ⊗ g j , γ ij = u i,j -Γ k ij u k , (2) 
where u i denotes the covariant displacement.

Using the relation between the contravariant and the twisted vectors (Eq.

(7) of Part 1), the gradient tensor can be expressed in the twisted basis under the following vector form:

{γ} = (G xy + G Z ∂ ∂Z ){u}, (3) 
with:

G xy =                        ∂/∂x 0 0 ∂/∂y 0 0 Λ -τ 0 0 ∂/∂x 0 0 ∂/∂y 0 τ Λ 0 0 0 ∂/∂x 0 0 ∂/∂y 0 0 Λ                        , G Z =                        0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1                        , (4) 
where Λ = τ (y∂/∂x -x∂/∂y is the strain vector. L xy and L Z have the expression given by Eq. (10) of Part 1, recalling that this time the geometrical parameter τ corresponds the torsion of the geometry in the prestressed state.

Material properties

Mechanical properties are strain-dependent but under the small strain assumption, which is used in this paper, the elasticity tensor is the same in the reference and prestressed configurations, hence C 0 = C (Bathe (1996); [START_REF] Yang | Nonlinear Framed Structures[END_REF]). Its expression in the twisted basis, which is orthonormal, has been given in Eq. ( 12) of Part 1.

Besides the change of material density between the reference and prestressed states can also be neglected (ρ 0 = ρ).

Variational formulation

The variational formulation given by Eq. ( 1), is now rewritten in a suitable matrix form based on the displacement, strain and gradient vectors previously defined. It can be shown that one has:

tr(∇ 0 δu • σ 0 • ∇ 0 u T ) = {δγ} T [Σ 0 ]{γ}, (5) 
where the matrix [Σ 0 ] is defined as follows:

[Σ 0 ] =      [σ 0 ] 0 0 0 [σ 0 ] 0 0 0 [σ 0 ]      , [σ 0 ] =      σ 0xx σ 0xy σ 0 xZ σ 0yx σ 0yy σ 0 yZ σ 0 Zx σ 0 Zy σ 0 ZZ      . ( 6 
)
Note that the components of [σ 0 ] must be expressed in the twisted basis associated with the prestressed configuration.

Finally, the variational formulation of the elastodynamics of prestressed structures (1) becomes:

∀δu, V0 {δǫ} T [C 0 ]{ǫ}dxdydZ + V0 {δγ} T [Σ 0 ]{γ}dxdydZ -ω 2 V0 ρ 0 {δu} T {u}dxdydZ = 0. (7) 

SAFE method

In this section, a SAFE method is applied starting from the formulation (7).

This method consists in assuming wave fields with a harmonic axial dependence.

The displacement field is thus of the form:

u = u(x, y)e i(kZ-ωt) . (8) 
The first term represents the displacement field in the cross-section. The second corresponds to an exponential e ikZ representing wave traveling along the axis, k being the axial wavenumber, and to the time-harmonic dependence as already mentioned in Section 2. SAFE methods only require finite element (FE) discretization of the cross-section, which is advantageous since it reduces the problem from three to two dimensions.

The SAFE method has been thoroughly presented for straight waveguides in the literature (see for instance [START_REF] Gavric | Computation of propagative waves in free rail using a finite element technique[END_REF]; [START_REF] Hayashi | Wave structure analysis of guided waves in a bar with an arbitrary cross-section[END_REF]; [START_REF] Bartoli | Modeling wave propagation in damped waveguides of arbitrary cross-section[END_REF]). For details on the extension of the SAFE method to helical waveguides, the reader may refer to [START_REF] Treyssède | Elastic waves in helical waveguides[END_REF] or [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF].

Translational invariance

Assuming an e ikZ dependence implies that axial and transverse variables must be separable in the governing equations of motion. This requires that the problem must be translationally invariant along the Z-axis in the twisted coordinate system.

As proved in [START_REF] Treyssède | Mode propagation in curved waveguides and scattering by inhomogeneities: application to the elastodynamics of helical structures[END_REF], three conditions are sufficient for translational invariance of curved waveguides. These conditions, checked in Part 1 for the statics of springs and seven-wire strands, are recalled here for clarity:

1. The material properties do not vary along the Z-axis in the twisted coordinate system;

2. The coefficients of the differential operators are independent on the axial variable Z;

3. The cross-section does not varies along the Z-axis in the twisted coordinate system.

Conditions 1 and 3 have already been proved in Part 1. Condition 2 must be checked for the dynamics of prestressed waveguides. A closer look at Eq. ( 1)

shows that ∇ 0 u and the Cauchy prestress tensor σ 0 must be independent on Z.

