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PSEUDOCONVEX DOMAINS SPREAD OVER COMPLEX

HOMOGENEOUS MANIFOLDS

BRUCE GILLIGAN, CHRISTIAN MIEBACH, AND KARL OELJEKLAUS

Abstract. Using the concept of inner integral curves defined by Hirschowitz we generalize
a recent result by Kim, Levenberg and Yamaguchi concerning the obstruction of a pseu-
doconvex domain spread over a complex homogeneous manifold to be Stein. This is then
applied to study the holomorphic reduction of pseudoconvex complex homogeneous mani-
folds X = G/H . Under the assumption that G is solvable or reductive we prove that X is
the total space of a G-equivariant holomorphic fiber bundle over a Stein manifold such that
all holomorphic functions on the fiber are constant.

1. Introduction

Let G be a connected complex Lie group and H a closed complex subgroup of G. The
complex homogeneous manifold X = G/H admits a Lie theoretic holomorphic reduction
π : G/H → G/J where G/J is holomorphically separable and O(G/H) ≃ π∗O(G/J). In
general, the base G/J is not Stein nor do we have O(J/H) = C. In some cases one can
say more. If G is solvable, then G/J is always a Stein manifold, although O(J/H) = C is
not true in general (see [HO86]). If G is complex reductive, then due to [BO73] there is a
factorization G/H → G/H → G/J where H denotes the Zariski closure of H in G; moreover,
G/J is a quasi-affine variety. In general, O(H/H) 6= C and H/H can even be Stein.

As the main result of this paper we prove the following theorem about the holomorphic
reduction of pseudoconvex complex homogeneous manifolds X = G/H where G is solvable
or reductive.

Main Theorem. Suppose that the complex homogeneous manifold X = G/H is pseudocon-
vex and let X = G/H → G/J be its holomorphic reduction.

(1) If G is a complex reductive Lie group, then the base G/J is Stein and the fiber J/H
satisfies O(J/H) = C. If X is Kähler as well, then J/H is a product of the Cousin group
H/H with the homogeneous rational manifold J/H.

(2) If G is solvable, then the fiber J/H is a Cousin group tower and thus O(J/H) = C.

An open question is whether the holomorphic function algebra O(G/H) is a Stein algebra
for G/H pseudoconvex and G general. This lies beyond the scope of the present paper and
is not addressed here.

As a first step towards the proof of this theorem we discuss the Levi problem for pseudocon-
vex domains spread over complex homogeneous spaces and present a Lie theoretic description
of the obstruction to their being Stein. A characterization of relatively compact, smoothly
bounded, pseudoconvex domains D in complex homogeneous manifolds such that D is not
Stein is given in [KLY11]. The incorporation of methods of Hirschowitz [Hir75] allows us to
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simplify their proof and to show that the assumptions on the smoothness of the boundary and
relative compactness of D are not needed. One of the essential tools that Hirschowitz uses is
the concept of an inner integral curve, i.e., a non-constant holomorphic image of C in D that
is relatively compact and is the integral curve of a vector field. Indeed, Hirschowitz proves
that if a non-compact pseudoconvex domain D is spread over an infinitesimally homogeneous
complex manifold and D has no inner integral curves, then D is Stein.

Our generalization of the main result of [KLY11] reads then as follows.

Theorem 3.1. Let p : D → X be a pseudoconvex domain spread over the complex homoge-
neous manifold X = G/H such that p(D) contains the base point eH ∈ X. If D is not Stein,

then there exist a connected complex Lie subgroup Ĥ of G with H0 ⊂ Ĥ and dimH < dim Ĥ
and a foliation F = {Fx}x∈D of D such that

(1) every leaf of F is a relatively compact immersed complex submanifold of D,
(2) every inner integral curve in D passing through x ∈ D lies in the leaf Fx containing x,

and
(3) the leaves of F are homogeneous under a covering group of Ĥ.

In Proposition 3.6 we show furthermore the existence of an open subgroup H∗ of H such

that D can be realized as a domain spread over G/H∗ and that H∗ normalizes Ĥ. This will
be important in the proof of our Main Theorem.

Moreover, we have the following strengthening of this theorem in the projective setting.

Theorem 5.1. Suppose G is a connected complex Lie group acting holomorphically on Pn(C)
and X = G/H is an orbit. Then, every pseudoconvex domain spread over X is holomorphi-
cally convex and the fibers of its Remmert reduction are rational homogeneous manifolds.

Let us briefly outline the organization of this paper. In Section 2 we summarize Hirschowitz’
results in a form suitable for our needs. In Section 3 we prove Theorem 3.1 and discuss several
applications of it. In the fourth section we investigate when the foliation of a pseudoconvex
domain has compact leaves, which leads in Section 5 to the proof of Theorem 5.1. The sixth
section contains a generalization of Kiselman’s minimum principle that is used in the last two
sections in order to prove our Main Theorem in the reductive and solvable case, respectively.

Throughout this paper we will denote Lie groups by upper case letters and their Lie
algebras by the corresponding fracture letters.

2. A result of Hirschowitz

Following Hirschowitz [Hir74] and [Hir75] we call a complex manifold X infinitesimally
homogeneous if every tangent space of X is generated by global holomorphic vector fields.
Every complex manifold homogeneous under the action of a Lie group of holomorphic trans-
formations is infinitesimally homogeneous, and more generally every domain spread over such
a manifold has this property. Here we understand by a domain spread over X a pair (D, p)
where D is a connected complex manifold and p : D → X is locally biholomorphic.

