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Abstract: 

 

The goal of this paper is to theoretically investigate the propagation of elastic 

waves in helical waveguides. In the context of non-destructive evaluation for structural 

health monitoring, this study is motivated by the need for inspecting helical structures 

such as cables or springs. A numerical method is chosen based on a semi-analytical 

finite element technique. The proposed method relies on a non-orthogonal curvilinear 

coordinate system that is translationally invariant along the helix centreline, so that a 

Fourier transform is explicitly performed and the problem is reduced to two dimensions. 

Some useful expressions are also derived for the averaged energy and flux in order to 

directly compute the energy velocity. The convergence and accuracy of the proposed 

method are then assessed by comparing finite element results with reference solutions. 

A dispersion analysis inside a 7.5° helical wire, typically encountered in civil 

engineering cables, is realised including attenuation due to material damping. Some 

dispersion curves are finally presented for a wide range of lay angles and for several 

centreline radii. Significant differences with the infinite cylinder are observed. 

 

 

Keywords: propagation, elastic, helical, waveguide, semi-analytical, finite element 
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1. INTRODUCTION 

As an interesting non-destructive test technology for structural health monitoring, 

elastic guided waves have received a great deal of attention. In cylindrical waveguides, 

elastic wave propagation has been widely investigated since the early works of 

Pochhammer in 1876 and Chree in 1889. For instance, we can cite the paper of 

Zemanek [1], who was one of the first authors to present a complete analytical and 

experimental investigation. However, similar attention has not been given to helical 

waveguides, though their study might be important for inspecting helical structures such 

as cables or springs. 

 

In civil engineering, a typical application is given by steel multi-wire cables, which 

are widely employed as load-carrying members. The basic element of these cables is 

usually a simple straight strand made of a straight core and one layer of helical wires. 

Some recent experimental studies of multi-wire strands have been realized pointing out 

the fact that the Pochhammer-Chree dispersion curves cannot accurately predict 

propagation inside multi-wire strands [2−6]. In fact, the theoretical understanding of 

guided ultrasonic waves in multi-wire strands is complicated by the helical geometry of 

peripheral wires, the inter-wire coupling and contact effects, the presence of applied 

loads and concrete embedment (if any) [3−8]. As a first step toward an increasing 

complexity, only the first above complicating effect is addressed in this paper by 

numerically investigating elastic guided waves inside a single helical wire. 
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Since this work aims at improving the understanding of such guided waves, a 

computational approach rather than a purely mathematical approach has been chosen. In 

order to deal with complex geometry, some of the most popular and efficient numerical 

techniques are based on finite element (FE) methods. 

 

The so-called semi-analytical finite element (SAFE) method is a first approach that 

has been used to study uniform straight waveguides of arbitrary cross-section – see for 

instance Refs. [9−15]. Using an interesting procedure based on the use of an 

axisymmetric harmonic FE code, toroidal waveguides have also been considered by 

Demma et al. [16] but only real wavenumbers and a limited number of wavenumbers 

can be handled with this procedure (in particular, modes with imaginary or complex 

wavenumbers cannot be dealt with). Onipede et al. [17,18] developped a SAFE method 

in order to study uniformly pretwisted waveguides along a straight axis. Assuming an 

exponential dependence of the form ( )i kz te ω−  (where k is the wavenumber, z the axis 

waveguide, and ω is the frequency), SAFE methods are interesting from a 

computational point of view because only the cross-section has to meshed, hence 

drastically reducing the number of degrees of freedom (dofs). 

 

A second approach is based on the theory of wave propagation in periodic 

structures, which is somewhat more general because non-uniform waveguides can be 

analyzed. Based on Floquet’s principle, this theory allows studying the single repetitive 
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substructure alone, thanks to the application of a set of periodic boundary conditions 

involving a propagation constant corresponding to the eigenvalue. A review on the topic 

can be found in Ref. [19]. Based on a general theory presented by Mead [20], some 

periodic FE approaches and procedures have then been developed – see for instance 

Refs. [21−24]. Such methods can be implemented as a post-process step of a standard 

FE code providing stiffness, mass and damping matrices. Similarly to SAFE methods, 

periodic FE approaches only need the mesh of one repetitive cell, which reduces the 

computational cost. 

