
Treelet kernel incorporating cyclic, stereo and

inter pattern information in Chemoinformatics

Benoit Gaüzère 1, Pierre-Anthony Grenier1, Luc Brun1, and Didier

Villemin2

1GREYC UMR CNRS 6072, Caen, France
2LCMT UMR CNRS 6507, Caen, France

firstname.lastname@ensicaen.fr

August 2014

Abstract

Chemoinformatics is a research field concerned with the study of physi-

cal or biological molecular properties through computer science’s research

fields such as machine learning and graph theory. From this point of

view, graph kernels provide a nice framework which allows to naturally

combine machine learning and graph theory techniques. Graph kernels

based on bags of patterns have proven their efficiency on several problems

both in terms of accuracy and computational time. Treelet kernel is a

graph kernel based on a bag of small subtrees. We propose in this paper

several extensions of this kernel devoted to chemoinformatics problems.

These extensions aim to weight each pattern according to its influence,

to include the comparison of non-isomorphic patterns, to include stereo

information and finally to explicitly encode cyclic information into kernel

computation.

1 Introduction

Chemoinformatics is a science field lying at the edge of chemical and computer
science which aims to study, analyze, store and predict chemical data through
informational techniques. Two problematics addressed by chemoinformatics
correspond to Quantitative Structure-Activity Relationship (QSAR) and Quan-
titative Structure-Property Relationship (QSPR) problems. QSAR and QSPR
are based on the similarity principle [1] which states that two structurally similar
molecules should have similar activities and properties.

A molecule is usually encoded by its molecular graph. A molecular graph is
defined as a labeled graph G = (V,E, µ, ν), where the unlabeled graph (V,E)
encodes the structure of the molecule while µ maps each vertex to an atom’s la-
bel corresponding to atom’s chemical element. Labeling function ν characterizes

1

each edge by a type of bond between two atoms (single, double, triple or aro-
matic). Considering this molecular representation and the similarity principle,
QSAR/QSPR problems rely on defining a similarity measure between molecular
graphs.

A first family of methods introduced within QSAR/QSPR field is based on
the correlation between a set of molecular descriptors and a given molecular
property (e.g. molecule’s boiling point). Descriptor sets are encoded by vectors
and may be computed from structural information [2], physical properties or
biological activities. These vectors may be used within any statistical machine
learning algorithm in order to predict molecule’s properties. Such a scheme
allows to benefit from the large set of tools available within the statistical ma-
chine learning framework. However, the definition of a fixed size vector from
a molecule, i.e. a molecular graph, induces a loss of information. Moreover,
for each application, the definition of a vectorial description of each molecule is
based on chemical expert’s heuristics. A slightly different approach is based on
graph embedding. Within this framework, a vectorial description of a graph is
automatically built from its encoding using, for example, the spectral analysis
of graphs [3]. In this last case, the embedding is deduced from the analysis of
the eigenvectors and eigenvalues of the adjacency matrix.

A second family of methods, based on graph theory [4], may be decomposed
in two subfamilies. The first subfamily [5], related to the data mining field,
aims to discover subgraphs having a large difference of frequencies between sets
of positive and negative examples. We can note that this first subfamily is
mainly restricted to classification problems. The second subfamily [6], bases
molecular graph similarity measures on graph edit distance. However, since
graph edit distance does not define an euclidean distance [7], similarity measures
based on graph edit distance do not correspond to a direct explicit nor implicit
embedding. An embedding may nevertheless be obtained by regularizing the
edit distance or by using distances to a set of prototype graphs [6]. Graph edit
distance can also be directly combined with a restricted set of machine learning
methods such as k-nearest neighbors or k-medians algorithms.

Graph kernels can be understood as symmetric graph similarity measures.
Using a positive definite kernel k, the value k(G,G′), where G and G′ encode
two graphs, corresponds to a scalar product between two vectors ψ(G) and
ψ(G′) in a Hilbert space. Therefore, such a similarity measure may be used in
conjunction with machine learning methods which may access to input data only
through scalar products (such as SVM). Graph kernel framework provides thus
a natural connection between structural pattern recognition and graph theory
on one hand and statistical pattern recognition on the other hand.

A large family of graph kernels used in chemoinformatics is based on the
definition of a bag of patterns for each graph and deduces graph similarity
from similarity between bags. Some bags of patterns are defined by linear
patterns. For example, marginalized kernel [8] defines a graph kernel based on
a comparison between sets of random walks extracted from each graph. Tree
pattern kernel [9] defines a graph kernel using a set of tree patterns instead
of walks. This last kernel allows to encode more structural information than

2

kernels based on linear patterns such as random walks.
A common drawback of kernels based on random walks and tree patterns

is that the global similarity between two graphs is based on an implicit enu-
meration of their common patterns. An implicit enumeration does not allow to
analyze the relevance of each pattern according to a given dataset and a partic-
ular property. Weisfeiler-Lehman kernel [10] corresponds to a kernel based on
a subset of tree patterns, computable in linear time, which provides an explicit
distribution of each pattern within a graph. However, authors do not propose
a method to weight each pattern. Treelet kernel [11] defines a graph kernel
based on a explicit set of patterns, called treelets, defined as all labeled subtrees
having at most 6 nodes. This kernel can be used with a treelet selection step
which aims to select relevant treelets according to a given property.

Kernels based on bags of patterns compute a similarity between two molec-
ular graphs by comparing the number of occurrences of a given set of patterns
in each graph. This approach only compares strictly isomorphic patterns. How-
ever, similarity principle established between molecular graphs can be trans-
posed to patterns, i.e. similar patterns may have a similar influence on molec-
ular properties. Considering this hypothesis, the shingled Weisfeiler-Lehman
subtree kernel [12] consists in including the comparison of similar tree patterns
into kernel computation. However, this kernel is limited to the comparison of
structurally isomorphic patterns and the set of patterns is restricted to balanced
trees.

However, kernels based on linear or tree patterns do not encode any cyclic
information. Molecular cycles correspond to an important molecular charac-
teristic since they reduce the atom’s degrees of freedom and hence influence
molecular properties. Based on this last point, cyclic systems are used by chem-
ical experts in order to classify molecules into several distinct molecular families,
each family having similar chemical and biological properties. Cyclic pattern
kernel [13] aims to encode cyclic similarity between molecular graphs. This ker-
nel is defined as a sum of two subkernels, a first one encoding acyclic similarity
and a second one encoding cyclic similarity. However, the cyclic information
captured by this kernel is restricted to the number of common cycles of two
graphs and hence does not encode adjacency relationships between molecular
cycles.

Finally, most of existing graph kernels do not take into account stereoiso-
merism. Stereoisomerism is a molecular property which distinguishes two molecules,
called stereoisomers, encoded by a same molecular graph but which differs by
the relative positioning of their atoms. Stereoisomers can have different proper-
ties which can not be accurately predicted by usual graph kernels which consider
these molecules as identical. The adaptation of the tree pattern kernel [14] in
order to encode stereo information constitutes a noticeable exception. However,
this method does not provide a clear separation between patterns encoding
stereoisomerism and patterns which do not.

This article is an extension of two previous papers [15, 16] which extend
treelet kernel by explicitly taking into account cyclic and chiral information of
molecules. In this article, we propose a unified presentation of treelet kernel in-

3

cluding a detailed description of the extensions proposed in [15, 16]. In addition,
we propose an original extension of treelet kernel which includes the contribu-
tion of similar patterns. Moreover, we propose to explain in detail a pattern
weighting scheme based on multiple kernel learning and more complete experi-
ments. Our paper is organized as follows: First, the treelet kernel construction
scheme is described in section 2 together with a weighting scheme based on mul-
tiple kernel learning [17] which allows to compute an optimal weight for each
pattern according to a given property. Second, section 3 aims to define a kernel
which includes the comparison of similar patterns. Then, section 4 aims to in-
clude stereo information into graph kernel. Finally, we propose to encode cyclic
information in two different ways. The first one consists in encoding the cyclic
system of a molecule by its relevant cycle graph (section 5.2) which allows to
encode relationships between cycles of a molecule. The second representation,
called relevant cycle hypergraph (section 5.3), allows to encode relationships be-
tween cyclic and acyclic parts into an unique molecular representation. Treelet
kernel has been adapted to the comparison of these two new molecular repre-
sentations. Finally, all proposed extensions are evaluated in section 6 on several
chemical data sets.

2 Treelet kernel

The treelet kernel [11] is a graph kernel defined as a convolution kernel [18] be-
tween bags of patterns extracted from two graphs. The set of extracted patterns,
called treelets, is composed of all labeled trees with a number of nodes lower
than or equals to 6. The set of treelet’s structures, i.e. the set of all unlabeled
trees associated to treelets, is displayed in figure 1. This set of patterns allows us
to define an ad hoc enumeration algorithm which encodes most of the relevant
structural information encoded in a molecular graph. Indeed, graph fragment
approach experiments [19] have observed that no significant gain is obtained
with structures having more than 6 nodes. In order to compute treelet kernel,
we have to enumerate the set of treelets of each graph. The first step of this
enumeration consists in enumerating the set of treelet’s structures (figure 1) of a
graph. This structure identification step consists in two sub steps: First, linear
patterns are enumerated by a depth first traversal performed from each node.
In order to enumerate all paths having at most 6 nodes, depth first traversal is
stopped after encountering 5 edges. Then, non linear treelets are enumerated
using a neighborhood analysis of n-star nodes which are defined as nodes having

�✁ �✂ �✄

�✂☎

�☎ �✆�✝

�✞ �✟

�✠

�✡ �✂✁ �✂✂�✂✄

Figure 1: Set of treelet’s structures

4

a degree equals to n (G6, G8 and G13 treelet’s structures in figure 1). Consid-
ering these first structures, others treelet’s structures are enumerated using the
neighborhood of nodes adjacent to n-stars. Therefore, structures G7, G9, G10

and G12 are enumerated from G6. Similarly, G11 is retrieved from G8. This
structure identification step allows to associate an index to each enumerated
subgraph. This index identifies the structure of each treelet in a canonical way.