Throughout the rest of the paper we fix a complex homogeneous space X = G/H where
G is a connected complex Lie group and H is a (not necessarily connected) closed complex
subgroup of G. We view an element ξ ∈ g as a right invariant vector field on G which we
push down to a holomorphic vector field ξX on X = G/H. If p : D → X is a domain spread

over X, we denote by ξ̃X the lift of ξX to D. An inner integral curve in D is a non-constant
holomorphic map C → D with relatively compact image in D which is the integral curve of

some vector field ξ̃X with ξ ∈ g.
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In this paper a complex manifold is called pseudoconvex if it admits a continuous plurisub-
harmonic exhaustion function. Note that every holomorphically convex complex manifold is
pseudoconvex. We will use the following special case of [Hir75, Theorem 4.1].

Theorem 2.1. Let p : D → X be a non-compact pseudoconvex domain spread over a complex
homogeneous manifold X = G/H.

(1) If D is not Stein, then D contains an inner integral curve.
(2) If X is a compact rational variety, then D is holomorphically convex.
(3) If X is an irreducible compact rational variety, then D is Stein.

Remark 2.2. Let X be infinitesimally homogeneous. If X is compact rational, then X = G/P
where G is complex semisimple and P is a parabolic subgroup of G. Such X is irreducible if
and only if G is simple and P is maximal parabolic.

The following example shows that Hirschowitz’ theorem does not hold for locally Stein
domains in complex homogeneous manifolds.

Example 2.3. Let D be the punctured unit ball in C2 \ {0} ≃ G/H where G = SL(2,C) and
H =

(
1 C
0 1

)
. Since ∂D is strictly Levi-convex, D is locally Stein in G/H, but not pseudoconvex

(in which case D would be Stein). Note that D does not contain an inner integral curve.

The following result (see [Hir74, Theorem 2.1]) implies that such an example does not exist
when the domain p(D) is relatively compact in X and p has finite fibers.

Theorem 2.4. Let p : D → X be a locally Stein domain spread over X = G/H. If p(D) is
relatively compact and p has finite fibers, then D is pseudoconvex.

Remark 2.5. As a direct application of Theorem 2.1 we obtain the following: If each holomor-
phic map C → X with relatively compact image is constant, then every pseudoconvex domain
spread over X is Stein. This observation applies e.g. when X is Brody-hyperbolic or if there
exists a holomorphic map f : X → Y such that Y and all fibers of f are holomorphically
separable.

The following example comes from a construction in [CL85] and illustrates the second case
in Remark 2.5.

Example 2.6. Let A = ( 2 1
1 1 ) and take D := log(A) the unique real logarithm of A. For

K = Z,R,C we define GK to be the semi-direct product K ⋉K2 with group law

(x1, y1) · (x2, y2) :=
(
x1 + x2, exp(x1D)y2 + y1

)
.

Then GR/GZ is a compact totally real submanifold of GC/GZ and the map p : GC/GZ →
GC/(G

′
CGZ) ≃ C∗ is a holomorphic fiber bundle with fiber C∗ × C∗. It is known that

O(GC/GZ) = p∗O(C∗), in particular GC/GZ is not Stein. However, since base and fiber are
Stein, GC/GZ cannot contain an inner integral curve. Therefore every pseudoconvex domain
spread over GC/GZ is Stein by Theorem 2.1.

We would like to point out that GC/GZ contains pseudoconvex domains of the form D =
p−1(U) for a domain U ⊂ C∗ which are non-trivial in the sense that the restricted fiber
bundle p|D is non-trivial. In fact, Dan Zaffran proved in [Zaf08] that for an annulus U ⊂ C∗

of modulus smaller than a certain constant, the inverse image p−1(U) ⊂ GC/GZ is Stein, so
in particular it is pseudoconvex. Of course every domain of the form p−1(U) is locally Stein
in GC/GZ, but in general not pseudoconvex.
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3. Existence of the foliation

In this section we consider a non-Stein pseudoconvex domain p : D → X spread over the
complex homogeneous manifold X = G/H. Generalizing [KLY11, Theorem 6.4] we will show

that there exists a connected complex Lie subgroup Ĥ of G that induces a holomorphic
foliation of D having relatively compact leaves such that every leaf of this foliation contains
all of the inner integral curves of D passing through any of its points. Note that it is not
assumed that p(D) is relatively compact or has smooth boundary. What happens when these
leaves are closed, and thus compact, is addressed in Section 4.

Theorem 3.1. Let p : D → X be a pseudoconvex domain spread over X = G/H such that
p(D) contains the base point eH ∈ X. If D is not Stein, then there exist a (not necessarily

closed) connected complex Lie subgroup Ĥ of G with H0 ⊂ Ĥ and dimH < dim Ĥ as well as
a foliation F = {Fx}x∈D of D such that

(1) every leaf of F is a relatively compact immersed complex submanifold of D,
(2) every inner integral curve in D passing through x ∈ D lies in the leaf Fx containing x,

and
(3) the leaves of F are homogeneous under a covering group of Ĥ and the restriction of p to

a leaf in D is a finite covering map onto its image in X.