 

For modelling a single helical wire, which is a uniform waveguide, both SAFE and 

periodic FE approaches can be applied. The author [25] has recently proposed a 

numerical procedure based on a periodic FE approach combined with a specific helical 

mapping in order to arbitrarily reduce the periodic cell length. He presented results for 

an undamped helical wire having a 7.5° lay angle, typically encountered in seven-wire 

strands. In this paper, a SAFE method extended to helical waveguides is proposed. In 

Sec. 2, a weak variational formulation is written in terms of a non-orthogonal 

curvilinear coordinate system that is translationally invariant along the helix centreline, 

so that a Fourier transform is explicitly performed. As opposed to a periodic FE 

approach, this approach explicitly takes into account the property of translational 

invariance of helical waveguides. More mathematical insight is somewhat gained and 

the problem to be solved is reduced to two dimensions (computational costs are thus 

reduced). Note that the coordinate system used can be considered as an extension of the 
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works of Onipede et al. [17,18] developed for pretwisted waveguides. In Sec. 3, after 

some considerations about convergence and accuracy of the SAFE method, a dispersion 

analysis inside a 7.5° helical wire is realised including attenuation due to material 

damping. Some dispersion curves are finally presented for a wide range of lay angles 

and for several centreline radii. 

 

2. FE FORMULATION FOR HELICAL WAVEGUIDES 

In this section, a SAFE method is presented to solve the propagation modes of a helical 

waveguide having any arbitrary cross-section (not necessarily circular). The reader can 

be referred to [26] (for instance) for a fundamental introduction about the use of general 

curvilinear coordinate systems. 

2.1. Curvilinear coordinate system for translational invariance 

The helix centreline curve can be described by the following position vector: 

 ( ) 2 2
cos sinX Y Z

L
s R s R s s

l l l
π π� � � �= + +� � � �

� � � �
R e e e  (1) 

where ( )1 22 2 24l L Rπ= + . ( ), ,X Y Ze e e  denotes the cartesian orthonormal basis. R and L 

are respectively the radius of the centreline in the (X,Y) cartesian plane and the helix 

step along the Z cartesian axis (see Fig. 1a). A complete period is described by the 

parameter s varying from 0 to l. It should be noted that the parameter s has been chosen 

so that it corresponds to the arc length (l is thus the curvilinear length of one helix step). 

The unit tangent vector to the centreline is then directly given by d ds=T R . The unit 
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normal can be defined from the Serret-Frenet formulae d ds κ=T N , and the unit 

binormal vector is = ∧B T N . The following Serret-Frenet formulae also holds: 

,  d ds d dsτ κ τ= − = −N B T B N . For the curve defined by (1), both the curvature κ  

and the tortuosity τ  are constant: 2 24 R lκ π=  and 22 L lτ π= . 

 

FIG.1: (a) One step of a helical waveguide of circular cross-section with its centreline (dashed line) and 

its local basis ( ), ,N B T . (b) Cross-section meshes 1 to 4 with successive refinements. 

 

 

Now, a new coordinate system (x,y,s) is constructed from the orthonormal basis 

( ), ,N B T , for which any Cartesian vector X can be expressed as: 

 ( ) ( ) ( ) ( ), ,x y s s x s y s= + +X R N B  (2) 

Mesh 3 Mesh 4

(b) 

Mesh 1 Mesh 2

Y

B

N

Z

T

X
0 

l 

s L 

R 

(a) 
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Using the above Serret-Frenet formulae, it can be shown that this kind of mapping 

yields the following non-orthogonal covariant basis ( ), ,x y s∂ ∂ ∂ ∂ ∂ ∂X X X , denoted by 

( )1 2 3, ,g g g : 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 3  ,     ,   1s s x s x s y sκ τ τ= = = − + −g N g B g T B N  (3) 

 

The covariant metric tensor of such a mapping, defined by mn m ng = ⋅g g , is then 

given by: 

 

( ) ( )22 2 2

1 0
0 1

1

y

x

y x x y x

τ
τ

τ τ τ κ

� �−
	 


= 	 

	 

− + + −	 
� �

g  (4) 

g does not depend on the third curvilinear coordinate s because κ  and τ  are constant 

for a helix. Provided that the cross-section of the waveguide does not vary along s nor 

the material properties, this means that this curvilinear coordinate system yields a 

translational invariance along s. 