Once this first step is performed, a key encoding the labels of each treelet
is computed in order to distinguish treelets having a same structure index but
different labels. Considering linear treelets, this key is defined as a sequence of
labels encountered during a traversal of the associated path. Since there is two
possible path traversals, this sequence is defined as the lowest one according
to lexicographic order. For each non linear treelet structure, our key’s con-
struction scheme requires to root each treelet. To this end we use the Morgan
numbering [20] which maps each node to an integer depending on node’s de-
grees. Considering this numbering, each tree is rooted on the node having the
highest Morgan number. Then each set of child nodes is ordered using a subkey
defined from its Morgan numbering and the concatenation of the child’s label,
the label of the edge connecting it to its father and the key of the subtree rooted
on this child. Given this ordered rooted tree, the key is defined as a sequence of
labels encountered during a depth first traversal. This traversal provides thus a
sequence of nodes and edges labels which is unique for two isomorphic treelets.
Conversely, we have shown [11] that two treelets with a same index (i.e. a same
structure) and a same key are isomorphic. Therefore, the concatenation of
treelet’s structure index and treelet’s key defines a unique code for each treelet
which allows to perform an explicit enumeration of all treelets included within
a graph. Based on this enumeration, we define a function ft : G → R+ which
encodes the number of occurrences of treelet t ∈ T in a graph:

∀ t ∈ T , ft(G) = |(tEG)| (1)

where T denotes the set of treelets and E the subgraph isomorphism relation-
ship. Then, similarity between treelet distributions is computed using a sum of
subkernels between treelet’s frequencies:

kT (G,G
′) =

∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′))

not.
=

∑

t∈T (G)∩T (G′)

kt(G,G
′) (2)

where T (G) encodes the set of treelets extracted fromG, kt(G,G
′) = k(ft(G), ft(G

′))
and k(., .) corresponds to any positive definite kernel between real numbers such
as linear kernel, gaussian kernel or intersection kernel. Each subkernel kt en-
codes thus a similarity between frequencies of a given treelet t in each graph.
Note that, unlike tree pattern or random walks kernels, this kernel explicitly
enumerates subtrees by computing the number of occurrences of each pattern.
This explicit enumeration allows us to apply a treelet weighting step, as defined
in section 2.1.

5

2.1 Pattern weighting

Chemical experts aim to identify particular subgraphs which may be responsible
for a particular molecular activity. The presence or absence of one of these
particular subgraphs, called pharmacophores, is an important characteristic to
determine if a molecule is toxic or not. Considering graph kernels based on bags
on patterns, each pattern may be seen as a potential pharmacophore. It may
thus be interesting to weight each pattern according to its influence on a given
property. A relevant pattern may thus be associated to an important weight
whereas patterns which do not encode any information may be removed from
kernel computation.

Considering a kernel based on a bag of patterns P and defined as a sum of
subkernels, each subkernel encodes graph similarity according to a given pattern
p ∈ P. Pattern weighting relies on computing a weight for each term of the sum.
A weighted kernel is defined as:

kweight(x, x
′) =

∑

p∈P

d(p) ∗ kp(x, x
′) (3)

where d : P → R+ encodes the influence of each pattern into kernel computation.
An high d(p) encodes an high influence and corresponds to an high contribution
of pattern p. Conversely, a weight d(p) close to or equal to 0 relies to remove
the contribution of pattern p from kernel computation.

Tree pattern kernel [9] includes a pattern weighting function. This weight-
ing is an a priori parameter which allows to favor structurally complex tree
patterns or linear patterns depending on parameter value. Treelet kernel can
be combined with iterative pattern selection method [11] which allows to select
or not a given pattern into kernel computation. Conversely to a priori pattern
weighting method proposed by tree pattern kernel [9], this last method com-
putes a weighting function according to a particular property. However, this
pattern selection step is only binary, computationally costly and non optimal.

2.1.1 Multiple kernel learning

Considering a pattern weighting problem as defined by equation 3, Multiple
Kernel Learning (MKL) methods aim to compute an optimal weighting function
d according to a given dataset and a property to predict. Considering a finite
set of M patterns, weighting function d is encoded by a vector ~d ∈ R

M
+ where

each coordinate dm encodes a weight associated to a pattern. The weighted
kernel is then defined as:

kMKL(x, x
′) =

M
∑

m=1

dm ∗ km(x, x′) (4)

where km corresponds to a subkernel encoding a graph similarity measure ac-
cording to a particular pattern. Multiple kernel learning methods consist in
computing an optimal vector d according to a prediction task. Simple MKL [21]

6

consists in optimizing a SVM problem by computing an optimal weighting for
each sub kernel. Considering a kernel as defined in equation 4, Simple MKL
consists in solving:

minimize
d

J(d) such that

{

dm > 0, ∀i ∈ {1, . . . ,M}
∑M

m=1 dm = 1
(5)

with

J(d) =

min
w,b,ξ

1
2

∑M
m=1

1
dm

‖wm‖2 + C
∑n

i=1 ξi

subject to: yi(
∑M

m=1〈wm,Φm(x)〉+ b) ≥ 1− ξi, ∀i ∈ {1, . . . , n}

ξi ≥ 0, ∀i ∈ {1, . . . , n}

(6)
where Φm(x) corresponds to the embedding function associated to km. This
minimization problem is the same type of problem as solved by a standard SVM
by optimizing vector d up to constraints defined by equation 5. Minimization
problem defined in equation 5 includes a first constraint on vector d which is
defined as a positivity constraint. This constraint ensures that the weighted
kernel (equation 4) is positive definite. The second constraint imposes to the
L1 norm of vector d to be equals to 1. This constraint induces a sparse vector d
and thus allows to keep only the most relevant patterns into the weighted kernel
while removing irrelevant ones.

Simple MKL [21] problem is resolved by alternating a classical SVM reso-
lution together with a projected gradient descent according to direction ∂J

∂dm

for each element of vector d. Using a projected gradient method allows us to
minimize the objective function while ensuring that constraints of sparsity and
positivity defined on vector d are fulfilled. Generalized MKL [22] proposes a
multiple kernel learning algorithm based on the same principle but where the
objective function is penalized by σ‖d‖1 instead of an equality constraint on
‖d‖1. This regularization allows to tune the degree of sparsity of d.

In order to deal with thousands of patterns, one have to either compute
each gram matrix for each sub kernel at each iteration or to store each gram
matrix. When considering thousands of patterns and graphs, these two options
induce too much computational time or memory space to be applicable. In
order to handle such datasets, infinite MKL [23] defines a MKL method based
on Simple MKL which only considers a sub set of sub kernels at each iteration.
This set of active kernels is updated between two Simple MKL iterations until
convergence or a maximal numbers of active kernels is reached. This algorithm
allows to consider an high, possibly infinite, number of subkernels and to select
most relevant ones according to a particular property to predict.

Initially, multiple kernel learning methods have been defined on classifica-
tion problems. However, they can easily be adapted to SVM for regression.
This adaptation mainly consists in replacing SVM objective function by SVM
for regression objective function. Obviously, gradient values must be updated
accordingly. Therefore, multiple kernel learning methods allow to compute a

7

weighting for a set of kernels for either a classification or a regression problem.
This weight is optimal according to the used training set and not defined a
priori or using only structural information. When applied together with treelet
kernel, each weight is associated to a given treelet. On one hand, this weight-
ing may allow to increase prediction accuracy obtained by treelet kernel. On
the other hand, computed weights may be seen as a measure of the influence
of each treelet according to the predicted property. This measure of influence
may be used by chemical experts in order to understand chemical properties.
Indeed, a treelet associated to an high weight may be considered as a potential
pharmacophore.

3 Including cross pattern information

As mentioned in section 1, if we consider the hypothesis that similar molecules
have similar properties, we should consider that similar substructures may have
a similar influence on molecular properties. Recently, Shervashidze has proposed
to adapt Weisfeiler-Lehman kernel in order to include comparison of non isomor-
phic subtree patterns [12]. This comparison is based on Jaccard coefficient which
defines a similarity measure between sets. Considering this similarity measure,
Shervashidze has proposed an efficient computation in order to compare nodes’
neighbourhoods. However, this approach only compares structurally isomorphic
patterns and the set of patterns is restricted to balanced trees.