We will prove Theorem 3.1 in several steps and start by defining the group Ĥ. For this let
p : D → X be a domain over X = G/H and choose x0 ∈ D such that p(x0) = eH. We will

denote the local flow of the holomorphic vector field ξ̃X by (t, x) 7→ etξ · x and its maximal

complex integral manifold through x by F ξ
x . Note that t is a complex parameter and that F ξ

x

is an immersed complex curve. Then we set

(3.1) ĥ :=
{
ξ ∈ g; ξ̃Xϕ(x0) = 0 for every continuous plurisubharmonic function ϕ on D

}

where the derivative ξ̃Xϕ(x0) =
d
dt

∣∣
0
ϕ(etξ ·x0) of a continuous function has to be understood

in the distributional sense and is taken with respect to the complex parameter t. If X = G/H
is unimodular, i.e., if X has a G-invariant Borel measure, and if D ⊂ X, then we can use the
usual convolution technique in order to approximate continuous plurisubharmonic functions
on D by smooth ones. In this case we may replace “continuous” by “smooth” in the definition

of ĥ. We shall see later that ĥ = h if and only if a pseudoconvex D is Stein.

Example 3.2. We present here an example which turns out to be important in the rest of the
paper. Let G be a Cousin group, i.e., a connected complex Lie group without non-constant
holomorphic functions. It is well-known that G is a quotient of (Cn,+) by a discrete subgroup
Γ of rank n+m, 1 ≤ m ≤ n, generating Cn over C. With V := 〈Γ〉R and W := V ∩ iV , one
has furthermore that V/Γ is the maximal compact subgroup of G and that W + Γ is dense

in V . Hence we have ĥ =W under the identification g ≃ Cn.

Since we can lift the vector field ξX from X to D for every ξ ∈ g, we obtain a local
holomorphic action of G on D such that p : D → X is equivariant. This means that there
exist an open neighborhood Ω ⊂ G×D of {e}×D such that

{
g ∈ G; (g, x) ∈ Ω

}
is connected

for every x ∈ D, as well as a holomorphic map Φ: Ω → D, Φ(g, x) =: g ·x, fulfilling the usual
axioms of a group action. For more details we refer the reader to [HI97]. Note that the local
G-action on D is in general not globalizable unless p : D → X is schlicht. For this reason
there will in general be no maximal domain of definition Ω of the local G-action.

For the readers’ convenience we repeat some arguments from [Hir75] and [KLY11] in order
to give the proof of the following.
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Lemma 3.3. Let p : D → X be pseudoconvex. Then the set ĥ defined in equation (3.1) is a
complex Lie subalgebra of g.

Proof. The key point is to observe that if ξ̃Xϕ(x0) = 0 for every continuous plurisubharmonic

function on D, then every such ϕ must be constant on F ξ
x0
. To see this, let ρ be a continuous

plurisubharmonic exhaustion function of D and set Dα :=
{
x ∈ D; ρ(x) < α

}
. Choose

α ∈ R such that x0 ∈ Dα. For |t| sufficiently small we have

etξ ·Dα+1 ⊃ Dα ∋ xt := etξ · x0

Hence, we have the holomorphic map etξ : Dα → Dα+1 and therefore ϕ−t := ϕ ◦ etξ is
continuous plurisubharmonic on Dα whenever ϕ is continuous plurisubharmonic on Dα+1.
Following [Hir75, Proposition 1.6] we construct a continuous plurisubharmonic function ψ−t

on D which coincides with ϕ−t in a neighborhood of x0. Choose β ∈ R such that ϕ−t(x0) <
β < α and note that K := ρ−1(β) ⊂ Dα is compact. Then choose a convex increasing
function χ on R fulfilling

χ
(
ρ(x0)

)
< ϕ−t(x0) and

χ(β) > ‖ϕ−t‖K .

Finally, define ψ−t : D → R by

ψ−t(x) :=

{
max

(
ϕ−t(x), χ ◦ ρ(x)

)
: ρ(x) ≤ β

χ ◦ ρ(x) : ρ(x) ≥ β.

One checks directly that ψ−t is continuous plurisubharmonic and coincides with ϕ−t in some
neighborhood of x0. Consequently, we may calculate

ξ̃Xϕ(x−t) =
d

ds

∣∣∣∣
t

ϕ
(
e−sξ · x0

)
= ξ̃Xϕ−t(x0) = ξ̃Xψ−t(x0) = 0.

Hence, the set of xt such that ξ̃Xϕ(xt) = 0 holds for every continuous plurisubharmonic ϕ

is open in F ξ
x0
, and since it is also closed, we see that ξ̃Xϕ vanishes on F ξ

x0
as a distribution

for every continuous plurisubharmonic ϕ. But this implies in turn that ϕ is constant on F ξ
x0
.