 

The contravariant basis ( )1 2 3, ,g g g , defined by i i
j jδ⋅ =g g  is given by: 

 ( ) ( ) ( ) ( ) ( )1 2 3 1
  ,     ,   

1 1 1
y x

s s s s s
x x x

τ τ
κ κ κ

= + = − + =
− − −

g T N g T B g T  (5) 

yielding the following contravariant metric tensor, defined by mn m ng = ⋅g g : 

 

( )
( )

2 2

21 21

1

g y xy y

xy g x x
g

y x

τ τ τ

τ τ τ
τ τ

−

� �+ −
	 

	 
= = − + −
	 
−	 
� �

G g  (6) 



ACCEPTED MANUSCRIPT

AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

F. Treyssède, Wave Motion 

9 

where ( )21g xκ= −  is the determinant of g. The Christoffel symbol of the second kind 

k
ijΓ , defined by ,

k k
ij i jΓ = ⋅g g , can be calculated from the Serret-Frenet formulae which 

gives: 

 
( ) ( )

2 2 3 3
11 12 21 22 23 32 23 32

2 2
1 2 2 2 3
33 33 33

1 1 1 1 2 2 3 3
13 31 23 32 13 31 13 31

0 ,  0,

1   ,    ,  ,
1 1 1

  ,    ,    ,  
1 1 1

k k k k

y xy y
x x y

x x x
y x
x x x

κ τ κτ κτκ κ τ τ
κ κ κ

κτ κτ κτ τ
κ κ κ

Γ = Γ = Γ = Γ = Γ = Γ = Γ = Γ =

Γ = + − − Γ = − − Γ =
− − −

Γ = Γ = − Γ = Γ = − Γ = Γ = + Γ = Γ = −
− − −

 (7) 

 

It should be noted that x and y must remain small enough on the cross-section in 

order to the so defined coordinates ( ), ,x y s  to be single valued (in particular, g must 

remain non-zero, i.e. 1xκ < ). This restriction will be implied in the remaining. 

2.2. Variational formulation 

Assuming a linearly elastic material, small strains and displacements and a time 

harmonic i te ω− dependence, the 3D variational formulation governing dynamics is given 

by: 

 2: 0dV dVδ ω ρδ
Ω Ω

− ⋅ =
 
� � u u  (8) 

for any kinematically admissible trial field δ u .  and u �  respectively denote the 

displacement vector field and the Cauchy stress tensor. ρ  is the material density and Ω  

represents the structural volume. Of course, there is no external body force for the 

purpose of studying propagation modes. Besides, the waveguide is assumed to be 

subjected to some traction-free or zero-displacement boundary conditions on its external 
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boundary (making any surface integrals vanish). The stress-strain and strain-

displacement relations are respectively given by ( ):  and 1 2 T= = ∇ + ∇� C � � u u . 

 

The formulation (8) must first be written in a general non-orthogonal curvilinear 

coordinate system. Using product and differentiation rules of such a system (see for 

instance Ref. [27] or Chapter 2 of Ref. [28]), it can be shown that the stress-strain and 

strain-displacement relations becomes: 

 ( ), ,  ,  1 2ij ijkl k
kl ij i j j i ij kC u u uσ ε ε= = + − Γ  (9) 

where subscripts (resp. superscripts) denote covariant (resp. contravariant) components 

with respect to the contravariant basis ( )1 2 3, ,g g g  (resp. covariant basis ( )1 2 3, ,g g g ). 

The notation ( ),i
⋅  (i=1,2,3) is used for derivatives with respect to x, y and s respectively. 

Besides, the following rules also hold for the dot and double dot products: 

:   ,  ij ij
ij i ju g uδ δε σ δ δ= ⋅ =� � u u . Note that the covariant displacement components are 

non-physical (they do not have the dimensions of length, physical components being 

given by ( )
ii

i iu g u=  without summation over i). In this paper, physical components 

with respect to the orthonormal ( ), ,N B T  basis are preferred, and it can be shown that 

the following relationship holds: 

 
1 0 0

       , with: 0 1 0
1

i iu Q u

y x x
α α

τ τ κ

� �
	 
= = 	 

	 
− −� �

Q  (10) 

where the greek subscript , ,n b tα =  denotes components with respect to ( ), ,N B T . 
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Using the symmetry properties of stress and strain tensors, the variational 

formulation (8) might be rewritten as follows: 

 2 0T T Tgdxdyds gdxdydsδ ω ρδ
Ω Ω

− =
 
� � u Q GQu  (11) 

with the notations [ ]Tn b tu u uδ δ δ δ=u , [ ]11 22 33 12 13 232 2 2
Tδ δε δε δε δε δε δε=� , and 

11 22 33 12 13 23 T
σ σ σ σ σ σ� �=� �� , and where it can be shown that T =Q GQ I . The 

stress-strain relationship is now written =� C� , with: 

 

1111 1122 1133 1112 1113 1123

2222 2233 2212 2213 2223

3333 3312 3313 3323

1212 1213 1223

1313 1323

2323

C C C C C C

C C C C C

C C C C

C C C

sym C C

C

� �
	 

	 

	 


= 	 

	 

	 

	 

	 
� �

C  (12) 

It must be outlined that in Eq. (12), the components of C must be expressed with respect 

to the covariant basis. For an isotropic material, they are: 

 ( ) ( ) ( ) ( )
1 1 2 2 1

ijkl ij kl ik jl il jkE E
C g g g g g g

ν
ν ν ν

= + +
+ − +

 (13) 

E is the Young modulus and ν denotes the Poisson coefficient. 