With regard to the gradient operator, its coefficients do not depend on Z in the twisted coordinate system (this is due to the independence on Z of the Christoffel symbol, as already noticed in Part 1). As for σ 0 , we have to require that the prestressed state does not vary along the Z-axis. In practice, under axial loads applied at the end cross-sections of the helical structure, this condition is fulfilled far from the ends. Therefore, the static prestressed state is invariant along the axis.

As already examined in Section 3 of Part I, translational invariance in multilayer wire ropes is also satisfied if the torsion of each wire remains identical (the numerical method proposed in this paper is still applicable). However, translational invariance is not fulfilled in cross-lay strands as well as double helical structures such as independent wire rope core.

SAFE formulation

Following the SAFE approach, the displacement vector and its test field are rewritten under the form (8) [START_REF] Treyssède | Elastic waves in helical waveguides[END_REF]; [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF]). The displacement fields dependence in e ikZ allows to replace the axial derivatives ∂/∂Z by ik. The variational formulation (7) then reduces to a 2D problem posed on the cross-section S 0 . The SAFE variational formulation is:

∀{δu}, S0 {δu} T (L T xy [C 0 ]L xy + G T xy [Σ 0 ]G xy ){u}dxdy +ik S0 {δu} T (L T xy [C 0 ]L Z -L T Z [C 0 ]L xy + G T xy [Σ 0 ]G Z -G T Z [Σ 0 ]G xy ){u}dxdy +k 2 S0 {δu} T (L T Z [C 0 ]L Z + G T Z [Σ 0 ]G Z ){u}dxdy -ω 2 S0 ρ 0 {δu} T {u}dxdy = 0. (9)
The finite element approximation is defined by {u} = [N e ]{U e }, where [N e ] is the matrix of the shape functions and {U e } the vector of nodal displacements, with 3 degrees of freedom per node. The FE discretization of Eq. ( 9) leads to the following eigenvalue problem:

{[K 1σ ] -ω 2 [M ] + ik([K 2σ ] -[K 2σ ] T ) + k 2 [K 3σ ]}{U } = 0, ( 10 
)
where the element matrices are expressed as:

[M e ] = S e 0 ρ 0 [N e ] T [N e ]dxdy, [K e 1σ ] = [K e 1 ] + S e 0 [N e ] T G T xy [Σ 0 ]G xy [N e ]dxdy, [K e 2σ ] = [K e 2 ] + S e 0 [N e ] T G T xy [Σ 0 ]G Z [N e ]dxdy, [K e 3σ ] = [K e 3 ] + S e 0 [N e ] T G T Z [Σ 0 ]G Z [N e ]dxdy, [K e 1 ] = S e 0 [N e ] T L T xy [C 0 ]L xy [N e ]dxdy, [K e 2 ] = S e 0 [N e ] T L T xy [C 0 ]L Z [N e ]dxdy, [K e 3 ] = S e 0 [N e ] T L T Z [C 0 ]L Z [N e ]dxdy. (11) 
The second term of the right hand side in the expressions of [K e 1σ ], [K e 2σ ] and [K e 3σ ] correspond to the so-called geometric stiffness effect (second term of formulation (1)), related to the presence of a prestress field (σ 0 = 0). Note that the SAFE formulation given by Eqs. ( 10)-( 11) for prestressed helical structures degenerates to the unprestressed case [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF]) if [Σ 0 ] = 0 and S 0 = S.

The matrice [K e

1 ] is the same as the matrix [K e ] defined in Part 1 for the static problem, except that the integration is now performed on the prestressed configuration S 0 (instead of S), accounting for the geometry deformation.

In practice, the cross-section mesh of the prestressed structure is obtained as follows. The cross-section of the structure without initial stress is first meshed.

The prestressed state is computed based on this mesh. Then, the position of nodes is updated to provide the mesh of the cross-section S 0 in the prestressed configuration. The guided modes are computed on this updated mesh.

The solution of the eigensystem (10) yields the modes of propagation. It can be noticed that [K 1σ ], [K 3σ ] and [M ] are symmetric. Hence for an eigenvalue k, -k is also an eigenvalue. This problem has then two kinds of eigensolutions: (k i , U + i ) and (-k i , U - i ) for i = 1, ..., n (n being the number of degrees of freedom), representing n modes traveling in the positive direction and n modes in the negative direction. For undamped materials, pure real and imaginary wavenumbers represent propagating and evanescent modes, respectively.