Thus the proof of our first claim is finished.
Applying this fact to the continuous exhaustion function ρ of D, we conclude that for

every ξ ∈ ĥ the maximal integral manifold F ξ
x0

is relatively compact and contained in D. In

particular, we have F ξ
x0

= Cξ · x0 where Cξ is the universal covering of exp(Cξ). In order to

finish the proof that ĥ is a complex Lie subalgebra of g, we will show that for every finite

collection ξ1, . . . , ξk ∈ ĥ the map

(t1, . . . , tk) 7→ ρ
(
et1ξ1 · · · etkξk · x0

)

defined on a neighborhood of 0 ∈ Ck has vanishing differential wherever it is defined. To see
this choose α ∈ R such that Cξk · x0 is relatively compact in Dα ⋐ D. If |tj| is sufficiently
small for all j = 1, . . . , k − 1, the map

ρ ◦ et1ξ1 ◦ · · · ◦ etk−1ξk−1

is defined and continuous plurisubharmonic on Dα. Consequently, this map is constant on
Cξk · x0, and the claim follows by induction over k.

Having established this, we use the following argument based on the Campbell-Baker-

Hausdorff formula (cf. [KLY11, pp.31–32]). Let ξ1, ξ2 ∈ ĥ and λ1, λ2 ∈ C. Then we conclude
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from ρ
(
etλ1ξ1etλ2ξ2 · x0) = ρ(x0) and etλ1ξ1etλ2ξ2 = etλ1ξ1+tλ2ξ2+O(t2) that λ1ξ1 + λ2ξ2 ∈ ĥ

holds. Hence ĥ is a complex subspace of g. To see that [ξ1, ξ2] lies in ĥ we use

ρ
(
e
√
tξ1e

√
tξ2e−

√
tξ1e−

√
tξ2 · x0

)
= ρ(x0)

together with

e
√
tξ1e

√
tξ2e−

√
tξ1e−

√
tξ2 = et[ξ1,ξ2]+O(t3/2)

hence completing the proof that ĥ is a complex Lie subalgebra of g. �

The following example shows that even if ĥ is a subalgebra, without pseudoconvexity of D
we do not obtain a foliation with relatively compact leaves.

Example 3.4. Consider the homogeneous space X = P2 \
{
[e1]

}
≃ P/H for P =

{( ∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

)}
≃

GL(2,C) ⋉ C2 and H =
{( ∗ 0 ∗

0 ∗ ∗
0 0 ∗

)}
≃ (C∗)2 ⋉ C2. It follows from Theorem 2.1 that every

pseudoconvex domain spread over X is Stein. However, X itself is not pseudoconvex and

there does not exist a maximal complex subgroup Ĥ of P such that Ĥ · eH is relatively

compact in X. Therefore the existence of such an Ĥ is not a purely Lie theoretic property.

After these preparations we are in the position to prove the theorem.

Proof of Theorem 3.1. We define Ĥ to be the analytic subgroup of G with Lie algebra ĥ. Since

h is contained in ĥ, we have H0 ⊂ Ĥ. In order to show that dimH < dim Ĥ we suppose
from now on that the pseudoconvex domain D is not Stein. It follows from Theorem 2.1 that

there exists ξ ∈ g such that ξ̃X(x0) 6= 0 and such that Cξ · x0 is relatively compact in D.
Since subharmonic functions on C which are bounded from above must be constant, we see

that ξ ∈ ĥ \ h. In particular, we have that D is Stein if and only if ĥ = h.
In order to define the foliation F of D we first construct a relatively compact immersed

complex submanifold of D which contains x0 ∈ D and which will become the leaf Fx0
. For

this let H̃ be the simply-connected complex Lie group with Lie algebra ĥ. As we have seen,

for every ξ ∈ ĥ the integral manifold F ξ
x0

is relatively compact in D. This implies that we can

define a map Φ on exp(ĥ) ⊂ H̃ with values in D such that F ξ
x0

is the image of exp(Cξ) under

Φ. Since exp(ĥ) is dense in H̃ (see [HM78]), we can extend Φ to H̃ and obtain an equivariant

holomorphic map H̃ → D whose image is an immersed complex submanifold Fx0
. Note that

ρ is constant on Fx0
, so that Fx0

is relatively compact in D. Moreover, it follows from the
definition of Fx0

that every inner integral curve of D passing through x0 is contained in Fx0
.

We define the foliation F of D by moving around Fx0
with the local G-action on D. To

make this precise, note that for every x ∈ D there exists elements g1, . . . , gk ∈ G such that
g1 ·

(
· · · (gk · x0)

)
is defined and equals x. Then we set

Fx := g1 ·
(
· · · (gk · Fx0

)
)
.

The product gk · Fx0
on the right hand side is defined since Fx0

is relatively compact. The
foliation is well-defined because of the following observation. Suppose we have x0 = g1 ·(
· · · (gk · x0)

)
. Then Fx0

and g1 ·
(
· · · (gk · Fx0

)
)
must coincide since Fx0

contains every
inner integral curve of D passing through x0 as noted above. One checks locally that F
indeed defines a foliation of D fulfilling the first three statements of Theorem 3.1. For the
last statement note the following: Let p : D → X be a locally biholomorphic map between
complex manifolds, A ⊂ D be a relatively compact set and B := π(A). Then for every b ∈ B
the set p−1(b)∩A is finite. It follows that the restriction of p to a leaf in D is a finite covering
map onto its image in X. �
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Example 3.5. A simple method to produce examples for Theorem 3.1 is the following. Let
Y = G/L be a complex homogeneous space and let H be a closed complex subgroup of L
such that L/H is compact. Then X = G/H contains many pseudoconvex non-Stein domains,
e.g., pre-images of balls in Y under the fibration G/H → G/L. For these domains we have

Ĥ = L. Concretely, consider an embedding of L = SL(2,C) into G = SL(3,C) and let H
be a discrete cocompact subgroup of L. In this case, the homogeneous space G/H is even
holomorphically convex.