 

For the helical coordinate system previously defined and using Eqs. (7) and (10) 

into (9), it can be shown that the following strain-displacement relation is obtained: 

 ( )xy ss= + ∂ ∂� L L u  (14) 
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with the operators Lxy and Ls: 

 
( )

( )
( )

2 2

0 0 0 0 0
0 0 0 0 0
1 1

  ,  
0 0 0 0

1 1 0 0
1 0 1 0

xy s

x

y
x x y y y x x

y x
y x x x x x
y y x y x y

τ κ κ τ κτ τ τ κ

τ τ τ κ κ
τ τ τ κ

∂ ∂� � � �
	 
 	 
∂ ∂	 
 	 

	 
− − − 	 
− −

= =	 
 	 
∂ ∂ ∂ ∂	 
 	 

	 
 	 
− ∂ ∂ − + ∂ ∂ + − ∂ ∂
	 
 	 


− ∂ ∂ ∂ ∂ − ∂ ∂	 
 � �� �

L L  (15) 

 

2.3. Semi-analytical FE method 

The helical transformation previously defined allows the investigation of the 

propagation modes because s does not appear explicitly in the equilibrium equations 

written in the curvilinear system, except for derivatives with respect to s. A Fourier 

transform in the s direction can thus be performed so that we can still speak of 

propagation modes. Hence, an exponential ikse  might be separated from all field 

component, and s∂ ∂  replaced by ik , where k denotes the axial wavenumber (along the 

helix centreline). It has to be pointed out that similar kinds of helical mapping had 

already been considered in electromagnetics to study helical waveguides, analytically 

[29] or numerically [30]. 

 

The displacement vector and the trial field are now rewritten as: 

 ( ) ( ) ( ) ( ),   ,  ,i ks t i ks tx y e x y eω ωδ δ− − −= =u u u u  (16) 

Using Eqs. (16) and (14) into (11) yields the following semi-analytical variational 

formulation, now reduced on an integration on the waveguide cross-section: 



ACCEPTED MANUSCRIPT

AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

F. Treyssède, Wave Motion 

13 

 
( )

2 2 0

T T T T T
xy xy xy s s xy

S S

T T T
s s

S S

gdxdy ik gdxdy

k gdxdy gdxdy

δ δ

δ ω ρδ

+ −

+ − =


 



 


u L CL u u L CL L CL u

u L CL u u Gu
 (17) 

 

This variational problem can be solved using standard 2D Lagrange finite elements, 

which have three degrees of freedom per node associated with , ,n b tu u u . On a given 

element, the covariant components of the displacement are then approximated as 

follows: 

 e e=u N U  (18) 

eN  is a matrix containing nodal interpolating functions and eU  is a column vector 

containing the nodal displacements of the element. For instance, the interpolation for 

linear three-node triangles is given by ( ) 1 2 31u u u uα α α αξ η ξ η= − − + +  (α=n,b,t), where 

the superscripts denote the local node number and  and ξ η  are the reference 

coordinates of the element varying from 0 to +1. 

 

The FE discretisation of the formulation (17) finally yields the following 

eigenvalue problem: 

 ( ){ }2 2
1 2 2 3 0Tik kω− + − + =K M K K K U  (19) 

with the elementary matrices given by: 

 
1 2

3

  ,  ,

  ,  

e e

e e

e eT T e e eT T e
xy xy xy s

S S

e eT T e e eT e
s s

S S

gdxdy gdxdy

gdxdy gdxdyρ

= =

= =


 



 


K N L CL N K N L CL N

K N L CL N M N GN
 (20) 
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Because of the symmetry of 1 3,   and K K M  and using the property det detT =A A  (A 

is any matrix), it can easily be checked that if k is an eigenvalue of (19), then −k is also 

an eigenvalue. Hence, the eigenproblem has two sets of eigensolutions 

( , ) and ( , ) ( 1, , )j j j jk k j n+ −− =U U � , representing n positive-going and n negative-going 

wave types (n being the number of dofs). In the absence of damping, eigenvalues for 

which kj is purely real (resp. imaginary) represent propagating (resp. evanescent) waves 

and those for which kj is fully complex are inhomogeneous waves (decaying but 

oscillatory). 