In order to include non-isomorphic treelet comparison into treelet kernel,
let us recall convolution kernel theory. Haussler’s convolution kernels [18] are
defined on objects x ∈ X which can be associated to a decomposition into finite
sets Xx. Considering a subkernel ks : Xx × Xx → R, Haussler’s convolution
kernel K : X × X → R is defined as follows:

K(x, y) =
∑

(x′,y′)∈Xx×Xy

ks(x
′, y′) (7)

By considering a decomposition XG = {(t, ft(G)) | tEG} of each graph and a
tensor product (k⊗k′) of two kernels k′ : T ×T → R and k : R×R → R, treelet
kernel kT (equation 2) can be reformulated as a convolution kernel kinter:

kinter(G,G
′) =

∑

(t,ft(G))∈XG

(t′,ft′ (G
′))∈XG′

(k′ ⊗ k)(t, ft(G), t
′, ft′(G

′))

kinter(G,G
′) =

∑

(t,ft(G))∈XG

(t′,ft′ (G
′))∈XG′

k′(t, t′)k(ft(G), ft′(G
′)) (8)

In treelet kernel definition (equation 2), k′ is defined such that comparisons are
restricted to isomorphic treelets, i.e. k′(t, t′) = 1 ⇔ t ≃ t′, and 0 otherwise. In
this section, we propose to define a kernel k′ between treelets which relaxes this
restriction and includes the comparison of similar patterns.

8

3.1 Inter treelet kernel based on edit distance

Considering the hypothesis that similar patterns may have a similar influence,
kernel k′ between treelets must encode a similarity measure between t and t′.
This similarity measure may be defined from graph edit distance [24]. Graph
edit distance is defined as the sequence of edit operations transforming G into
G′ with a minimal cost. A sequence of edit operations, called edit path, may
include vertex or edge addition, removal and relabeling. Given a cost function
c(.) associated to each operation, the cost of a sequence of edit operations is
defined as the sum of each elementary operation’s costs. A high edit distance
corresponds to a low similarity between two graphs while a small one encodes
a strong similarity. According to [24], the computational cost of the exact
edit distance grows exponentially with the size of graphs. To overcome this
problem, Fankhauser et al. [25] propose a method to compute an approximate
edit distance in O(n3) where n is equal to the number of nodes of both graphs.
Such an edit distance computation provides an efficient way to compute an
approximate edit distance between graphs at the cost of a lower precision.

3.1.1 Exact treelet edit distance

Exact edit distance is hard to compute when considering the whole set of possible
graphs. Given a finite set of n structures B = {(V1, E1), . . . , (Vn, En)}, we re-
strict our study to sets of graphs D such that for any graph G = (V,E, µ, ν) ∈ D
we have (V,E) ∈ B. We show in the remaining of this section that within this
framework, exact edit distance may be computed within a reasonable computa-
tional time using ad hoc methods.

In order to present such methods, let us introduce some definitions. A
graph G′ = (V ′, E′, µ′, ν′) is a structural subgraph of G = (V,E, µ, ν), denoted
G′ ⊑s G, iff V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). In addition, if µ′

|V ′ = µ and

ν′|E′ = ν, g| denoting the restriction of function g to a particular domain, then

G′ is a subgraph of G, denoted G′ ⊑ G. A graph G = (V,E, µ, ν) is structurally
isomorphic to a graph G′ = (V ′, E′, µ′, ν′), denoted G ≃s G′ iff it exists a
bijective function f : V → V ′ such that (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′. If
µ′ ◦ f = µ and ν′ ◦ f = ν, then G is isomorphic to G′, denoted G ≃ G′. If
G = G′ then f is called an automorphism. If f is only injective then it exists
a subgraph isomorphism between G and G′. A graph Ĝ is a maximal common
subgraph of G1 and G2 if it is a subgraph of G1 and G2 and if it is not a sub
graph of any other common subgraph of G1 and G2. A graph Ĝ is called a
maximum common subgraph of G1 and G2 if it is a common subgraph of G1

and G2 with a maximal number of nodes. The notions of maximal structural
subgraph and maximum structural subgraph are defined in the same way but
without conditions on the mapping of labels of both graphs.

Under mild assumptions [26], the sequence of edit operations encoding an
edit path can be ordered into a sequence of deletions, substitutions and additions
as illustrated in figure 2(a). The first sequence transforms the initial graph G1

into one of its subgraphs Ĝ1 by deleting a set of nodes corresponding to V1 \ V̂1

9

(a) Different steps describing an edit path. (b) Edit paths passing through max-
imum common structural subgraphs

{Ĝ1
1
, . . . , ˆGn1

1
} and {Ĝ1

2
, . . . , ˆGn2

2
}. Dashed

lines correspond to structural operations,
other to substitutions.

Figure 2: Edit path scheme(a) and edit paths passing through maximum com-
mon structural subgraphs(b).

and a set of edges corresponding to E1 \ Ê1. The second sequence encodes a
set of substitution operations which allows to transform Ĝ1 into Ĝ2. This set
of substitutions corresponds to a one to one matching between V̂1 and V̂2 on
one hand and between Ê1 and Ê2 on the other hand. Substitutions matching
two elements having a same label correspond to identical substitutions and are
associated to a null cost since they do not induce any changes. Finally, the last
sequence of operations corresponds to a set of addition operations required to
obtain G2 from Ĝ2. Note that the set of operations transforming Ĝ1 into Ĝ2 is
only composed of substitutions which do not alter graph structures. Therefore,
Ĝ1 and Ĝ2 have a same structure and correspond to two structurally isomorphic
subgraphs of G1 and G2.

Edit operation costs are defined as non-negative constant functions for edges
(ce∗) and nodes (cv∗) deletions (c∗d), insertions (c∗i) or substitutions (c∗s). Us-
ing the different steps depicted in figure 2(a) and cost functions previously
defined, the cost associated to an edit path is equal to:

γ(P) = |V1−V̂1|cvd+|E1−Ê1|ced+Vfcvs+Efces+|V2−V̂2|cvi+|E2−Ê2|cei (9)

where Vf , resp. Ef , corresponds to the number of non identical substitutions

on nodes, resp. edges, required to transform Ĝ1 into Ĝ2. Bunke has shown
that under some slightly different conditions on edge operations, constraining
the costs to cvd + cvi < cvs and ces < cvs induces that Ĝ1 ≃ Ĝ2 correspond to a
maximum common subgraph of G1 and G2 [27]. However, maximum common
subgraph of two graphs depends both on structural and labeling information
which does not allow us to use our assumption that the set of structures encoding
graphs is finite and known a priori. In this section, we propose to study different
assumptions on edit costs leading to an efficient algorithm to compute an exact
edit distance.

10

Proposition 1 Given two graphs G1 and G2, let us denote by δv the number
of nodes of their maximum structural common subgraph and by δe the maximal
number of edges of their structural common subgraphs. If cvd+cvi

cvs
≥ δv + ces

cvs
δe

and ced+cei
ces

≥ δe +
cvs

ces
δv, then Ĝ1 is a maximal common structural subgraph of

G1 and G2.

Proof 1 Proof of proposition 1 can be found in [26].

Considering two graphsG1 andG2, this first proposition ensures that an optimal
edit path transforming G1 into G2 passes through one of their maximal common
structural subgraphs. Since the maximal common structural subgraph does not
depend on labeling, the set of maximal common structural subgraphs may be
pre computed between any pair of structures belonging to B. Nevertheless,
this number of maximal common structural subgraphs may remain large hence
forbidding an efficient pre computation of the exact edit distance. However, by
further restricting cost conditions, we obtain a relationship involving a reduced
set of substructures:

Proposition 2 Let us suppose that ced = cei = 0 and ces ≤ cvs. Given two
graphs G1 and G2, let us further denote by δv the number of vertices of their
maximum common structural subgraphs and by δe the maximal number of edges
of all maximum common structural subgraphs. Then if cvd+cvi

cvs
≥ δv + δe, Ĝ1 is

a maximum common structural subgraph of G1 and G2.

Proof 2 Proof of proposition 2 can be found in [26].

Proposition 2 states that under some hypothesis on the costs c∗d, c∗i and c∗s,
any optimal edit path between two graphs G1 and G2 should pass through one
of their maximum common structural subgraphs. Let us consider two graphs G1

and G2 sharing only one maximum common structural subgraph Ĝ = (V̂ , Ê).

Let us denote as {Ĝ0
1, . . . , Ĝ

i
1, . . . , Ĝ

n1
1 } and {Ĝ0

2, . . . , Ĝ
i
2, . . . , Ĝ

n2
2 } the sets of

subgraphs of G1 and G2 structurally isomorphic to Ĝ (figure 2(b)). Considering
proposition 2, any optimal edit path P between G1 and G2 should pass through

one Ĝi
1 and

ˆ
Gj

2. The cost associated to P can be decomposed into two parts:
a structural cost γstruc(P), corresponding to insertion and deletion operations,
and a substitution cost γlabel(P) corresponding to label substitutions required

to transform Ĝi
1 into

ˆ
Gj

2:

γ(P) = γstruc(P) + γlabel(P) (10)

Following equation 9, we have:

{

γstruc(P) = |V1 − V̂1|cvd + |E1 − Ê1|ced + |V2 − V̂2|cvi + |E2 − Ê2|cei

γlabel(P) = Vfcvs + Efces
(11)

11

For any i ∈ {1, . . . , n1}, since Ĝi
1 ⊑ G1, we have V̂ i

1 ⊆ V1 and Êi
1 ⊆ E1.