Since H0 normalizes the group Ĥ it is clear that there exists a maximal open subgroup of
H with this property. Defining

D̃ := D ×X G :=
{
(x, g) ∈ D ×G; p(x) = gH

}

we have the commutative diagram

D̃
p̃

//

π̃

��

G

π

��
D

p
// X,

where p̃ : D̃ → G is locally biholomorphic and π̃ : D̃ → D is a principal H-bundle over D.

Note however that D̃ is not a domain spread over G since it is in general not connected.

Choose the reference point x̃0 := (x0, e) ∈ D̃ and let D̃0 be the connected component of D̃
containing x̃0. Then we define the open subgroup

(3.2) H∗ =
{
h ∈ H; h · x̃0 ∈ D̃

0
}

of H. In particular, if D = X = G/H is pseudoconvex, then D̃ ≃ G and H∗ = H. Hence,

the group Ĥ is normalized by H as we shall see in

Proposition 3.6. The group H∗ defined in equation (3.2) normalizes Ĥ, and D is biholo-

morphic to D̃0/H∗ which can be realized as a domain spread over X∗ := G/H∗. Moreover,

we have Ĥ = Ĥ∗. In other words, after replacing X = G/H by a covering we may suppose

that H normalizes Ĥ.

Proof. In a first step one checks that h−1 · x̃0 ∈ D̃0 for all h ∈ H∗. This implies then that

H∗ is indeed a subgroup of H and that H∗ =
{
h ∈ H; h · D̃0 = D̃0

}
. Moreover, H0 is

contained in H∗. Hence H∗ is open in H, closed in G, and acts properly and freely on D̃0.

By definition, we have π̃−1
(
π̃(x)

)
∩D̃0 = H∗ ·x for all x ∈ D̃0, and thus D̃0/H∗ ≃ D. Finally,

one sees directly that the map D̃0 → D∗ := D ×X (G/H∗), (x, g) 7→ (x, gH∗), induces an

isomorphism between D̃0/H∗ and the connected component of D∗ containing (x0, eH
∗), so

that D can be realized as a domain spread over G/H∗.

To finish the proof we must show that H∗ normalizes Ĥ = Ĥ∗. For this we define the set

ΩD :=
{
(x, g) ∈ D̃0; (x, gĤ) ⊂ D̃0 and π̃(x, gĤ) is relatively compact in D

}
.

Since π̃(x0, Ĥ) = Fx0
is relatively compact in D, we see that ΩD is a non-empty open subset

of D̃0. Moreover, since the leaves of F are relatively compact in D, the set ΩD is also closed

in D̃0. Hence ΩD = D̃0. This implies that the groups H∗ and Ĥ act on D̃0 by

h · (x, g) := (x, gh−1).

Consequently, for each h ∈ H∗ we have (x0, hĤh
−1) ⊂ D̃0 and can conclude that

π̃(x0, hĤ) = π̃(x0, hĤh
−1)
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is relatively compact in D. Since x0 ∈ π̃(x0, hĤ) holds, we conclude from the maximality of

Fx0
that Fx0

= π̃(x0, hĤ). Hence hĤh−1 = Ĥ. �

The following example shows that in general Ĥ is not normalized by the whole group H.

Example 3.7. Let G := SL(2,C) and H = SL(2,Z) ⊂ G. Since H is Zariski dense in G there
is no proper connected complex subgroup of G normalized by H. Let X := G/H,

A :=

(
2 1
1 1

)
∈ G,

and let Ĥ ≃ C∗ denote the Zariski closure of H∗ := {Ak | k ∈ Z} ⊂ H in G. Then the orbit

of Ĥ through the point eH in X is an elliptic curve, say, E. Let B ⊂ G be a Borel subgroup

transversal to Ĥ. Then there is a small open neighborhood U ⊂ B biholomorphic to the
unit ball B2 in C2, such that D := U · E ⊂ X is isomorphic to B2 × E. Therefore D is a

pseudoconvex domain in X and we see that HĤ is not a subgroup of G. Taking the covering
π : Y := G/H∗ → G/H = X, one sees that the map

π|π−1(D) : π
−1(D) → D

is biholomorphic. So by taking the open subgroup H∗ of H and the associated covering, we

do not change the pseudoconvex domain D but we now have that H∗Ĥ is a group.

As an application of Theorem 3.1 we have the following

Corollary 3.8. Let p : D → X be a pseudoconvex domain over X = G/H such that eH ∈
p(D). If the subgroup H is connected and maximal in G, then D is either compact or Stein.

Proof. Since H ⊂ Ĥ ⊂ G and H is maximal, either Ĥ = G or Ĥ = H. In the first case D

itself consists of exactly one leaf of the foliation and thus is compact. Otherwise Ĥ = H, i.e.,
D contains no inner integral curve, and so D is Stein. �

Note that the isotropy subgroups of projective space and also of Gr(k, n), the Grassmann
manifold of k-dimensional subspaces of an n-dimensional vector space, are connected and
maximal. Hence we have reproduced some classical results, e.g., see [Fuj63], [Hir75], [Nis62],
[Tak64] and [Ue80].