 

At fixed real k, the eigenproblem (19) is linear for finding ω2. However this simpler 

approach is useful only if interest is restricted to propagating modes in undamped 

systems. Given ω and finding k, the eigenproblem is then quadratic and must be recast 

into a generalized linear eigensystem in order to be solved with standard numerical 

solvers. This can be done as follows: 

 ( )
2 2

1 1
2

1 2 2 3
T

k
ki

ω ω
ω

� �� �− � �− � � � �
� �− =	 
 	 
 	 
 	 
� �− − −	 
 � � � �� �� �� �

0 K M U 0K M 0
U 0K M K K 0 K

 (21) 

In the absence of material damping, this eigensystem is hermitian. The purely real and 

imaginary solutions appear in pairs of opposite signs, while the fully complex solutions 

appear in quadruples of complex conjugates and opposite signs (if k is an eigenvalue, 

then −k, k* and −k* are also eigenvalues). With material damping, this is not the case 

any more and every roots simply appear in pairs of opposite signs. 
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2.4. Energy velocity 

The cross-section and time averaged energy velocity in waveguides is defined as 

follows: 

 ( )e k p
S S

v dS E E dS= ⋅ +
 
P n  (22) 

where bars denote time averaging. n is the unit vector along the propagation direction 

(i.e. normal to the cross-section). iP  is the ith contravariant component of Poynting 

vector, kE  and pE  are the kinetic and potential energies, given by: 

 
1 1

   ,      ,   
2 2

i ij ij ij
j k i j p ijP u E u g u Eσ ρ ε σ= − = =� � �  (23) 

It should be noted that the energy velocity is a wave property that remains appropriate 

for damped media, as opposed to the group velocity definition gv kω= ∂ ∂  that is 

generally not valid in damped waveguides [31]. 

 

Having solved the eigensystems (19) or (21), the energy velocity of a given mode 

( , )k U  can be directly post-processed from the matrices previously defined in Sec. 2.3. 

First, it can be easily deduced that: 

( ) ( )( ){ }
2

* * 2
1 2 2 3

1
Re    ,   Re

4 4
T T T

k p
S S

E dS E dS ik k
ω= = + − +
 
U MU U K K K K U  (24) 
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The computation of the cross-section and time averaged Poynting vector requires 

further developments but can also be simply expressed. Noticing that ( ) 31 xκ= = −n T g  

and dS dxdy= , we have: 

 ( ){ }* 3Im 1
2

i
idS u x dxdy

ω σ κ⋅ = −P n  (25) 

Then, it can be checked that ( )* 3 * *i T T
i s s xy su ikσ = = +u L � u L C L L u , so that the 

following interesting expression holds for the averaged Poynting vector: 

 ( ){ }*
2 3Im

2
T T

S

dS dS ik
ω⋅ = ⋅ = +
P n P n U K K U  (26) 

Expressions (24) and (26) allow the direct computation of the energy velocity defined 

by Eq. (22). 

 

3. RESULTS 

Without loss of generality for the proposed method, the material is assumed to be 

isotropic with a Poisson coefficient of 0.30. The longitudinal and shear bulk velocities 

are defined as: 

 
( )

( )( ) ( )
1

,
1 1 2 2 1l s

E E
c c

ν
ρ ν ν ρ ν

−
= =

+ − +
 (27) 

We consider waveguides with a circular cross-section of radius a, meshed with 3-node 

triangles. Variables are first adimensionalised with some characteristic length and time, 

chosen as a and scω  respectively. Hence, the dimensionless frequency is given by 
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sa cωΩ = . The step of a helix is given by 2 tanL Rπ φ= , where φ denotes the helix 

lay angle. The eigenproblem is solved using an algorithm based on the generalized 

Jacobi method, with bounds for the eigenvalue searching interval set to ( )| Im |k γ≤  

(where γ is a user-defined parameter). 

