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The redox- active metallaphosphine [Fe(dppe)(ηηηη5-C5Me5) (C≡≡≡≡C-PPh2)] reacts with 
[Pd(1,5-cod)Cl2] give mono- and bis- phosphine complexes as a function of 
stoichiometry, and these complexes provide a stable redox- active platform which allows 
reversible one- electron {Fe(II)→ Fe+(III)} oxidations within the palladium coordination  
sphere. 

Fine control of architecture and the ability to generate quite specific electronic environments1 
means that phosphines are exceptionally widely used in many metal- catalysed processes,2 
and their versatility has driven recent research into areas as varied as self- assembling 
phosphines for enantioselection,3 supramolecular phosphines allowing unprecedented 
catalytic selectivities,4 and hybrid chemical/biological phosphine- containing systems.5 
However, there has been comparatively little recent interest in the class of redox- active 
phosphines,6 which should constitute an unusual class of “non- innocent” ligands7,8 and have 
been invoked inter alia for the switching of catalytic processes.9 We have recently 
demonstrated that phosphorus centres and redox- active organoiron endgroups can 
communicate strongly if linked through molecular wires such as acetylenes, and that 
oxidation of the Fe(II) endgroup in 1 provokes significant reactivity at the phosphorus centres 
(Scheme 1).10 This unusual behaviour prompted a study of the coordination chemistry of this 
metallaphosphine towards Pd(II) centres. 
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Scheme 1: Redox switching of metallaphosphine 1. Reagents: i:  [FcH][PF6], 2 eq., CH2Cl2, 
20ºC, 1h; ii:  [CoCp2] 3 eq., CH2Cl2, 20ºC, 1h. 
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 Scheme 2: Coordination chemistry of 1 and redox reactivity of the resulting Pd(II) 
complexes 3 and 5. Reagents and conditions: i:  [PdCl2(1,5-cod)] (1.0eq.), CH2Cl2, 15h, 97%; 
ii:  [FcH][PF6], CH2Cl2, 1h, > 98%; iii:  [PdCl2(1,5-cod)] (0.5eq.), CH2Cl2, 15h, 96%; iv: 
[FcH][PF6], CH2Cl2, 1h, > 98%; v: Compound 2 (1.0eq.), CD2Cl2, 15mn, > 95%. 

 

Reaction of the diamagnetic metallaphosphine 1 with one equivalent of [PdCl2(1,5-cod)] 
gives a near- quantitative isolated yield of a blue, air-stable dimeric complex [Pd2Cl4(1)2] 3 
that shows a classical trans- phosphine configuration about a butterfly- configured Pd2Cl4 core 
(Fig 1, in purple).11 The metalloligand undergoes moderate structural changes upon 
coordination, with the most significant differences being associated with the alkyne linker 
(Fig 1). The C≡C and C-P bond lengths in 3 are slightly longer and shorter respectively than 
those normally found for simple PdCl2- coordinated alkynyl-(diaryl phosphines)12 and the 
alkynyl νC≡C stretch falls from 1964 to 1930 cm-1, all of which imply an increased 
contribution from an iron-vinylidene resonance hybrid.13 
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Fig 1. Left: Superimposed X-ray- structures showing one half of each of the dimers forming 
the 3, 4 redox couple, showing ligand superstructure for the neutral complex 3 (purple) and its 
oxidation product 4 (gold). (Pd in magenta, Fe in orange, Cl in green). See supplementary for 
individual depictions of these complexes. Right: X-ray structural changes upon passing from 
free ligand 1 (plain text) to neutral dimer 3 (italic) and dication 4 (bold). Values are averaged 
over chemically equivalent sites. 



The cyclic voltammogram for 3 shows two closely spaced reversible oxidations at +0.16 and 
+0.25 V (both showing ∆Ep = 85 mV in CH2Cl2 vs SCE), which lie within a well- 
precedented window for the organoiron endgroup;13 bulk chemical oxidation using 
[FcH][PF6]

14 cleanly and near- quantitatively gave the black, air sensitive, dichloromethane- 
soluble 4, whose formulation as the corresponding double oxidation product was confirmed 
by an X- ray structural analysis (Fig 1, gold). The crystallographic data confirm an essentially 
iron- based oxidation, which is reflected in an elongation of a) the mean Fe-P distances to the 
dppe ligand from 2.1949 to 2.2970 Å (+4.7%) and b) the mean Fe-Cp*centroid distances from 
1.745 to 1.785 Å (+2.2%).15 The oxidation has a significantly smaller effect upon the 
palladium coordination sphere: a slight shortening of the mean Pd-P distance, from 
2.2274(11) to 2.2191(12) Å (-0.4%) and a modest (0.8%) shortening in the trans- Pd-Cl 
distance from 2.4447(10) to 2.4256(12)Å are observed,16 whilst the sum of the angles made 
by the organic groups at the Pd-coordinated phosphorus also rises only modestly from 317.6 
to 321.8°. The dimeric palladium core of the molecule can be expected to act as “spacer” 
between the two oxidised [Pd(1+)] components and an Evans determination17 of a room 
temperature magnetic moment of 2.21±0.1 BM at 293K is consistent with a ditopic diradical 
featuring two non-interacting spins.18 

 

Fig. 2: X-ray structure of the neutral monomeric Pd complex 5. 