Corollary 3.9. Let G be a simple complex Lie group and Γ a discrete Zariski dense subgroup
of G. If X = G/Γ is pseudoconvex, then X is compact.

Proof. Suppose that X = G/Γ is pseudoconvex. SinceX cannot be Stein, there is a connected

Lie subgroup Γ̂ ⊂ G of positive dimension such that Γ̂ · x0 is relatively compact in X. Since

Γ normalizes Γ̂ and is Zariski dense in G, we have Γ̂ ⊳ G. Hence Γ̂ = G which proves the
claim. �

Let p : D → X be a pseudocovex domain spread over X = G/H with x0 ∈ p(D). For later
use we note the following technical

Lemma 3.10. Let G̃ be a connected closed complex subgroup of G such that G̃ · x0 is closed

in X. Then every connected component of D̃ := p−1(G̃ ·x0) is a pseudoconvex domain spread

over G̃ · x0 ≃ G̃/(G̃ ∩H) and we have

̂̃
G ∩H = (G̃ ∩ Ĥ)0

where the left hand side is the connected subgroup of G̃ corresponding to D̃ → G̃/(G̃ ∩H).
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Proof. Since D̃ is a closed complex submanifold of D, all of its connected components are

pseudoconvex domains spread over G̃ ·x0 by the map p̃ := p|
D̃
. By definition, the Lie algebra

of
̂̃
G ∩H is

̂̃g ∩ h :=
{
ξ ∈ g̃; ξ̃Xϕ(x0) = 0 for every continuous plurisubharmonic function ϕ on D̃

}
,

hence contains g̃∩ ĥ. Conversely, every element of ̂̃g ∩ h induces an inner integral curve in D̃,

thus also in D since D̃ is closed in D. This implies ̂̃g ∩ h = g̃ ∩ ĥ as was to be shown. �

4. A characterization of holomorphic convexity

If a pseudoconvex non-Stein domain D is spread over X, in general, the leaf Fx0
is not

closed in D. In this section we investigate exactly when this happens.

Theorem 4.1. Suppose D is a pseudoconvex domain spread over the complex homogeneous

manifold G/H. Then the complex group H∗Ĥ constructed in Proposition 3.6 is closed in G
if and only if D is holomorphically convex.

Moreover, when these conditions hold, the Remmert reduction of D is a holomorphic fiber

bundle π̂ : D → D0 that is induced by the bundle π : G/H → G/H∗Ĥ. The fiber of π̂ is

compact and is biholomorphic to H∗Ĥ/H1, where H1 is a subgroup of H∗ having finite index.

Its base D0 is a Stein domain spread over the homogeneous manifold G/H∗Ĥ.

Proof. Since D is biholomorphic to a connected component of D ×X G/H∗ we may assume

H = H∗ throughout the proof in order to simplify the notation. Notice that HĤ is closed in
G if and only if the leaves of F are compact.

We first consider what happens whenD ⊂ X is a domain in the homogeneous manifold with

the group HĤ closed. In this case the fibration π : G/H → G/HĤ induces the foliation F

of D that we constructed in Theorem 3.1. Since the plurisubharmonic exhaustion function

on D is constant on the compact Ĥ-orbits in D, it descends to π(D) ⊂ G/HĤ . Hence,

D0 := π(D) is pseudoconvex and by the maximality of Ĥ a Stein domain. Moreover, we have
H1 = H in this case.

In order to be able to repeat this argument in the general case, we need to find a domain

D0 spread over G/HĤ such that the diagram

D
p

//

��

G/H

��

D0 p0
// G/HĤ

commutes. The idea is to defineD0 := D/F . Since the leaves of the foliation F are compact,
by [Hol78, Proposition 6.2] the leaf space D/F carries a canonical complex structure as soon
as it is Hausdorff.

In order to see that D/F is indeed Hausdorff let Fx be the leaf through x ∈ D and let U be
any open neighborhood of it. We must show that U contains a saturated open neighborhood
of Fx. Since the domain p(D) is foliated by the images p(Fx), Fx ∈ F , and since this foliation

is induced by the fiber bundle G/H → G/HĤ having compact fibers we find a saturated
open neighborhood V of p(Fx) inside p(U), such that the connected component W of p−1(V )
containing Fx lies in U and covers V . Now W is a saturated open neighborhood of Fx.

Having established the existence of the commutative diagram it follows that D0 is Stein
in exactly the same way as above. Consequently, the quotient map D → D/F = D0 is
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the Remmert reduction of D whose fibers are the leaves. Since Fx0
is connected, we have

Fx0
≃ (HĤ)/H1 where H1 is the smallest open subgroup of H such that HĤ = H1Ĥ holds.

Conversely, if D is holomorphically convex, then it has a Remmert reduction, i.e., there
exists a holomorphic map σ : D → D1 that has compact connected fibers and the target
space D1 is Stein. Since D is pseudoconvex, it admits a plurisubharmonic exhaustion. This
function is clearly constant on the fibers of the map σ. It is clear from the construction given

in Theorem 3.1 that the foliation given by the subgroup Ĥ gives the same partition of D as
is given by the fibers of the map σ. The fact that D is the total space of a holomorphic fiber
bundle follows from our considerations above and this observation. �

5. Domains spread over projective orbits

In this section we again consider p : D → X which is a pseudoconvex domain spread over
a homogeneous manifold X = G/H, as in Theorem 3.1, but now assume that X is an orbit
of the connected complex linear group G in some projective space PN . One is in an algebraic
setting, if X is compact and thus a flag manifold. In very stark contrast to this, if X is
not compact, then X need not be closed or even locally closed in PN and the setting is not
algebraic. Nonetheless, there are specific facts at hand concerning the holomorphic actions
of complex groups in the projective case that allow us to prove the next result.