 

3.1. Convergence and accuracy 

In order to assess the convergence and accuracy of the numerical method, FE 

results have been computed with a sequence of four refined meshes, shown in Fig. 1b 

with characteristics given in Table I. The successive refinements have been made by 

dividing each triangle of the previous cross-section mesh into four triangles. Plots of the 

dispersion error vs. the mesh fineness parameter 1/h are then obtained (h is chosen as 

the dimensionless maximum element length). The dispersion error is chosen as the ratio 

ref refka k a k a− , where ka  and refk a  are respectively the adimensional FE and 

reference axial wavenumbers. Also shown in Table I is the rough criterion given by the 

ratio λs/h (where 2sλ π= Ω  is the dimensionless shear wavelength), often used in FEM 

methods to characterize the fineness of a mesh at a given frequency. 

 

The numerical model is first validated with the Pochhammer-Chree semi-analytical 

model [1,32] describing elastic propagation in an infinite isotropic cylinder (i.e. L→∞). 

FE and analytical axial wavelengths are compared for a given dimensionless frequency 

1Ω =  and for solutions having the lowest imaginary parts: the L(0,1) longitudinal mode 
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(propagating), the F(1,1) flexural mode (propagating), the F(1,2) flexural mode 

(evanescent), and the F(2,1 & 2) mode (inhomogeneous), whose adimensional 

Pochhammer-Chree wavenumbers are respectively refk a = 0.626, 1.421, 0.740i, 

0.953+1.905i. 

 

 

No. h (λs/h) # of elements # of dofs 

1 1 (6) 8 27 

2 0.5 (12) 32 75 

3 0.25 (25) 128 243 

4 0.125 (50) 512 867 

 

TABLE 1: Characteristics of meshes (in parenthesis: λs/h criterion for Ω=1). 

 

 

Figure 2a gives the convergence curve for each mode. It can be observed that the 

rate of convergence approaches a quadratic behaviour for every type of modes. The 

accuracy for the propagating bending mode is somewhat lower, as well as for the 

imaginary and complex solutions (corresponding to upper bending modes). As 

intuitively expected, a general trend for the accuracy of a given mode is to decrease as 

its order increases (i.e. as its modeshape becomes more and more complex). Note that 

the torsional mode ( refk a = 1) is not shown because its SAFE wavenumber is almost 
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exact regardless of the mesh. The same results have already been reported by 

Damljanovic et al. [13]. 

 

FIG.2: (a) Dispersion error for the cylinder (φ=0°) with respect to the Pochhammer-Chree solution 

(subscript p) vs. 1/h at Ω=1 for the first propagating, evanescent and inhomogeneous modes. (b) 

Dispersion error for the helical waveguide (φ=45°) with respect to the reference solution (λs/50 mesh) for 

the first modes. As a reference, the dotted line is the quadratic rate (1/h)2. 

 

 

The SAFE method is now tested for a helical waveguide having a strong lay angle 

φ=45° and a helix radius R=2a. Table 2 gives a comparison of wavenumbers obtained 

for 1Ω =  and mesh 4 with the FE periodic approach proposed by the author [25] (the 

notation −/+ is explained further below). A perfect agreement is obtained, the difference 

being less than 0.1% for each wavenumber. Figure 2b also gives the convergence curve 

for meshes 1 to 3 (because no analytical solution is available, the solutions obtained 

with the most refined mesh, mesh 4, is chosen as the reference). The rate of 
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convergence also approaches a quadratic behaviour. Note that the same trend is also 

obtained for the frequency error when solving the eigenproblem (19) with fixed real 

wavenumbers (results not shown for conciseness of the paper). 

 

 

 L(0,1) Torsion F(1,1)− F(1,1)+ F(1,2)+/− 
SAFE 0.6038 0.8775 1.2756 1.7162 0.2524+0.7153i

Periodic FE 0.6041 0.8777 1.2752 1.7149 0.2525+0.7153i

 

TABLE 2: First adimensional wavenumbers of the helical waveguide (φ=45°) computed with the 

proposed SAFE method and the periodic FE method (Ref. [25]) for Ω=1 with mesh 4 (λs/h=50 criterion). 

 

 

From Fig. 2, a dispersion error less than 1% is reached for all modes with mesh 3. It 

can be concluded that a rough criterion of λs/h=25 is thus quite acceptable, which may 

be not the case for λs/h=10. Note that it coincides well with the criterion proposed for 

SAFE methods by Galan et al. [33,34] when using 3-node triangles. 