Complex wavenumber are referred to as inhomogeneous modes (such modes are oscillatory but decay after a few oscillations). Pure real and imaginary solutions appear in pairs of opposite signs and complex solutions appear in quadruple of opposite signs and complex conjugates.

The eigensystem (10) can be solved by setting the wavenumber k and finding the frequency ω or inversely. For propagating modes in undamped materials, the eigenvalue system can be solved by setting a real positive wavenumber k.

The system is then linear in ω 2 . For non-propagating modes or for damped materials, wavenumbers become complex and the problem must be solved by setting ω and finding k. The eigensystem is then quadratic in k and the system should be linearized [START_REF] Tisseur | The quadratic eigenvalue problem[END_REF]).

In this study our concern is propagating modes. Thereafter, eigensolutions are obtained by finding frequencies associated with real wavenumbers.

Modal velocities

The goal of this section is to formally derive group and energy modal velocities expressions in prestressed waveguides.

Group velocity

For a real wavenumber k, the phase and group velocities are defined by V φ = ω/k and V g = ∂ω/∂k, respectively. For undamped materials and propagating modes, the SAFE expression of group velocity has been obtained for unprestressed structures in [START_REF] Bartoli | Modeling wave propagation in damped waveguides of arbitrary cross-section[END_REF] and [START_REF] Finnveden | Evaluation of modal density and group velocity by a finite element method[END_REF]. The method consists in differentiating with respect to k the SAFE eigenproblem. In the presence of prestress, the eigenproblem (10) to be solved remains quadratic and keeps the same general form as its unprestressed counterpart. As a consequence, the expression derived in the above-mentioned references can be directly extended to the prestress case, which yields:

V g = 1 2ω {U } T * (i([K 2σ ] -[K 2σ ] T ) + 2k[K 3σ ]){U } {U } T * [M ]{U } , (12) 
where as shown in Section 4.2, matrices [K e 2σ ] and [K e 3σ ] account for geometric stiffness effects. The above expression has also been used in [START_REF] Loveday | Semi-analytical finite element analysis of elastic waveguides subjected to axial loads[END_REF] for straight waveguides subjected to axial loads.

Energy velocity

The energy velocity is defined as the ratio between the transmitted power and the stored energy, averaged in time and in the cross-section (see e.g. [START_REF] Achenbach | Wave Propagation in Elastic Solids[END_REF]):

V e = S0 P • ndS 0 S0 (E k + E p )dS 0 , ( 13 
)
where the bar denotes time average and n is the unit vector normal to the crosssection. P, E k and E p are the Poynting vector, the kinetic energy density and the potential energy density, respectively.

To the authors knowledge, the above definition has mainly been applied to structures without initial stress. Hence, one needs to properly define P, E k and E p in the presence of prestress.

For prestressed structures, the strong form corresponding to the variational formulation (1) is:

∇ 0 • (C 0 : ǫ + ∇ 0 u • σ 0 ) = ρ 0 ü. ( 14 
)
It can be checked that this equilibrium equation indeed derives from a Lagrangian density L, where L = E k -E p with:

E k = 1 2 ρ 0 u • u, (15) 
and:

E p = 1 2 ǫ : C 0 : ǫ + 1 2 tr(∇ 0 u • σ 0 • ∇ 0 u T ). ( 16 
)
Concerning the Poynting vector (i.e. the power flow per unit area), it can be calculated thanks to the Lagrangian density from: P J = uI ∂L/∂u I,J (here, index notation is used in the Cartesian coordinate system with the Einstein summation convention). Calculations yield:

P = -u • (C 0 : ǫ + ∇ 0 u • σ 0 ). ( 17 
)
When σ 0 = 0, Eqs. ( 16) and ( 17) degenerate to the well known energy and power flow expressions without prestress (see [START_REF] Achenbach | Wave Propagation in Elastic Solids[END_REF] for instance).

From SAFE matrices, it can be easily checked that:

S0 E k dS 0 = ω 2 4 Re({U } T * [M ]{U }), S0 E p dS 0 = 1 4 Re {U } T * ([K 1σ ] + ik([K 2σ ] -[K 2σ ] T ) + k 2 [K 3σ ]){U } . ( 18 
)
The computation of the cross-section and time averaged Poynting vector requires further developments [START_REF] Treyssède | Elastic waves in helical waveguides[END_REF]; [START_REF] Benmeddour | Numerical modeling of guided wave interaction with non-axisymmetric cracks in elastic cylinders[END_REF]).