Therefore:
{

|V̂ i
1 − V1| = |V1| − |V̂ i

1 | = |V1| − |V̂ |

|Êi
1 − E1| = |E1| − |Êi

1| = |E1| − |Ê|
(12)

Similarly, same equalities hold for G2 and
ˆ
Gj

2 for any j ∈ {1, . . . , n2}. Structural
cost corresponding to edit path P is thus equal to:

γstruct(P) =|V1|cvd + |V2|cvi + |E1|ced + |E2|cei − |V̂ |(cvd + cvi)− |Ê|(ced + cei)

(13)

Computing substitution cost γlabel(P) (equation 11) relies on computing the
number of non identical node substitutions Vf and edge substitutions Ef trans-

forming Ĝi
1 into

ˆ
Gj

2. Let Φ(Ĝ) denote the set of structural automorphisms of

Ĝ. Given both subgraphs Ĝi
1 and

ˆ
Gj

2, each automorphism φ ∈ Φ(Ĝ) induces a

mapping of Ĝi
1 onto

ˆ
Gj

2 and thus a substitution of the label of each vertex v

(resp. edge e) of Ĝi
1 onto the label of φ(v) (resp. φ(e)) in

ˆ
Gj

2. More precisely,

let us denote by Pi,j,φ the edit path associated to the triplet (Ĝi
1,

ˆ
Gj

2, φ). the
number of non identical substitutions Vf and Ef induced by Pi,j,φ is equal to:

Vf (Pi,j,φ) = |{v ∈ V̂1 | µ̂i
1(v) 6= µ̂j

2(φ(v))}|

Ef (Pi,j,φ) = |{(v, v′) ∈ Ê1 | ν̂i1(v, v
′)) 6= ν̂j2(φ(v), φ(v

′))}|
(14)

Substitution cost of edit path Pi,j,φ is thus equal to γlabel(Pi,j,φ) = Vf (Pi,j,φ)cns+
Ef (Pi,j,φ)ces. Let us denote by Popt the edit path minimizing the substitution
cost:

Popt = Pi⋆,j⋆,φ⋆ with (i⋆, j⋆, φ⋆) = argmin
(i,j,φ)∈{1,...,n1}×{1,...,n2}×Φ(Ĝ)

γlabel(Pi,j,φ)

(15)
Since γstruct(Pi,j,φ) is the same for any (i, j, φ) ∈ {1, . . . , n1}×{1, . . . , n2}×Φ(Ĝ)
(equation 13), Popt is an edit path having a minimal cost. Therefore, under our
assumptions, the edit path associated to the edit distance is the one which
passes through the pair of maximum common structural subgraphs and which
minimizes the number of substitutions (equation 15).

This exact edit distance computation algorithm can be applied to treelets
since the set of treelets is composed of 14 different structures. In addition, by
restricting the set of edit paths to the ones which preserve the connectedness
of intermediate graphs [26], we obtain a lower bound on the ratio between
substitutions and insertion/deletion costs.

Proposition 3 Considering edit paths preserving connectedness and given two
trees T1, T2 ∈ T , if cvd+cvi

cvs
≥ δv and ced+cei

ces
≥ δv − 1, then Ĝ1 is a maximum

common structural subtree of T1 and T2.

Proof 3 Can be found in [26].

12

When computing tree edit distance on the set of treelets, δv is bounded by 6
and if we define costs as symmetric, i.e. cvd = cvi and ced = cei, bounds on
costs lead to: cvd > 3cvs and ced > 2.5ces. Since the set of treelets is defined as
all trees having a size less than or equal to 6, the maximum common structural
subtree of two treelets T1 and T2 is a treelet. The set of possible subgraphs and
automorphisms for any pair of treelets can be easily pre computed since we have
to consider only 14 structures. Therefore, computing the exact edit distance
between two treelets consists in comparing at most max

(i,j)∈{0,...,13}2
(ni ∗nj ∗ |Φij |)

label sequences where Φij denotes the set of automorphisms of the maximum

common structural subtree T̂ of treelets Ti and Tj and ni, nj the numbers of

subtrees of Ti and Tj isomorphic to T̂ . The value of this product on the set of
treelets is bounded by 120, hence inducing a constant time complexity for the
computation of the exact treelet edit distance. Note that, without our restriction
to a set of specific tree structures, the complexity of the edit distance calculation
between labeled unordered unrooted trees is NP-Complete [28].

Given a training set D = {G0, . . . , GN} and a set of treelets {t1, . . . , tm}
extracted from graphs in D, we define am bym similarity matrix corresponding
to a gaussian RBF kernel applied on the exact graph edit distance:

Kted =

(

e
−

d2(ti,tj)

σinter

)

(i,j)∈{1,...,m}2

(16)

Since graph edit distance does not define an euclidean matrix [7], matrix Kted

may not be semi definite positive and thus may not define a kernel on {t1, . . . , tm}.
In order to define a valid kernel, we define a Gram matrix K on {t1, . . . , tm}2

by regularizing Kted :
K = Kted − Iλm (17)

where λm corresponds to the lowest eigenvalue of Kted. Note that this regular-
ization has to be performed only once since this kernel only operates on treelets
and not directly on graphs. In order to be applied on any test set, kernel k′

between treelets is defined as:

k′(t, t′) =

K(i,j) if t = ti ∈ {t1, . . . , tm} and t′ = tj ∈ {t1, . . . , tm},

1 if t = t′ 6∈ {t1, . . . , tm} and

0 otherwise

(18)

This kernel deduced from the 0-extension of K is trivially definite positive.
This kernel between treelets encodes a similarity measure between treelets

based on an efficient computation of the graph edit distance. Using such a ker-
nel allows us to include the contribution of non isomorphic but similar treelets.
Considering the kernel kinter defined in equation 8, k′ associates isomorphic
treelets to an high value since d(ti, tj) = 0 if ti ≃ tj . Conversely, highly dis-
similar treelets are removed from kernel contribution since an high distance
corresponds to a low value of gaussian kernel.

13

4 Including stereo information

As mentioned in section 1, stereoisomers correspond to molecules encoded by
a same molecular graph which only differ by the relative positioning of their
atoms. For example, considering figure 3(a) and looking at the central carbon
(C) from the hydrogen atom (H), the remaining neighbors of C may be consid-
ered as lying on a plane and encountered clockwise. These remaining neighbors
can thus be encoded by the sequence (CN, OH, OCl

1) which identifies a par-
ticular stereoisomer whereas an opposite sequence of neighbors (e.g. (OCl, OH,
CN)) corresponds to a distinct stereoisomer. This example is called an asym-
metric carbon, a carbon with four different neighbours, and its presence is one
of the most frequently encountered cause of stereoisomerism. Another cause of
stereoisomerism is the presence of a double bond between carbons. According
to chemical experts, 98% of the stereoisomers currently used in chemistry are
stereoisomers because of the presence of one of this two configurations. Graph
kernel proposed by [14] allows to encode these two forms of stereoisomerism by
adapting the tree pattern kernel. However, in this approach, patterns which en-
code stereo information, and patterns which do not, are combined without any
weighting in the final kernel value. Therefore, patterns which do not encode
any stereo information may be assimilated to noise when predicting a prop-
erty only related to stereoisomerism. In this section, we propose to adapt the
treelet kernel to stereoisomers in order to obtain a kernel encoding only stereo
information.

4.1 Ordered graphs and stereo vertices

Let us first consider asymmetric carbon. The spatial configuration of the stereoiso-
mer depicted in figure 3(a) can be encoded by the sequence (H, CN, OH, OCl)
where the atom fixing the point of view (H) and the first atom of the remaining
neighbors cyclically ordered are arbitrary chosen. For each atom, the relative
positioning of its neighbors may thus be encoded by an ordered list. An ordered
graph G = (V,E, µ, ν, ord) is defined as a molecular graph Gm = (V,E, µ, ν)
with a function ord : V → V ∗ which associates to each node an ordered list of
its neighbors. Two ordered graphs G and G′ are isomorphic (G ≃

o
G′) if it exists

an isomorphism f between their respective molecular graphs Gm and G′
m such

that ord′(f(v)) = (f(v1), . . . , f(vn)) with ord(v) = (v1, . . . , vn).

1C
N

denotes the atom C of the branch C−N, O
H

the atom O of the branch O−H and O
Cl

the atom O of the branch O−Cl.

14

�

(a) Molecule with one stereo vertex.
Minimal stereo subtree is surrounded
by a dashed line.

(b) Contracted graph ob-
tained by contracting min-
imal stereo subtree into
node CS .

Figure 3: A stereoisomer with minimal stereo subtree and contracted graph
representation.

The order encoding the neighborhood of a vertex being relative to the choice
of two of its neighbors, two different ordering functions may encode a same
configuration. Re-ordering functions associate to each vertex v of degree n a
permutation on {1, . . . , n} which allows to re-order its neighborhood. The set
of re-ordering functions encoding a same configuration is called a valid family
Σ [29]. Two ordered graphs G and G′ are considered as equivalent according
to Σ (denoted G ≃

Σ
G′), if it exists a re-ordering function σ ∈ Σ such that

σ(G) ≃
o
G′. This relationship defines an equivalence relationship [29] and two

different stereoisomers are encoded by non equivalent ordered graphs. This
global graph’s characterization may be translated into a local one in order to
characterize vertex’s stereo property:

Definition 1 (Stereo vertex) Let G = (V,E, µ, ν, ord) be an ordered graph.
A vertex v ∈ V of degree n is called a stereo vertex iff:

∀(i, j) ∈ {1, . . . , n}2, i 6= j,G 6≃
Σ
τvi,j(G). (19)

where τvi,j(G) corresponds to an ordered graph deduced from G by permuting
nodes of index i and j in ord(v).