Theorem 5.1. Let X = G/H be an orbit of a connected complex Lie group G acting holo-
morphically on some projective space PN . Then any pseudoconvex domain D spread over
X is holomorphically convex. Moreover, the fibers of the Remmert reduction of D given in

Theorem 4.1 are homogeneous rational manifolds that are biholomorphic to HĤ/H.

Proof. If D itself is Stein, then Ĥ = H and there is nothing to prove in this case. So we
assume throughout the rest of the proof that D is not Stein.

The first step of the proof consists in reducing the general situation to an algebraic one.
Denoting G the algebraic Zariski closure of the image of G in PGL(N + 1,C) and G′ its

commutator subgroup, we have G′ = G
′
, and in particular G′ is algebraic (for a proof of this

result of Chevalley see [Bo91, Corollary II.7.9]). Consequently, the boundary of every G′-orbit
in X consists of G′-orbits of strictly smaller dimension. Since G′ is a normal subgroup of G,
this implies that every G′-orbit is closed in X, and in particular, G′H is a closed subgroup
of G.

We claim that the relatively compact orbit Ĥ · y0 is contained in the neutral fiber of
G/H → G/(G′H). To see this, we will repeat an argument from [HO81, p. 173]. Since

G ∩ (Gy0G
′
) = G ∩ (Gy0G

′) = HG′, the Abelian algebraic group G/(Gy0G
′
) ≃ Ck × (C∗)l

contains G/(HG′) as a G-orbit. As a consequence, the fiber bundle G/H → G/(HG′) has
holomorphically separable base which proves the claim. Moreover, since G′ acts transitively

on this fiber, we have (HG′)/H ≃ G′/(H∩G′) and dim Ĥ ·y0 = dim Ĥ1 ·y0 where Ĥ1 := Ĥ∩G′

due to Lemma 3.10. Note that as a fiber G′/(H ∩G′) is closed in G/H. Thus Ĥ1 · y0 is still
relatively compact in the quasi-projective variety G′/(H ∩G′). Therefore we may replace G,

H and Ĥ by G1 := G′, H1 := G′ ∩H = G′
y0

and Ĥ1 respectively. Now we can iterate this

procedure, thus replacing G1 by G2 := G′
1, and so on. As above we keep the orbit Ĥ · y0 as

a relatively compact subset in G2/H2. Therefore this iteration must terminate after finitely
many steps and we end up with an algebraic group Gk such that Gk = G′

k. Consequently, we
may assume without loss of generality that X = G/H is a quasi-projective variety containing

a relatively compact orbit Ĥ · y0 and that G = G′.
Since H is an algebraic subgroup of G, the map G/H0 → G/H is a finite covering.

Thus there exists a finite proper map between each connected component of D ×X (G/H0)
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to D, which implies that D is pseudoconvex or holomorphically convex if and only if each
component of D×X (G/H0) has this property. Therefore we may assume that H is connected.

In particular this implies H ⊂ Ĥ. Hence it suffices to show that Ĥ is closed in G. If this is

not the case, let L1 be the topological closure of Ĥ and let G1 be the connected Lie subgroup

of G having Lie algebra l1 + il1. It follows that ĥ = l1 ∩ il1, therefore ĥ⊳ g1. We iterate this

procedure until we arrive at a group Gn which is closed in G. Then we have H ⊂ Ĥ ⊂ Gn

and Gn/H closed in G/H, so that we can apply the sequence of commutator fibrations to
Gn/H. Again these two reduction procedures must terminate after finitely many steps. Hence

replacing G by the group Gn finally obtained we are in the situation that H ⊂ Ĥ ⊂ G = G′,
that X = G/H is quasi-projective and that there is a sequence of connected complex Lie
subgroups

Ĥ =: G0 ⊳G1 ⊳ · · ·⊳Gn = G

such that gj = lj + ilj and gj−1 = lj ∩ ilj where Lj is the topological closure of Gj−1 for all
j = 1, . . . , n.

Now a purely algebraic argument gives

ln ⊃ [g, ln] = l′n + il′n = g′ = g.

Consequently we obtain g = ln, hence g = gn−1. Repeating this, we see ĥ = g, so that Ĥ is
an algebraic subgroup of G and in particular closed as was to be shown. �

Remark 5.2. Let H ⊂ G be linear algebraic groups and X = G/H. The proof of Theorem 5.1
shows that if there is a non-Stein pseudoconvex domain p : D → X spread over X with

eH ∈ p(D), then the group Ĥ constructed in Theorem 3.1 is likewise an algebraic subgroup
of G.

In passing, we also note what happens in the case of complex orbits of real groups acting
holomorphically on projective space.

Corollary 5.3. Let GR be a real subgroup of PSL(N + 1,C) that is acting holomorphically
and effectively on PN . Let X := GR · x be a complex orbit of some point x ∈ PN . Then any
pseudoconvex domain spread over X is holomorphically convex.