Replacing the normal vector n by e Z and averaging the Poynting vector, we obtain:

S0 P • ndS 0 = ω 2 Im S0 u * α (C 0 : ǫ + ∇ 0 u • σ 0 ) αZ dS 0 , (19) 
where α = x, y, Z. The integrand can be written as

u * α (C 0 : ǫ + ∇ 0 u • σ 0 ) αZ = {u} T * (L T Z [C 0 ](L xy + ikL Z ) + G T Z [Σ 0 ](G xy + ikG Z )){u}.
Eq. ( 19) becomes:

S0 P • ndS 0 = ω 2 Im {U } T * ([K 2σ ] T + ik[K 3σ ]){U } . (20) 
Finally, Eqs. ( 18) and ( 20) yield a direct computation of energy velocity from SAFE matrices:

V e = 2ωIm {U } T * ([K 2σ ] T + ik[K 3σ ]){U } Re ({U } T * (ω 2 [M ] + [K 1σ ] + ik([K 2σ ] -[K 2σ ] T ) + k 2 [K 3σ ]){U }) . (21) 
This equation degenerates to the unprestressed case, for which

[K 1σ ] = [K 1 ], [K 2σ ] = [K 2 ] and [K 3σ ] = [K 3 ]
becomes the SAFE matrices of non-prestressed structures found in [START_REF] Treyssède | Elastic waves in helical waveguides[END_REF] and [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF].

Under prestress, the expression ( 21) is checked in the Appendix by showing the equality between the energy velocity and the group velocity for propagating modes in undamped materials.

Validation for a helical spring

The purpose of this section is to validate the SAFE model for prestressed helical springs.

The dispersion curves of prestressed helical waveguides obtained from the SAFE model will be compared to results obtained by the authors in Frikha et al.

(2011), here used as a reference. In [START_REF] Frikha | Effect of axial load on the propagation of elastic waves in helical beams[END_REF] the propagation modes in helical beams under axial loads are computed based on a Timoshenko model approximation. This model is limited to large helix radius of curvature (1/κ) compared to the cross-section radius a. Moreover the static prestressed state is calculated from a non-linear analytical solution derived in [START_REF] Wahl | Mechanical Springs. Second Edition[END_REF], which is valid only for large helix angle Φ (Φ ≥ 65 • ) and large ratio R/a (R/a ≥ 5).

The reader may refer to [START_REF] Frikha | Effect of axial load on the propagation of elastic waves in helical beams[END_REF] for a detailed study of load effects for various angles and radii.

In this section, the following data are chosen: the initial parameters of the helix (without initial stress) are R i /a = 10 and Φ i = 75 • . The prestress corresponds to a macroscopic axial deformation: E E = 40% and E T = 0. It is important to note that with these data both the effects of prestress and geometry deformation are important and thus need to be properly accounted for, as shown in [START_REF] Frikha | Effect of axial load on the propagation of elastic waves in helical beams[END_REF].

The static analysis of a helical waveguide with these data has been presented in Section 6.1 of Part 1, where local displacements have been computed. The prestress matrix [σ 0 ] is then determined from these local displacements. The geometry deformation is taken into account in the SAFE method by integration on the deformed cross-section S 0 (updating the node position, see Section 4.2). black curves refer to unloaded (E E = 0 and E T = 0) and loaded (E E = 40% and E T = 0) cases, respectively. It can be observed that four modes are propagating in the frequency range considered. The tensile load has an effect on the four propagating modes. The load effect is found to be the most important for mode 2, its dispersion curve shifting to higher frequencies. 2011), the loading effect becomes smaller at higher frequencies. One points out that the wavenumber k presented in Figs. 234is measured with respect to the curved helical axis, instead of the straight axis. This means that the wavenumber computed in the twisting basis with the SAFE method has been transformed to the helical system by multiplying ka with the ratio L/l where l = √ L 2 + 4π 2 R 2 (see [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF] for more details).

This allows a direct comparison with the results of [START_REF] Frikha | Effect of axial load on the propagation of elastic waves in helical beams[END_REF], obtained in a helical coordinate system. In Fig. 3, a slight difference for mode 1 and ka ∈ [0.1; 0.15] is found between SAFE and analytical results. Note however that the static state is computed using a non-linear solution in the reference model while the SAFE model is linear. Moreover the analytical solution is based on a Timoshenko beam model while the SAFE method starts from a 3D formulation without beam assumption.