 

3.2. Dispersion analysis of helical waveguides 

3.2.1. Analysis of a typical helical wire in civil engineering 

The wave modes propagating inside a peripheral wire constituting a typical seven-

wire strand is numerically studied. The helix radius of such a peripheral wire is R=2a 
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with a lay angle of 7.5° (for a typical radius a=2.5mm, it corresponds to a step 

L=23.9cm). In order to demonstrate the capability of the proposed method, some 

material damping is included in the analysis. A frequency independent hysteretic model 

is chosen with longitudinal and shear bulk wave attenuations respectively given by 

κl=0.003 and κs=0.043 Np/wavelength (typical properties for steel). The complex bulk 

velocities are then calculated as: 

 
1

,
, , 1

2
l s

l s l sc c i
κ

π

−
� �

= +� �
� �

�  (28) 

and the complex Young’s modulus and Poisson’s ratio can be obtained from: 

 
2 2 2 2

2
2 2 2 2

3 4 21
,

2
l s l s

s
l s l s

c c c c
E c

c c c c
ρ ν

� � � �− −= =� � � �− −� � � �

� � � �
� ��

� � � �
 (29) 

 

Figure 3 shows the dispersion curves obtained for both the cylindrical and helical 

geometry. The eigensystem (21) has been solved by fixing the adimensional frequency 

Ω, ranging from 0 to 5 divided into five hundred steps. Following the conclusions 

drawn previously, a rough criterion of λs/h=20 at 5maxΩ = Ω =  has been chosen for the 

mesh (generating 2564 triangles and 3999 dofs). Because wavenumbers occur in pairs 

of opposite signs, only eigensolutions with positive real parts are plotted in Fig. 3. The 

absolute values of imaginary parts are also plotted on the same axis, which is more 

readable than a three-dimensional plot (note that the sign information is lost because 

imaginary parts are not necessarily positive). Every mode is attenuated in damped 
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media: in order to distinguish so-called quasi-propagating modes (in black on figures) 

from non-propagating modes (in grey), a limit ( )Im 0.1ka ≤  has been set. 

 

FIG.3: Dispersion curves for Ω ranging from 0 to 5 (searching interval restricted to modes with 

|Im(ka)≤2|). Left: cylinder, right: helical φ=7.5°. Black lines: quasi-propagating modes (|Im(ka)≤0.1|), 

grey lines: non-propagating modes (|Im(ka)>0.1|). 

 

 

From a physical point of view, an interesting feature can be observed by comparing 

the cylindrical and helical cases. The wavenumbers of the compressional L(0,1) and the 

torsional modes are nearly unchanged by the helical geometry (provided that the helix 

arc length is considered). This is not the case for flexural modes, which occur in distinct 

roots instead of double roots because of the lack of symmetry of the helical geometry. A 

similar phenomenon was observed by Demma et al. [16] for toroidal waveguides when 

studying bends in pipelines. For simplicity, and though this notation may be somewhat 

torsion 
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abusive, the pairs of helical flexural modes identified from their cylindrical counterparts 

have been denoted with superscripts + and – in this paper. It should also be outlined that 

the dispersion curves obtained in Fig. 3 are quite coherent with undamped results 

already obtained in Ref. [25]. 

 

Figure 4 plots the adimensional energy velocity and attenuation vs. adimensional 

frequency. It is clear that energy velocities and attenuations are almost unaffected by the 

helical geometry for φ=7.5°. As can be observed for instance, compressional modes 

remain faster and less attenuated than flexural and torsional modes (which makes them 

suitable for non-destructive testing). The only slight difference that might be observed is 

the existence of some local variations (see inset in Fig. 4). A further investigation shows 

that these variations happen for branches that would disconnect in the undamped case 

(similar phenomena have already been reported in the literature – see [35] for instance). 

 

In a very low frequency range, strong differences occur in the helical case so that a 

direct analogy with the cylinder becomes difficult. Dispersion curves have been plotted 

between 0Ω =  and 0.02 in Fig. 5. The torsional and L(0,1) modes are respectively cut-

off near Ω=0.010 and 0.014 (for the cylinder, these modes are always propagative). 

Under Ω=0.009, it becomes difficult to distinguish which modeshape corresponds to a 

compressional or torsional behaviour: l and t notations have been replaced to denote 

respectively compression and torsion dominant modes (but the choice may be somewhat 

very subjective). Under 0.002, both modes propagate again and one of them has a 
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negative energy velocity. Finally, it should be outlined that Fig. 5a greatly coincides 

here again with the undamped results of Ref. [25] (though material damping is included 

in the present analysis). 

FIG.4: Adimensional energy velocity vs. frequency for (a) the cylinder and (b) the helical waveguide 

(φ=7.5°). Attenuation |Im(ka)| vs. frequency for (c) cylindrical and (d) helical waveguides. Inset: damped 

(current) and undamped results exhibiting some branch connections. 
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FIG.5: (a) Dispersion curves for Ω ranging from 0 to 0.02 (helical φ=7.5°). Black lines: quasi-propagating 

modes (|Im(ka)≤0.001|), grey lines: non-propagating modes (|Im(ka)>0.001|). (b) Adimensional energy 

velocity and (c) attenuation vs. frequency. 