4.2 Minimal stereo subtree

Using definition 1, vertex’s stereo property is characterized using the whole or-
dered graph G. Given a vertex v whose stereo property has to be checked by
definition 1, one can observe that, on some configurations, the removal of some
vertices far from v should not change its stereoisomerism. We should thus de-
termine the minimal subgraph of G including v which fulfills equation 19, in
order to obtain a local characterization of a stereo vertex. In the following,
we restrict our attention to acyclic graphs. Considering such a restriction, the
minimal subgraph characterizing the stereo property of a vertex v corresponds

15

to the smallest ordered subtree rooted on v which allows to define v as a stereo
vertex (definition 1). Such a subtree is called the minimal stereo subtree of v.
Let us consider an ordered subtree T of G rooted on v and the set of subtrees
{T1, . . . , Tn} of T rooted on each node adjacent to v, n being thus equals to the
degree of v. Let us additionally consider the subtree T j

i of Ti with the same
root as Ti and whose depth is equal to j. We denote by T (j1, . . . , jn) the sub-
tree of T rooted on v and connected to the set of subtrees {T j1

1 , . . . , T jn
n }. We

then associate to each i ∈ {1, . . . , n}, the index j⋆i corresponding to the minimal

value, and thus the minimal depth, such that T
j⋆i
i is not isomorphic to any T j

k ,

k 6= i, j ≥ 1. Any permutation of T
j⋆i
i and T

j⋆k
k , i 6= k in T (j⋆1 , . . . , j

⋆
n) leads thus

to a non-isomorphic ordered tree and T (j⋆1 , . . . , j
⋆
n) is the minimal stereo subtree

of v (equation 19). A molecule can thus be associated to a set of minimal stereo
subtrees, each subtree being associated to a stereo vertex. Considering only
acyclic graphs allows us to efficiently compare rooted ordered trees and thus
minimal stereo subtrees. Indeed, an ordered tree is encoded by a string corre-
sponding to the sequence of labels encountered during its depth first traversal.
The canonical representation of an ordered tree, up to equivalence relationships
is thus defined as the minimal string according to lexicographic order among
all possible equivalent ordered trees (section 4.1). Ordered isomorphisms with
equivalences between two trees can then be tested efficiently by comparing their
unique string encodings [29].

4.3 Graph contraction and stereotreelet

We assume that the stereo properties of an acyclic molecule are determined
both by its set of minimal stereo subtrees and by the relationships between
these subtrees and the remaining parts of the molecule. These relationships may
be encoded by a contracted graph (figure 3) where a minimal stereo subtree is
contracted into a single node CS . This contracted node is then connected to
each leaf l of the corresponding minimal stereo subtree. Edges encoding these
adjacency relationships are labeled by the sequence of child’s indexes traversed
to reach leaf l from the minimal stereo subtree’s root.

Each stereo vertex v is associated to a contracted graph which encodes its
minimal stereo subtree and the adjacency relationships of this tree with the other
parts of the molecule. We then associate to v the set of treelets extracted from
its contracted graph. This set of treelets is reduced to treelets containing the
contracted node encoding the minimal stereo subtree. Each graph G can thus be
associated to a set of stereotreelets TS(G) defined as the union of stereotreelets
associated to the stereo vertices of G. The stereotreelet kernel is then defined
as a treelet kernel (equation 2) between the set of stereotreelets of both graphs
to be compared:

kTS
(G,G′) =

∑

t∈TS(G)∩TS(G′)

k(ft(G), ft(G
′)) (20)

This extension defines a graph kernel which allows to distinguish two stereoiso-

16

mers. Although it is restricted to acyclic molecules, this kernel allows to take
into account local and non local chiral information. The extension of this frame-
work to double bond between carbons is straightforward [29].

5 Including cyclic information

As mentioned in section 1, kernels based on linear or tree patterns do not en-
code any cyclic information while molecular cycles reduce the atom’s degrees
of freedom and have thus an high influence on molecular properties. Horváth
et al. [13] have proposed the cyclic pattern kernel which compares the cycles of
two graphs by computing their number of common simple cycles. However, the
complexity required to enumerate the set of simple cycles is NP-Hard. There-
fore, Horváth has proposed a new formulation [30] using relevant cycles [31]
instead of simple cycles which reduces algorithm complexity. Nevertheless, this
kernel deduces cyclic similarity from the number of common cycles but does not
encode any adjacency relationships between cycles.

5.1 Relevant Cycles

Let us introduce relevant cycles, as defined by Vismara [31]. According to [31],
a simple cycle is defined as a subgraph C = (V ′, E′, µ, ν) of a graph G =
(V,E, µ, ν) where each vertex v ∈ V ′ has a degree equal to 2. Each cycle C EG

can be represented as a vector ~C ∈ {0, 1}|E| where ~Ci is equal to 1 if i is an
edge of C and to 0 otherwise. The set of vectors encoding cycles of G defines a
vector space where the addition of two cycles C and C ′ corresponds to a XOR
bitwise operation on their vectorial representations [31]. The set of relevant
cycles of a graph, denoted CR(G), is defined as the union of all bases of the
vector space of minimum length. The length of a base is defined as the sum
of lengths of its cycles. Note that this set of cycles allows to encode all cycles
of a molecular graph by combining them. Vismara has proposed an efficient
algorithm which allows to compute the set of relevant cycles of a graph with a
polynomial complexity according to the number of nodes of a graph [31].

5.2 Relevant Cycle Graph

Topological relationships between relevant cycles can be encoded by the relevant
cycle graph. Given a graph G = (V,E, µ, ν), its associated relevant cycle graph
(figure 4) is defined as GC(G) = (VC , EC , µC , νC) where each vertex v ∈ VC
corresponds to a relevant cycle c ∈ CR(G). Each vertex v ∈ VC is associated to
the set cV (v) ⊆ V of nodes belonging to the cycle of G associated to v. Similarly,
cE(v) ⊆ E encodes the set of edges composing the relevant cycle c associated
to v. Two vertices (u, v) ∈ V 2

C are connected by an edge (u, v) ∈ EC if their
corresponding cycles share at least one node in G, i.e. if cV (u) ∩ cV (v) 6= ∅.
Labeling functions are defined as follows:

17

�

�

✁

✁

✁

Figure 4: A molecular graph and its associated relevant cycle graph. Canonical
key µC(C2) is equal to C1C1C1O1C1C2C.

• µC(v): relevant cycle c encoded by v can be associated to a sequence of
edge and vertex labels encountered during the traversal of c in G. In
order to obtain a label sequence invariant to cyclic permutations, µC(v) is
defined as the sequence having the lowest lexicographic order;

• νC(u, v): an edge e = (u, v) ∈ EC is associated to each path shared by
two cycles. Since this path can be traversed in two differents ways, we
define νC(e) as the minimal sequence of vertex and edge labels according
to lexicographic order. Note that generally two relevant cycles share an
unique path.

Cyclic information may be encoded into a graph kernel by applying treelet kernel
on the relevant cycle graph instead of the original molecular graph. This kernel
is thus defined by:

kC(G,G
′) = kT (GC(G), GC(G

′)) =
∑

tC∈T (GC(G))∩T (GC(G′))

k(ftC (GC(G)), ftC (GC(G
′)))

(21)
Where kT refers to our treelet kernel (equation 2).

Using equation 21, extracted treelets no longer encode atom adjacency re-
lationships but relevant cycle adjacency relationships. We can note that this
kernel generalizes the cyclic pattern kernel. Indeed, the cyclic pattern kernel
may be retrieved from the treelet kernel applied on the relevant cycle graph by
restricting the set of treelets to the G0 treelet structure (figure 1) and defining
k as an intersection kernel. Considering others treelet structures allows us to
encode adjacency relationships between relevant cycles.

However, we can note that kernel defined by equation 21 only includes cyclic
information. Therefore, the cyclic pattern kernel, defined by equation 21, may
be combined with a kernel encoding acyclic similarity such as treelet kernel
applied on the original molecular graph:

k(G,G′) = λkT (G,G
′) + (1− λ)kC(G,G

′) (22)

18

This kernel allows to encode both cyclic and acyclic information. Parameter λ
allows to tune the trade-off between cyclic and acyclic information into kernel
value computation. This parameter may be adapted according to a given prop-
erty, by cross validation or multiple kernel learning (section 2.1.1). However,
note that in this last case, sparsity constraint must be relaxed in order to insure
that both subkernels are taken into account.

Kernel defined by equation 22 encodes a global similarity measure by a sum
of two subkernels where each subkernel exclusively encodes cyclic or acyclic
information. Although this approach allows to split acyclic and cyclic contri-
butions, it does not allow to encode adjacency relationships between cyclic and
acyclic parts of a molecule. For example, adjacency relationships between a
cycle and its substituents (e.g. C3 and N in figure 4) is not encoded by our
kernel, neither by any graph kernel to the best of our knowledge.

5.3 Relevant Cycle Hypergraph

In order to encode adjacency relationships between cyclic and acyclic parts of a
molecule, a first approach consists in adding vertices and edges corresponding to
acyclic parts to our relevant cycle graph defined in section 5.2. Unfortunately,
such an approach can not handle cases where an atom is connected to two
distinct relevant cycles. As shown in figure 5(a), the atom labeled O is connected
by an unique edge to two distinct cycles in the molecular graph representation.
This adjacency relationship can not be encoded by a graph since an edge defines
an adjacency relationship between two nodes. Therefore, in order to handle such
relationships, we propose to define a new hypergraph representation encoding a
molecular graph.