Therefore, this difference is small for such a validation test, with a large load applied on a helical spring of large helix angle.

Dispersion analysis of seven-wire strands

In this section, results for guided wave propagation in multi-wire structures are presented. The study is restricted to seven-wire strands, with a central straight wire and one layer of six helical wires, for which some experimental data are available [START_REF] Laguerre | Low-frequency ultrasound reflectometry device based on magnetoelastic transducers for the non destructive evaluation of steel rods and cables[END_REF]; [START_REF] Kwun | Effects of tensile loading on the properties of elastic-wave propagation in a strand[END_REF]). In [START_REF] Laguerre | Low-frequency ultrasound reflectometry device based on magnetoelastic transducers for the non destructive evaluation of steel rods and cables[END_REF], the effect of axial load on a seven-wire strand was studied for different axial loads of 2%, 10% and 60% of the Ultimate Tensile Strength (UTS). Experimental results showed the existence of a frequency band ('notch frequency') for different axial loads, where the first compressional mode does not seem to propagate. For an unloaded strand with a nominal outer diameter 15.7mm, the notch frequency is around 67kHz. This frequency shifts to 88kHz under 60% of the UTS. Also in the experiments of [START_REF] Kwun | Effects of tensile loading on the properties of elastic-wave propagation in a strand[END_REF], the notch frequency of a seven-wire strand was found to vary linearly with log(T ), where

T is the axial load.

Though numerical results will be presented in a dimensionless form, we focus on seven-wire strands with geometrical and material data experimented in the above-mentioned references. Thus in the following we will consider two strands which will be denoted Strand 1 and Strand 2. Characteristics are given in Table 1, the geometrical parameters corresponding to the initial configuration, without initial stress. For both strands, one will assume: R i /a = 1.967, Φ i = 7.9 

Preliminary results for unprestressed strands

In order to make this paper self-contained, the main results presented in [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF], for strands without initial stress, and obtained with a SAFE method are recalled in this section.

Strand 1 is considered. There is no contact between two peripheral helical wires, and the contact between central and peripheral wires is assumed to be perfectly stick, see Part 1.

Dispersion curves have been computed by fixing a real wavenumber ka for the dimensionless frequency range [0; 2]. Fig. 5 presents the energy velocity vs.

frequency curves for this unloaded seven-wire strand. Due to inter-wire coupling, the dynamic behavior is quite complex compared to single-wire waveguides.

Yet, a noticeable phenomenon can be observed: a veering frequency of the fastest mode occurs around ωa/c s = 0.33, corresponding to 65kHz for Strand 1. This veering frequency leads to an abrupt velocity decrease and the fastest mode corresponds to the first compressional-like mode in the strand, as shown in [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF]. Therefore, this veering frequency can be actually identified as the notch frequency observed in experiments, i.e. 67kHz [START_REF] Laguerre | Low-frequency ultrasound reflectometry device based on magnetoelastic transducers for the non destructive evaluation of steel rods and cables[END_REF]; Treyssède and Laguerre ( 2010)). Other experimental results are reported in [START_REF] Kwun | Effects of tensile loading on the properties of elastic-wave propagation in a strand[END_REF] with a notch frequency found around 80kHz. In that reference, the strand diameter is 12.7mm. Using the SAFE approach with Strand 2, the dimensionless frequency ωa/c s = 0.33 yields a dimensional value of 79kHz, which is again in good agreement with the experimental notch frequency.

In the following, the validation of the SAFE model proposed in this paper for loaded strands will be performed using the notch frequency as the quantity of interest, because experimental results are available.

Prestressed strand with line contact approximation

A seven-wire strand subjected to an axial tensile strain E E = 0.6% (E T = 0) is now considered. As a first step, one assumes that the contact area between the central and peripheral wires is a line, which is exact in the initial configuration (without any loading). This assumptions means a point-to-point contact for the 2D microscopic problem derived in the Part 1 of this paper. Moreover, this contact is supposed to be stick, see Part 1.

As in Section 6, the computation of modes of propagation in prestressed strands requires the computation of the static prestressed state, which is then used into the computation of propagation modes. Similarly to helical single wire waveguides, the static state has been already computed in Part 1, using the cross-section mesh of the unloaded strand (Fig. 6(a)). The nodes position is then updated to provide the mesh of the deformed cross-section S 0 . Propagations modes are computed from this geometry.