Palladium dimers of type 3 are excellent sources of both homo- and heteroleptic [PdCl2L2] 
complexes19 and 5, which offers the possibility of two- electron redox chemistry within a Pd 
coordination sphere, was found to be accessible through either reaction of two equivalents of 
1 with the palladium bridged dimer 3, or by simple reaction of two equivalents of 1 with 
[PdCl2(1,5-cod)] (Scheme 2). Single crystals of the purple, air-stable trans- configured 5 
revealed metallaphosphine ligands that are very similar to those in 3 and Pd-P distances 
(2.338(1)Å) which are normal for mutually trans- phosphine ligands in a Pd(II) complex (Fig. 
2). DFT data from a model for 520 (Fig. 3) show a sharp increase in the NBO- calculated 
positive charge at the Pd- bound phosphorus (+0.62) and a significant rise at the iron- 
coordinated alkyne carbon (+0.10) upon coordination but only negligible changes (<0.04) 
elsewhere. Again, cyclic voltammetry showed closely- spaced reversible oxidation waves 
(E1

1/2 = –0.02 V, E21/2 = 0.11 V) and chemical oxidation using two equivalents of [FcH][PF6] 
provided a black, air-sensitive product, 6. Crystals suitable for a diffraction study were not 
obtained, but comparison of the very similar 1H NMR data for 4 and 6,21 and an Evans 
determination showing a value of 2.42 ±0.1 BM (298 K) that is again classical for two 
unpaired electrons,18 imply a bis-Fe(III) complex showing little spin-spin coupling across the 
palladium centre. A DFT comparison of NBO charge distributions in models14 for 5 and 6 
confirms an iron based oxidation (δQFe(5→6)= +0.36) that causes significant changes in charge 
at the linker atoms (δQ(Fe-C)= -0.13; δQ(P-C)= +0.21) but significantly smaller effects at 
phosphorus and at palladium (δQ(P, Pd) < 0.02). 



 

Fig 3: The B3PW91 calculated HOMO (left) and LUMO (right) for [PdCl2L2], (L= 
FeCp{H2PCH2CH2PH2}C2PPh2), a model for 5. Calculated HOMO- LUMO gap: 3.05eV. 

 

The individual redox steps that occur within the bound couples 3,4 and 5,6 appear to be well- 
behaved, but the chemical reversibility of the system as a whole clearly also rests upon the 
integrity of the dissociated ligands. The stability of 1 is established but our previous study has 
shown that the iron (III) proligand 2’ normally exists as a 1,1’- (biphosphine)dication 210 

(Scheme 3); this raises the undesirable possibility of the transient dissociation of 4 with 
subsequent dimerisation of the Fe(III) ligand monomers to generate a 1,1’-
(biphosphine)dication 2 reservoir and a ligand- deficient solution that deposits [PdCl2]. 
Experiments conducted upon isolated 1,1’-(biphosphine)dication 2 and [PdCl2(1,5-cod)] 
indicate that this mixture cleanly generates complex 4 (with 2eq of Pd) or 6 (with 1eq of Pd), 
and therefore confirm that ligand dissociation from both systems is reversible. The most likely 
mechanism involves the transient dissociation of the P-P bond to generate the Fe(III) 
proligand 2’10 prior to capture by the Pd centre (Scheme 3). 
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Scheme 3: Reaction of 2 with [PdCl2(1,5-cod)] to generate the dicationic dimer 4. Reagents 
and conditions: (i) [PdCl2(1,5-cod)], 2 eq., CH2Cl2, 1h, 20 °C, >98%. 
 

 

To conclude, metallaphosphines bearing [Fe(κ2-dppe)(η5-C5Me5)] endgroups bind to Pd(II) in 
both their neutral and cationic forms and can therefore be used to generate a chemically 
stable, redox- switchable coordination sphere about PdCl2 centres. The [Pd(II)-(1+)2] ↔ 
[Pd(IV)2+-(1)2] valence tautomer is firmly shifted to the left, so the metallaligand brings a 
potential for varying the overall electron count of the complex without excessively 



compromising the electronic identity of the palladium(II) centre. Reactivity studies of 3-6 are 
in progress. 
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