A directed hypergraph [32] H = (V,E) can be defined as a set of vertices V
and a set E = Ee∪Eh encoding the union of a set of edges Ee ⊂ V ×V and a set
of hyperedges Eh ⊂ P(V)×P(V) where P(V) encodes the set of all subsets of
V . Note that unlike classical hypergraph’s definitions, we explicitly distinguish
the hyperedges from the classic edges. An ordered hyperedge e = (su, sv) ∈ Eh

with su = {u1, . . . , ui} and sv = {v1, . . . , vj} defines an adjacency relationship
between node sets {u1, . . . , ui} and {v1, . . . , vj}, as illustrated in figure 5(c). In
the following, we assume that if there exists an e ∈ E with e = (s1, s2) then
it exists e′ ∈ E with e′ = (s2, s1) and e and e′ are considered as a same and
unique hyperedge. Such a definition allows us to encode adjacency relationships
between an acyclic atom and a set of cycles, each cycle being encoded as a
vertex.

A molecular graph G = (V,E, µ, ν) can be encoded as a relevant cycle hy-
pergraph HCH(G) = (VCH , ECH , µCH , νCH). Considering the relevant cycle
graph GC(G), the set of relevant cycles CR(G) is associated to a set VCR

⊆ V
corresponding to the union of all nodes included within a cycle, i.e. VCR

=
{u ∈ cV (v) | v ∈ VC}. Similarly, ECR

= {e ∈ cE(v) | v ∈ VC} encodes the
set of edges included within a relevant cycle (section 5.2). The relevant cycle
graph encodes all nodes and edges of a graph G which are included within a
cycle. Therefore, molecular parts which are missing in the relevant cycle graph

19

correspond to acyclic parts, i.e. nodes and edges which are not included within
a cycle. These sets are respectively defined by the complement of VCR

, resp.
ECR

, in V , resp. E. In order to encode both acyclic and cyclic parts into the
relevant cycle hypergraph, VCH is defined by the union of two subsets. A first
subset VC encoding the set of relevant cycles and a second subset {V \ VCR

}
corresponding to the set of atoms not included within a cycle.

Considering the set of vertices VCH , we can define a function p : V →
P(VCH) defined as p(u) = {u} if u /∈ VCR

and p(u) = {v ∈ VC | u ∈ cV (v)}
if not. The set p(u) encodes either the cycles which include atom u or the
atom itself. Similarly to vertices, the set of hyperedges ECH is composed of two
subsets:

1. A set of edges Ee
CH composed of:

• edges between relevant cycle nodes which correspond to the set of
edges EC defined in the relevant cycle graph;

• edges e = (p(u), p(v)) such that (u, v) ∈ E \ ECR
, |p(u)| = 1 and

|p(v)| = 1. This set of edges corresponds to edges of the molecular
graph G which encode three distinct adjacency relationships:

– an edge connecting two acyclic atoms;

– an edge between two single relevant cycles (for example C2 and
C4 in figure 4);

– or an edge connecting an acyclic atom of G to a single relevant
cycle (C3 and N in figure 4).

2. and a set of hyperedges e = (p(u), p(v)) ∈ Eh
CH such that (u, v) ∈ E \ECR

and |p(u)| > 1 or |p(v)| > 1. This set of hyperedges encodes special cases
depicted in figure 5 where an edge connects at least two distinct relevant
cycles to another part of the molecule. This edge connects two sets of
vertices s1 = p(u) and s2 = p(v) and is thus encoded by an hyperedge
e = (s1, s2) ∈ Eh

CH .

The labeling function µCH is equal to the vertex labeling function µC of the
relevant cycle graph (section 5.1) for each vertex v ∈ VC corresponding to a
relevant cycle, and to the vertex labeling function µ of the mocular graph oth-
erwise. In the same way, the edge labeling function νCH is equal to the edge
labeling function νC of the relevant cycle graph for each edge encoding an ad-
jacency relationship between two cycles and to the one of the molecular graph
(ν) otherwise. Since hyperedges correspond to edges of the molecular graph
connecting at least two distinct cycles to another part of the molecule, their
labels are set as the ones of their associated edges in the molecular graph.

20

�

✁

✁

✂

✄

(a) Molecular graph G including cycles. (b) Relevant cycle graph GC(G).

�

✁

✁
✂

✄

(c) Relevant cycle hypergraph HCH(G).
Hyperedge e encodes an adjacency relation-
ship between atom O and C1 and C2.

�

✁

✁
✂

✄

(d) Reduced relevant cycle graph GRC(G).

Figure 5: Different encodings of a same molecule.

This molecular hypergraph representation (figure 5(c)) encodes all atoms
v ∈ V of the original molecular graph G either by a node encoding a cycle or
by v itself if v is not included within any cycle. Similarly, each atomic bond
encoded by an edge e ∈ E in the molecular graph G is encoded in the molecular
hypergraph representation. In addition, we note that the set of vertices incident
to an hyperedge defines a clique:

Proposition 4 Let be a graph G = (V,E) and its associated relevant cycle
hypergraph HCH(G) = (VCH , ECH). If ∃e = (s1, s2) ∈ Eh

CH and c1, c2 ∈ VCH

such that {c1, c2} ⊆ s1 or {c1, c2} ⊆ s2, then (c1, c2) ∈ Ee
CH , i.e. c1 is adjacent

to c2.

Proof 4 Without loss of generality, let us assume that {c1, c2} ⊆ s1. Then
by construction of Eh

CH , ∃e = (u, v) ∈ E such that {c1, c2} ⊆ p(u) = s1. By
definition of function p and since c1, c2 ∈ CR(G), it holds that u ∈ cV (c1) ∩
cV (c2). By definition of the relevant cycle graph, (c1, c2) ∈ EC ⊆ Ee

CH .

5.4 Similarity between relevant cycle hypergraphs

Previous section defines a new molecular representation which allows to encode
adjacency relationships between cyclic and acyclic parts of a molecule. In order

21

to apply QSAR/QSPR methods using this molecular representation, we have
to define a kernel between relevant cycle hypergraphs. An hypergraph encodes
global relationships defined between sets of nodes. Conversely, treelet kernel is
defined on graphs where relationships are defined locally between elementary
nodes. Therefore, in order to apply treelet kernel to our hypergraph repre-
sentation, we have to transform global relationships encoded in an hypergraph
representation to local relationships between elementary nodes. This transfor-
mation may be performed by merging sets of vertices incident to an hyperedge.
This merging operation relies to transform hyperedges to edges.

An equivalence relation ∼ between vertices c ∈ VRH is defined by the
transitive closure of the relation R such that c1 R c2 if and only if it ex-
ists e = (s1, s2) ∈ ECH such that {c1, c2} ⊆ s1 or {c1, c2} ⊆ s2. Using
equivalence relation ∼ previously defined, we can define the equivalence class
c̄ = {c′; c ∼ c′} of a node c ∈ VCH . Intuitively, two cycles sharing a common hy-
peredge belong to the same equivalence class. Then, by applying a contraction
kernel on each class c̄, we define a reduced relevant cycle graph (figure 5(d))
GRC(G) = (VRC , ERC , µRC , νRC) associated to graph G with:

• VRC = {c̄, c ∈ VCH},

• ERC = {e = (c̄1, c̄2), (c1, c2) ∈ ECH , c1 ≁ c2}. Intuitively, the set of edges
ERC corresponds to the union of the usual edges Ee

CH of HCH and the
transformation of hyperedges Eh

CH into usual edges.

Labeling function µRC(c̄), c ∈ VCH , is defined in a canonical way by the se-
quence of vertex and edge labels encountered during a depth first traversal of
the spanning tree covering c̄ and having the lowest lexicographic order. Such a
spanning tree exists since any pair of vertices {c, c′} sharing a same hyperedge
is connected (Proposition 4).

Considering reduced relevant cycle graph, our new similarity measure based
on treelet kernel is defined in two parts. A first step consists in extracting
the set of treelets T1 = T (VCH , E

e
CH). The couple (VCH , E

e
CH) corresponds

to a subhypergraph of HCH which does not include any hyperedge and which
thus corresponds to a graph. The set of treelets T1 does not include special
cases illustrated in figure 5. These special cases, corresponding to hyperedges
e ∈ Eh

CH , are encoded by the set of treelets T2 which is defined as the set of
treelets extracted from the reduced relevant cycle graph GRC . In order to avoid
redundancy, we reduce the set of treelets T2 to treelets containing at least one
edge corresponding to an hyperedge eh ∈ Eh

CH . Finally, we define the set of
treelets TCR(G) associated to a molecular graph G by T1∪T2. Our treelet kernel
extension is then defined as a treelet kernel applied on the set of treelets TCR:

kRH(G,G′) =
∑

t∈TCR(G)∩TCR(G′)

k(ft(G), ft(G
′)) (23)

where k(., .) is defined as a kernel between real numbers. Note that, multiple
kernel learning methods defined in section 2.1 can be applied in order to extract
relevant subtrees involving cycles and acyclic parts.

22

Table 1: Information encoded by each treelet’s kernel extension.