 

3.2.2. Dispersion analysis for varying helix parameters 

The effects of helix lay angle and radius are now briefly examined. Figure 6 

exhibits the dispersion curves of propagating modes obtained for R=2a and a lay angle 

varying from 0° (cylinder) to 75°. Note that the condition 2L a≥ , i.e. 1tan R aφ π−≤ , is 

satisfied in order for cross-sections not to intersect each other between two successive 

turns. Material damping is neglected. Dispersion curves have been obtained with the 

same mesh as before. The eigenproblem (19) has been solved by computing the 

eigenfrequencies for fixed real wavenumbers ka ranging from 0 to 5 divided into five 

hundred steps. 
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FIG.6: Dispersion curves of helical waveguides (without material damping) with R=2a and a lay angle 

equal to: (a) 0° (cylinder), (b) 15°, (c) 30°, (d) 45°, (e) 60°, (f) 75°. Dashed circles: some examples of 

branch disconnections. Insets: plots of adimensional energy velocity vs. frequency.    : L(0,2) mode 

identified at Ω=5. 
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As previously, it can be clearly observed that every pair of flexural modes, which 

occurs in double roots in the cylinder case, becomes distinct in helical waveguides, 

while torsional and compressional modes are less affected. As expected, differences 

between cylinder and helical waveguides become greater as the lay angle increases (see 

Figs 6a-c). Their behaviour becomes quite different for φ≥45°, even for torsion-like and 

compression-like modes (Figs. 6d-f). This is also illustrated for the energy velocities 

plotted for φ=0° and 45° in the inset of Fig. 6a and 6d respectively. What is also 

observed is that the torsional and L(0,1) modes are cut-off in a low frequency range, 

with increasing cut-off frequencies as the lay angle increases. 

 

Furthermore, the number of branch disconnections tends to increase, as well as the 

distance between them. Some of these disconnections have been identified with dashed 

circles in Figs. 6b-d. As shown by comparing the insets of Figs. 6a-b, they are related 

with strong local variations of energy velocity. However, it should be reminded that 

some branch disconnections could actually be connected in the presence of damping (as 

previously observed for φ=7.5°). As an example, Fig. 7 illustrates the lay angle 

influence upon the L(0,2) modeshape, identified at 5Ω =  for φ=0°, 15, 30 and 45°. 
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FIG.7: Real part of displacement for the L(0,2) modeshape (deformed mesh) computed at Ω=5 for (a) 

φ=0°, (b) 15°, (c) 30°, (d) 45°. 

 

It should be noted that results obtained with an increasing helix radius for a given 

lay angle exhibit a decreasing helix effect on wave propagation. As an example, if we 

increase the radius to R=10a with φ=90° – which corresponds to a toroidal waveguide – 

the behaviour of an infinite cylinder is surprisingly quasi-recovered as shown in Fig. 8. 

 

FIG.8: Dispersion curves of a toroidal waveguide (φ=90°) with R=10a. 
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4. CONCLUSIONS 

Elastic wave propagation inside helical waveguides has been analyzed through a 

SAFE method based on a non-orthogonal curvilinear coordinate system that is 

translationally invariant along the helix centreline. Some useful expressions of the 

cross-section and time averaged energy and flux have been proposed in order to directly 

compute the energy velocity. The convergence and accuracy of the proposed method 

have been studied and were shown to be similar to results found in the literature dealing 

with standard SAFE methods. With three-node triangles, a criterion of about λs/20 can 

be applied to generate the FE mesh. 

 

From a physical point of view, the dispersion curves of a helical waveguide exhibit 

several differences compared with the cylinder. Provided that the arc length of the helix 

centreline is considered, the wavenumbers and energy velocities of compression modes 

are less affected than flexural modes. The latter do not occur in pairs of equal 

wavenumbers due to the lack of symmetry of the helical geometry. There exist some 

low-frequency bandcut zones where both the compressional and torsional modes 

become non-propagating. Some branch disconnections occur – generally yielding a 

significant decrease of the energy velocity – but some of these disconnections are likely 

to disappear when some material damping is taken into account. All the above-

mentioned effects are stronger as the lay angle increases and as the helix radius 

decreases, until giving a quite different overall behaviour compared to the infinite 

cylinder. 
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