The strand characteristics are those of Strand 1. Fig. 6(a) shows the superposition of the undeformed cross-section, in gray, and the updated mesh, in black. Differences between both meshes are negligible. In particular, Fig. 6(b) confirms that there is no contact between peripheral wires, even as a tensile load is applied.

Note that for better accuracy of numerical results, the mesh has been refined at contact points, yielding 17019 dofs. From the static solution given in Part 1, an axial strain of E E = 0.6% (with E T = 0) for this seven-wire strand corresponds to an axial force T = 190.3kN . This value provides a mean axial stress equal to 1260M P a, corresponding to the mean stress applied in [START_REF] Laguerre | Low-frequency ultrasound reflectometry device based on magnetoelastic transducers for the non destructive evaluation of steel rods and cables[END_REF] (i.e. 60% of the UTS).

Fig. 7 shows the dispersion curves (energy velocity vs. frequency). Except at low frequencies (below 0.1), we note that there is no difference between these results and those obtained for unloaded strand (see Fig. 5). In particular, the notch frequency remains around the dimensionless frequency ωa/c s = 0.33, as opposed to experimental results.

However a closer analysis of the deformed configuration due to the static load in the wire-wire contact zone shows that the impenetrability condition is violated for the nodes in the vicinity of the contact points. This result is in line with [START_REF] Jiang | Statically indeterminate contacts in axially loaded wire strand[END_REF] in which it is reported that contact area increases with the strand extension. Thus the line contact assumption is not valid and at this step it is suspected that this wrong assumption is responsible for the discrepancy between SAFE results and experimental data. Therefore hereafter a new model which properly takes into account the contact conditions will be used.

Surface Contact consideration

The new contact procedure is as follows. First, it has to be noticed that matching meshes are used for potentially contact lines of the central wire and each helical wire. This easily allows to address the line-to-line contact through individual node-to-node contacts for the 2D model. Thus contact pairs of nodes are formed on both sides of the initial point-to-point contact zone. Starting with the initial configuration from only one point-to-point contact between the core and each helical wire, the axial strain value gradually increases and the nodes position is updated. When the distance between the nodes of the same pair vanishes, the stick contact condition is imposed through the continuity of the displacement between these two nodes. Finally, when E E = 0.6%, we have obtained an updated geometry with eleven pairs of nodes in contact between the central wire and each peripheral wire.

With this contact procedure, note that a tensile strain E E = 0.6% applied on a seven-wire strand with nominal diameter 15.7mm (Strand 1) yields a resultant force T = 189.4kN and moment M = 116.9N.m. These values are quite close to those obtained in Part 1 from a point-to-point contact approximation: T = 190.3kN and M = 118.1N.m. This is consistent with the results obtained in [START_REF] Ghoreishi | Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3d fe model[END_REF], where it has been shown that the global static behavior is very little sensitive to contact assumptions. Fig. 8 shows the energy velocity V e /c s with respect to the dimensionless frequency ωa/c s . Under an applied tensile strain E E = 0.6%, the notch frequency now shifts around the dimensionless frequency ωa/c s = 0.44. This value corresponds to 86kHz for a seven-wire strand with a nominal diameter 15.7mm, which is in good agreement with experimental results (approximately 88kHz in [START_REF] Laguerre | Low-frequency ultrasound reflectometry device based on magnetoelastic transducers for the non destructive evaluation of steel rods and cables[END_REF]). If we compare these dispersion curves with those obtained in Fig. 7, we can conclude that the shift of the notch frequency is mainly due to contact effects and more precisely to the increasing of the contact area.

As shown for unloaded strands in [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF], the notch frequency phenomenon corresponds to a veering frequency between two extensional modes interchanging their behavior. Under axial loads, one can check that this phenomenon still occurs, as illustrated in Fig. 9 showing the mode shapes at points 1 and 2 (see Fig. 8), corresponding to solutions (ka, ωa/c s , V e /c s ) = (0.1, 0.16, 1.57) and (0.60, 0.96, 1.56) respectively. These mode shapes are quite close to those found in [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF]. Indeed, modes 1 and 2 belong to two distinct branches. Their global axial motion confirms that they are compressional-like modes, which have interchanged their shapes (for more details, the reader may refer to [START_REF] Treyssède | Investigation of elastic modes propagating in multi-wire helical waveguides[END_REF]). However, these modes are not exactly similar because the real parts of their axial displacement have opposite signs.