Kernel Acyclic
Non-isomorphic

Stereo Cyclic
Acyclic

patterns \Cyclic

(1) kT (Equation 2) X

(2) kinter (Equation 8) X X

(3) kTS
(Equation 20) X X

(4) kC (Equation 21) X

(5) kT + λkC (Equation 22) X X

(6) kRH (Equation 23) X X X

The two new molecular representations defined in this section allows us to
encode molecular cyclic information into our treelet kernel. Cyclic information
can be taken into account separately from acyclic information by considering
the relevant cycle graph or combined with acyclic information using the global
molecular representation provided by the relevant cycle hypergraph. Prediction
ability of each method depends on the chemoinformatics problem addressed by
each dataset.

6 Experiments

We proposed several extensions of the treelet kernel in order to define a more
accurate similarity measure for QSAR/QSPR problems. Table 1 summarizes
the different informations took into account by each proposed extension. The
first line corresponds to the treelet kernel kT [11] which only takes into account
acyclic information. Based on the hypothesis that similar sub structures should
have a similar influence, the first extension (line 2) aims to include the com-
parison of non-isomorphic treelets into kernel computation. Similarity between
treelets is deduced from graph edit distance. Second, the next extension (line 3)
consists in encoding stereo information which is crucial for predicting certain
molecular properties. Finally, the last three extensions (lines 4 to 6) consist
in encoding cyclic information into graph kernels. First, we have proposed to
apply the treelet kernel on the relevant cycle graphs (line 4) which allows us to
encode the cyclic system of a molecule. However, considering such a kernel does
not allow us to take into account acyclic parts. This drawback can be tackled
by computing a kernel as a combination of a treelet kernel and a treelet kernel
on relevant cycle graph (line 5). The parameter λ allows to weight the influence
of the cyclic information and is choosen by cross-validation. However, this com-
bination dissociates cyclic and acyclic parts and can’t thus encode relationships
between cyclic and acyclic parts of a molecule. Therefore, we proposed the
relevant cycle hypergraph as a new molecular representation. This hypergraph
representation allows us to encode the whole molecular graph and to explic-
itly encode cyclic information. We adapted the treelet kernel (line 6) in order
to compare relevant cycle hypergraphs which defines thus a similarity measure

23

Table 2: Boiling point prediction of 185 acyclic molecules. Computation times
are displayed in seconds.
Method RMSE learn. pred.

(1) Path kernel 12.24 ± 1.45 7.83 0.18
(2) Random walks kernel 18.72 ± 1.74 19.10 0.57
(3) Tree pattern kernel 11.02 ± 1.06 4.98 0.03
(4) Treelet kernel 8.10 ± 0.88 0.07 0.01
(5) Inter treelet kernel with approx. edit distance 6.09 ± 0.6 12.43 0.07
(6) Inter treelet kernel with exact edit distance 5.89 ± 0.55 3.77 0.07
(7) Treelet kernel with MKL 5.24 ± 0.53 70 0.01

encoding adjacency relationships between relevant cycles, acyclic parts, and be-
tween relevant cycles and acyclic parts. These contributions have been tested
on three chemoinformatics datasets2 in order to determine their relevancy from
an experimental point of view. These experiments consists in two regression
problems and one classification problem. Best parameters have been tuned by
using a cross validation over the intervals [10−2, 104] for C (equation 6) and

[σ(y), σ(y)20] for ǫ in SVM problems, where σ(y) denotes the standard deviation
of the predicted property. The values of σinter (equation 16) and σ range in
[0.1, 5] for RBF gaussian kernels and λ ∈ [10−7, 1] for kernel ridge regression.
We also consider linear, gaussian, intersection and binary kernels as basic kernel
between treelet’s frequencies.

6.1 Boiling point prediction

The first prediction problem consists in predicting the boiling point of 185
acyclic molecules [2]. The results obtained using a kernel ridge regression with
corresponding execution times in seconds are displayed in table 2. Column
“learn.” corresponds to the time required to compute the Gram matrix and
column “pred.” corresponds to the time required to predict the boiling point
of a new molecule. We measure the accuracy of each method by computing
the Root Mean Squared Error (column “RMSE”) and confidence intervals at
95% (±). In this first experiment, we tested different graph kernels based on
bags of patterns and two of our proposed extensions in order to show the gain
obtained by the pattern weighting step and the comparison on non-isomorphic
patterns. The two first lines of table 2 correspond to graph kernels based on
linear patterns: the first line corresponds to a kernel based on paths extracted
from the graphs [33] and the second line corresponds to the random walks ker-
nel, as defined in [8]. Line 3 corresponds to the tree pattern kernel [9]. Line 4
corresponds to our treelet kernel (with λ = 1 and an intersection kernel) and
lines 5 and 6 correspond to results obtained by including the comparison of

2All these datasets are available on the IAPR TC15 Web page: https://iapr-
tc15.greyc.fr/links.html

24

similar patterns into treelet kernel computation using graph edit distance with
ci = 3 and cs = 1 (section 3 and table 1, line 2). Best results have been obtained
with an intersection kernel, λ = 10−2 and σinter = 0.5 for line 5 and σinter = 1
for line 6. Finally, line 7 corresponds to the combination of the treelet kernel
and MKL using SVM regression with C = 10, ǫ = 0.005 and an intersection
kernel (section 2.1.1).

The results show that the low expressiveness of linear patterns does not allow
to predict accurately the boiling point of molecules conversely to kernels based
on non linear patterns which obtain a more accurate prediction. In addition, we
can note that the use of a limited set of structures allows to obtain low execution
times. Then, we can note that the comparison of non-isomorphic patterns allows
to obtain a better prediction accuracy than the treelet kernel, hence showing
the relevance of including pairs of non-isomorphic treelets within kernel compu-
tation. In addition, we can note that the use of an exact edit distance provides a
slightly better accuracy than using an approximate edit distance. Finally, best
results are obtained thanks to the use of multiple kernel learning which allows
to only consider relevant patterns at the cost of an higher computational time.
However, note that prediction time is not altered by multiple kernel learning
step since weighting is only computed during the learning step.

6.2 Optical rotation prediction

Table 3: Optical rotation angle prediction on acyclic chiral molecules.
Method RMSE (◦) Time (s)

(1) Treelet kernel 26.24 ± 6.43 2
(2) Stereo tree-pattern kernel 24.16 ± 5.64 21
(3) Stereo treelet kernel 15.63 ± 3.54 0.4
(4) Treelet and stereo treelet kernel combination 14.80 ± 3.30 2

The second regression experiment aims to show the relevancy of taking into
account stereoisomerism. This experiment consists in predicting the optical
rotation angle, which strongly depends on stereoisomerism properties, of 35
acyclic and chiral molecules by using a leave one out prediction and a SVM
regression. Table 3 shows results obtained by the treelet kernel with ǫ = 20,
C = 2 and σ = 0.5 (line 1), tree pattern kernel adapted to stereoisomerism [14]
(line 2), stereo treelet kernel (table 1, line 3) with ǫ = 10, C = 103 and σ = 4
(line 3) and a combination of two kernels with ǫ = 5, C = 2 and a binary kernel
(line 4). This combination consists in predicting the sign of the optical rotation
angle using the stereo treelet kernel and predicting its absolute value using the
treelet kernel. On one hand, we can note that treelet kernel is not able to predict
correctly this property since it can not distinguish two stereoisomers having
nearly opposite optical rotation angles. On the other hand, stereo treelet kernel
allows to distinguish stereoisomers and obtains a better prediction accuracy.
The combination of the two kernels leads to the best results. Sign prediction step

25

Table 4: Classification accuracy on PTC dataset.

Method
correct predictions

MM FM MR FR Time (s)

(1) Treelet kernel (TK) 208 205 209 212 27
(2) Cyclic pattern kernel 209 207 202 228 ≤ 1
(3) TK on relevant cycle graph (TC) 211 210 203 232 ≤ 1
(4) TK on relevant cycle hypergraph (TCH) 217 224 207 233 19

(5) TK + MKL 217 224 223 250 85
(6) TC + MKL 216 213 212 237 62
(7) TCH + MKL 225 229 215 239 117

(8) λ TK + (1 - λ) TCH 225 230 224 252 202

is performed without errors by stereo treelet kernel, hence showing the relevancy
of this extension, and angle absolute value prediction performed by treelet kernel
allows to slightly enhance the results obtained by the stereo treelet kernel alone.
Therefore, patterns which include stereo information are useful to predict the
sign of the optical rotation angle and patterns which do not are useful to predict
its absolute value. As the tree pattern kernel adapted to stereoisomerism does
not clearly identify the contribution of each kind of patterns, it can not obtain
as good results as the stereo treelet kernel.