Comparing the dispersion curves of a prestressed strand (Fig. 8) with the unprestressed ones (Fig. 5), at low frequencies (ωa/c s < 0.1), large differences are found for some fundamental branches. For instance, the torsional mode (which quickly tends to V e /c s = 1 at higher frequencies), is found to be very sensitive to the tensile load. However, these results need to be confirmed by experiments, which is beyond the scope of this paper. We can observe also that dispersion curves shift to higher frequencies under the effect of tensile load, even at high frequencies. Due to contact effects, this contrasts with the results Thus one can conclude to a validation of the SAFE approach with surface contact by comparison with the experimental results of [START_REF] Laguerre | Low-frequency ultrasound reflectometry device based on magnetoelastic transducers for the non destructive evaluation of steel rods and cables[END_REF] and [START_REF] Kwun | Effects of tensile loading on the properties of elastic-wave propagation in a strand[END_REF].

Conclusions

In this paper, elastic wave propagation in prestressed helical waveguides has been studied. The prestressed state is taken into account through the prestress (static Cauchy stress) and the deformed static geometry within an updated Lagrangian formulation. This prestressed static state, corresponding to axial loads, is computed thanks to the homogenization method proposed in Part 1 of this study. In Part 2, a SAFE formulation has been developed accounting for the translational invariance property, hence reducing the 3D elastodynamic equations of prestressed structures, written in the twisted coordinate system, to a 2D problem posed on the static deformed cross-section.

The present approach has been first applied to prestressed helical springs and the results have been compared to those obtained from an analytical solution based on a Timoshenko beam model. Good agreement has been found on dispersion curves. Moreover it was shown that the effect of the prestressed state was significant at low frequencies.

Next a seven-wire strand subjected to axial loads has been considered. In this case the important role of the contact area has been highlighted, which thus requires its updating. Including this feature, we have shown that the SAFE model can reproduce experimental results with respect to the notch frequency of the fundamental compressional-like mode, which increases with the tensile load. From a physical point of view, a complex behavior is observed due to interwire coupling. Moreover, numerical results show that over a wide spectrum of frequencies, dispersion curves shift to high frequencies under the effect of tensile loads.

Appendix: Equality between group and energy velocities

For propagating modes in undamped materials, group and energy velocities of guided modes must be equal, as opposed to damped cases [START_REF] Bernard | Guided waves energy velocity in absorbing and non-absorbing plates[END_REF]). Hence, let us assume that the material is undamped in order to show the equality between expressions (12) and ( 21).

Multiplying the eigenproblem (10) by {U } T * , we get:

{U } T * [K 1σ ] + ik([K 2σ ] -[K 2σ ] T ) + k 2 [K 3σ ] {U } = ω 2 {U } T * [M ]{U }. (22) 
This equation shows the equality between the kinetic and potential energies.

Therefore, Eq. ( 18) becomes:

S0 E k dS 0 = S0 E p dS 0 = ω 2 4 Re({U } T * [M ]{U }). (23) 
From Eqs. ( 20) and ( 23), the energy velocity expression (13) becomes:

V e = Im {U } T * ([K 2σ ] T + ik[K 3σ ]){U } ωRe({U } T * [M ]{U }) . ( 24 
)
Besides, the imaginary part can be rewritten as:

Im {U } T * ([K 2σ ] T + ik[K 3σ ]){U } = {U } T * 1 2i ([K 2σ ] T + ik[K 3σ ]){U }- {U } T * 1 2i ([K 2σ ] * -ik * [K 3σ ] T * ){U }. (25) 
For undamped materials, the matrix [K 3σ ] is real symmetric ([K 3σ ] T * = [K 3σ ] and the matrix [K 2σ ] is real ([K 2σ ] * = [K 2σ ]). Then, Eq. ( 25) becomes:

Im{{U } T * ([K 2σ ] T + ik[K 3σ ]){U }} = 1 2 {U } T * (i([K 2σ ] -[K 2σ ] T ) + (k + k * )[K 3σ ]){U }. (26) 
For propagating modes, wavenumbers are real (k = k * ) and Eq. ( 26) becomes equal to the numerator of the group velocity (12). Also, the denominator of Eq. ( 12) is always real because [M ] is real symmetric. Therefore, the energy velocity is equal to the group velocity.

  in Part 1). Let (e X , e Y , e Z ) denotes the Cartesian orthonormal basis. The centreline is defined by a helix of radius R in the Cartesian plane (e X , e Y ) and pitch L along the Z-axis. The helix lay angle Φ is defined by tanΦ = 2πR/L. The twisted basis (e x , e y , e Z ) has been defined in Part 1, as an orthonormal basis rotating around the Z-axis. It corresponds to a particular case of helical system with κ = 0 and τ = 2π/L, where κ and τ denote the curvature and the torsion respectively. The unit vectors e x and e y are expressed in the Cartesian basis by Eq. (3) of Part 1.

Fig. 1 Figure 1 :

 11 Fig. 1 illustrates the initial and the updated cross-sections FE mesh under E E = 40% and E T = 0, yielding an updated lay angle Φ = 68.8 • and helix radius R/a = 9.71. In a low frequency range (ωa/c s ∈ [0; 0.005]), Fig. 2 shows the dimensionless dispersion curves, ωa/c s vs. ka, obtained from the SAFE model, where c s = E/2ρ(1 + ν) is the shear velocity with Poisson ratio ν equal to 0.3. Grey and

Figs. 3

 3 Figs.3 and 4compare the dispersion curves obtained from both SAFE method and the analytical model of[START_REF] Frikha | Effect of axial load on the propagation of elastic waves in helical beams[END_REF] when the spring is loaded (E E = 40% and E T = 0). Good agreement is found between both models in the two frequency ranges [0; 0.005] and [0; 0.25]. As shown in[START_REF] Frikha | Effect of axial load on the propagation of elastic waves in helical beams[END_REF], the loading effect becomes smaller at higher frequencies. One
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 23 Figure 2: Plot of dimensionless frequency ωa/cs vs. wavenumber ka for R i /a = 10, Φ i = 75 • , ωa/cs ∈ [0; 0.005], E E = 0 (grey) and E E = 40% (black).

Figure 4 :

 4 Figure 4: Plot of dimensionless frequency vs. wavenumber for R i /a = 10, Φ i = 75 • , ωa/cs ∈ [0; 0.25], E E = 40%. Grey: reference model, black: SAFE model.

Figure 5 :

 5 Figure 5: Dimensionless energy velocity Ve/cs vs. frequency ωa/cs for an unloaded seven-wire strand (E E = 0).

Figure 6 :

 6 Figure 6: Cross-section FE mesh of a seven-wire strand with R i /a = 1.967 and Φ i = 7.9 • . Grey: initial mesh (E E = 0), black: updated mesh (E E = 0.6%), plotted in the initial and updated twisting coordinate system respectively. (a): overview, (b): interwire view.

Figure 8 :

 8 Figure 8: Dimensionless energy velocity Ve/cs vs. frequency ωa/cs of a seven-wire strand subjected to a tensile strain E E = 0.6% with surface contact consideration (no interpenetration).

Figure 9 :

 9 Figure 9: Mode shapes of a seven-wire strand subjected to a tensile strain E E = 0.6% calculated at points 1, real (a) and imaginary (b) parts, and at point 2, real (c) and imaginary (d) parts. Grey meshes refer to the cross-section in its static configuration.

Figure 10 :

 10 Figure 10: Variation of the notch frequency (kHz) vs. the applied load (kg-force) for a sevenwire strand of nominal diameter 12.7mm. Circles: SAFE computation, crosses: experimental values of Kwun et al. (1998).

  ). The column vectors {u} = [u x u y u Z ] T and {γ} = [γ xx γ xy γ xZ γ yx γ yy γ yZ γ Zx γ Zy γ ZZ ] T are the displacement and gradient xx ǫ yy ǫ ZZ 2ǫ xy 2ǫ xZ 2ǫ yZ ] T

	components respectively.		
	Following Part 1, the strain vector is related to the displacement vector in the
	twisted basis through: {ǫ} = (L xy +L Z	∂ ∂Z	){u}, where {ǫ} = [ǫ

Table 1 :

 1 Strand characteristics.

	Parameter	Strand 1 Strand 2
	Nominal diameter (mm)	15.7	12.7
	Core radius a (mm)	2.7	2.16
	Young's modulus (Pa)	2.17e11	2.1e11

• , ν = 0.28 and ρ = 7800kg/m 3 . As already explained in Part I, the contact between wires is modeled with perfect bonding conditions for simplicity (slip or friction effects are neglected).