6.2.1 Predictive Toxicity Challenge

The third experiment aims to show the relevancy of explicitly including the
cyclic information of molecules into kernel computation. The dataset used in
this experiment is taken from the Predictive Toxicity Challenge [34] which aims
to predict carcinogenicity of chemical compounds applied to four type of animals
: female (F) and male (M) rats (R) and mice (M). This experiment consists in
ten different datasets for each class of animal, each of them being composed of
one training set and one test set. The amount of predicted molecules is equal
to 336 for male mice, 349 for female mice, 344 for male rats and 351 for female
rats. Table 4 shows the amount of correctly classified molecules over the ten
test sets for each method and for each class of animal. In addition, the column
time shows the learning time required by gram matrices computation and by the
SVM learning step. First line of table 4 corresponds to original treelet kernel.
The three next lines correspond to methods encoding three different levels of
cyclic information. Line 2 corresponds to cyclic pattern kernel using relevant
cycles [30]. Line 3 corresponds to treelet kernel applied on the relevant cycle
graph (section 5.2 and table 1, line 4) which allows to encode relevant cycles
relationships. Line 4 corresponds to the adaptation of treelet kernel to relevant
cycle hypergraphs (section 5.3 and table 1, line 6) which allows to encode ad-

26

jacency relationships between relevant cycles and acyclic parts. First, we can
note that finer the cyclic information is encoded, better is the accuracy among
the three methods explicitly encoding it (lines 2 to 4). These results validate
our hypothesis on the importance of encoding adjacency relationships between
relevant cycles in one hand and between relevant cycles and acyclic parts on
the other hand. From a computational point of view, we can note that the low
number of treelets extracted from the relevant cycle graph allows a fast learning
step. In addition, the computational time required by the transformation of
molecular graphs into relevant cycle graphs is balanced by the lower number
of extracted treelets. The second part of table 4 (lines 5 to 8) shows results
obtained by different kernels based on treelet kernel combined with a multiple
kernel learning step as defined in section 2.1. Multiple kernel learning allows
to significantly enhance the accuracy obtained by the different tested kernels
(according to a Friedman test with a p-value equals to 0.01) at the price of an
higher computational time. After this weighting step, treelet kernel adapted
to relevant cycle hypergraph (line 7) obtains the best results on two datasets
over four (datasets MM and FM) and kernel only based on acyclic patterns
obtains the best results over the two others datasets (line 5, datasets MR and
FR). This observation can be explained by the fact that some properties are
influenced by cyclic information whereas some others depend more on acyclic
information. Note that multiple kernel learning step selects about 25 relevant
treelets among the 5700 extracted from relevant cycle hypergraphs. In com-
parison, treelet weighting step selects 150 treelets among 3500 when applied to
molecular graph. The selected treelets consists of non linear treelets and treelets
having 6 nodes which validates the use of non linear patterns composed of up
to six nodes. Finally, treelet kernel on molecular graph has been combined with
treelet kernel on relevant cycle hypergraph (table 4, line 8). This combination
of two molecular representations obtains the best results on all datasets by tak-
ing the best combination of the two kernels for each dataset. As observed on
the second part of results, best results are obtained for a λ equals to 0.9 for
mice’s datasets whereas best results are obtained for a λ equals to 0.1 for rats’
datasets.

7 Conclusion

In this article, we have presented several extensions to treelet kernel which take
into account chemical relevant characteristics such as pattern weighting, the
contribution of non-isomorphic sub structures, stereoisomerism and cyclic infor-
mation. As shown in experiments, these extensions allow to enhance prediction
results obtained on several chemoinformatics datasets. In order to achieve a bet-
ter prediction accuracy, we aim to encode the substituents’ relative positioning
around a cycle in order to encode a finer cyclic information. Another outlook
consists in using optimal solvers such as MKL to define an inter treelet kernel
based on a training set instead of using an a priori treelet edit distance. Finally,
our next work regarding stereo information will focus on extending stereo treelet

27

kernel to cyclic molecules in order to enlarge its application domain.

Acknowledgements

The authors would like to thank the computing center CRIHAN for providing
the resources required by the computations of experiments.

References

[1] M. A. Johnson, G. M. Maggiora, Concepts and Applications of Molecular
Similarity, Wiley, 1990.

[2] D. Cherqaoui, D. Villemin, A. Mesbah, J. M. Cense, V. Kvasnicka, Use of
a neural network to determine the normal boiling points of acyclic ethers,
peroxides, acetals and their sulfur analogues, Journal of Chemical Society
Faraday Transactions 90 (1994) 2015–2019.

[3] T. Caelli, S. Kosinov, An eigenspace projection clustering method for inex-
act graph matching, IEEE Transactions on Pattern Analysis and Machine
Intelligence 26 (2004) 515–519.

[4] P. Foggia, G. Percannella, M. Vento, Graph matching and learning in pat-
tern recognition in the last 10 years, IJPRAI 28 (1).

[5] G. Poezevara, B. Cuissart, B. Crémilleux, Discovering emerging graph pat-
terns from chemicals, in: ISMIS’2009, LNCS, Prague, 2009, pp. 45–55.

[6] K. Riesen, H. Bunke, Graph classification based on vector space embedding,
IJPRAI 23 (6) (2009) 1053–1081.

[7] J. Dattorro, Convex optimization & Euclidean distance geometry, Meboo
Publishing USA, 2005.

[8] H. Kashima, K. Tsuda, A. Inokuchi, Kernels for graphs, MIT Press, 2004,
Ch. 7, pp. 155–170.

[9] P. Mahé, J.-P. Vert, Graph kernels based on tree patterns for molecules,
Machine Learning 75 (1) (2008) 3–35.

[10] N. Shervashidze, K. M. Borgwardt, Fast subtree kernels on graphs, in:
Advances in Neural Information Processing Systems, 2009, pp. 1660–1668.

[11] B. Gaüzère, L. Brun, D. Villemin, Two New Graphs Kernels in Chemoin-
formatics, Pattern Recognition Letters 33 (15) (2012) 2038–2047.

[12] N. Shervaszide, Scalable graph kernels, Ph.D. thesis, Universität Tübingen
(2012).

28

[13] T. Horváth, T. Gärtner, S. Wrobel, Cyclic pattern kernels for predictive
graph mining, in: KDD’2004, ACM Press, 2004, p. 158.

[14] J. Brown, T. Urata, T. Tamura, M. A. Arai, T. Kawabata, T. Akutsu,
Compound analysis via graph kernels incorporating chirality, Journal of
Bioinformatics and Computational Biology 8 (1) (2010) 63–81.

[15] B. Gaüzére, L. Brun, D. Villemin, Relevant cycle hypergraph representation
for molecules, in: GBR’2013, Springer Berlin Heidelberg, 2013, pp. 111–
120.

[16] P.-A. Grenier, L. Brun, D. Villemin, Treelet kernel incorporating chiral
information, in: GBR’2013, Springer, 2013, pp. 132–141.

[17] M. Gönen, E. Alpaydın, Multiple kernel learning algorithms, Journal of
Machine Learning Research 12 (2011) 2211–2268.

[18] D. Haussler, Convolution kernels on discrete structures, Tech. rep., Dept.
of Computer Science, University of California at Santa Cruz (1999).

[19] N. Wale, I. Watson, G. Karypis, Comparison of descriptor spaces for chem-
ical compound retrieval and classification, Knowledge and Information Sys-
tems 14 (3) (2008) 347–375.

[20] H. L. Morgan, The generation of a unique machine description for chemical
structures-a technique developed at chemical abstracts service., Journal of
Chemical Documentation 5 (2) (1965) 107–113.

[21] A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet, SimpleMKL, Journal
of Machine Learning Research 9 (2008) 2491–2521.

[22] M. Varma, D. Ray, Learning the discriminative power-invariance trade-off,
in: ICCV’2007, IEEE, 2007, pp. 1–8.

[23] F. Yger, R. A., Wavelet kernel learning, Pattern Recognition 44 (10-11)
(2011) 2614–2629.

[24] M. Neuhaus, H. Bunke, Bridging the Gap Between Graph Edit Distance
and Kernel Machines, World Scientific Publishing Co., Inc., River Edge,
NJ, USA, 2007.

[25] S. Fankhauser, K. Riesen, H. Bunke, Speeding up graph edit distance com-
putation through fast bipartite matching, in: GBR’2011, Vol. 6658, 2011,
pp. 102–111.

[26] L. Brun, B. Gaüzére, S. Fourey, Relationships between graph edit dis-
tance and maximal common unlabeled subgraph, Tech. rep., GREYC,
http://hal.archives-ouvertes.fr/hal-00714879 (2012).

29

[27] H. Bunke, Error correcting graph matching: On the influence of the under-
lying cost function, IEEE Transactions on Pattern Analysis and Machine
Intelligence 21 (9) (1999) 917–922.

[28] K. Zhang, R. Statman, D. Shasha, On the editing distance between un-
ordered labeled trees, Information Processing Letters 42 (3) (1992) 133 –
139.

[29] P.-A. Grenier, L. Brun, D. Villemin, Incorporating chirality within
the graph kernel framework, Tech. rep., CNRS UMR 6072 GREYC,
http://hal.archives-ouvertes.fr/hal-00809066/ (2013).

[30] T. Horváth, Cyclic pattern kernels revisited, in: KDD’2005, Vol. 3518,
2005, pp. 791 – 801.

[31] P. Vismara, Union of all the minimum cycle bases of a graph, The Electronic
Journal of Combinatorics 4 (1) (1997) 73–87.

[32] C. Berge, Graphs and hypergraphs, Vol. 6, Elsevier, 1976.

[33] F. Suard, A. Rakotomamonjy, A. Bensrhair, Kernel on bag of paths for mea-
suring similarity of shapes, in: European Symposium on Artificial Neural
Networks, 2002, pp. 355–360.

[34] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, C. Helma, Statistical
evaluation of the predictive toxicology challenge 20002001, Bioinformatics
19 (10) (2003) 1183–1193.

30