Proof. Let G denote the smallest connected complex subgroup of PSL(N+1,C) that contains
GR. Then X is open in G · x. Hence any domain spread over GR · x is also a domain spread
over G · x. The result now follows from Theorem 5.1. �

For a general complex homogeneous manifold X = G/H we have the normalizer fibration
X = G/H → G/NG(H

0) whose base is an orbit of the linear Lie group Ad(G) in a projective
space. However, even if G/H is pseudoconvex, in general G/NG(H

0) does not have to be.

The following examples show that one cannot control how Ĥ is related to NG(H
0).

Example 5.4. Let G = SL(3,C) with Borel B and a maximal parabolic subgroup P . Then
G/B → G/P is a P1-bundle over P2. Taking the inverse image of e.g. the unit ball in P2, we

obtain a pseudoconvex non-Stein domain in G/B such that B̂ = P which is not contained in
NG(B) = B.

Example 5.5. Let S := SL(3,C) and B be a standard Borel in S. We denote by T a maximal
algebraic torus in S and take a holomorphic proper injection of C into T as a closed subgroup
A1 such that the quotient T/A1 =: E is an elliptic curve. Set H1 = A1⋉U , where U denotes
the unipotent radical of B. Then one has the homogeneous fibration S/H1 → S/B with
compact fiber E. Suppose D1 ⊂ S/H1 is a pseudoconvex domain that is not Stein. Then

Ĥ1 = B = NS(H1) and O(S/H1) ≃ C.
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Example 5.6. With the same set up as in the previous example we now take A2 to be the
closed image of a representation of Z into T such that T/A2 is a Cousin group C and set
H2 := A2 ⋉ U . Then S/H2 → S/B is a homogeneous fibration with the Cousin group as

fiber. Let D2 ⊂ S/H2 be a pseudoconvex domain that is not Stein. Then Ĥ2 = C⋉U , where
the image of C is one of the complex leaves of the foliation of C, while NS(H

0
2 ) = B.

6. Pushing down plurisubharmonic functions

In this section we prove the following technical result.

Lemma 6.1. Let p : X → Y be a holomorphic fiber bundle of complex manifolds, where X
is pseudoconvex. Then Y is also pseudoconvex if either of the following holds:

(1) the fiber is a Cousin group C
(2) the bundle is a principal (C∗)k–bundle.

Proof. We consider case (1) first. Let ρ : X → R be a continuous plurisubharmonic exhaustion
of X. We define a function ρY : Y → R by

ρY (y) := inf
{
ρ(x); x ∈ p−1(y)

}
.

As an exhaustion ρ attains a minimum on every closed complex submanifold of X. In
particular, we see that ρY is indeed real-valued.

Let us first show that ρY is continuous. For this let (yn) be a sequence which converges
to y0 ∈ Y . By the above remark there exist elements xn, x0 ∈ X such that ρY (yn) = ρ(xn)
and ρY (y0) = ρ(x0). For every ε > 0 the set Uε :=

{
ρ < ρ(x0) + ε

}
is open and relatively

compact in X and contains x0 and hence almost all xn. Therefore, there is z ∈ U ε such that
xn → z for a subsequence. We have p(z) = lim p(xn) = y0 and consequently ρ(z) ≥ ρY (y0).
On the other hand,

ρY (yn) = ρ(xn) → ρ(z) ≤ ρ(x0) + ε = ρY (y0) + ε

for all ε > 0 by continuity of ρ which implies lim ρY (yn) = ρY (y0) as was to be shown.
By continuity, {ρY ≤ c} is closed in Y for every c ∈ R. One checks directly that {ρY ≤ c}

is contained in p{ρ ≤ c} which implies that {ρY ≤ c} is compact, hence that ρY is exhaustive.
Finally we show that ρY is plurisubharmonic. Since this can be checked locally, let U ⊂ Y

be open and isomorphic to the unit ball Bn so that p−1(U) ≃ Bn×C where C ≃ Ck/Γk+l is a
Cousin group. For fixed z ∈ Bn let ρz be the plurisubharmonic function C → R, g 7→ ρ(z, g).
Its pull-back to Ck is Γk+l-invariant and plurisubharmonic. Since the image of the complex
vector subspace V := 〈Γk+l〉R ∩ i〈Γk+l〉R of Ck in C is an immersed complex submanifold
which is dense in the compact torus 〈Γk+l〉R/Γk+l, the pull-back of ρz is invariant under
〈Γk+l〉R. Hence, it pushes down to a plurisubharmonic function ρz on Ck/V which is still
invariant under 〈Γk+l〉R/V . Since 〈Γk+l〉R/V is a real form of Ck/V , we may apply Kiselman’s
minimum principle (see [Kis78]) to the plurisubharmonic function ρ : Bn × (Ck/V ) → R and
obtain plurisubharmonicity of

z 7→ ρY (z) = inf
{
ρ(z, w); w ∈ Ck/V

}

as was to be shown.
In the second case we may apply Kiselman’s minimum principle to an (S1)k-invariant

plurisubharmonic exhaustion of X and essentially repeat the above argument. �

Example 7.2 will show that pseudoconvexity of Y does not imply pseudoconvexity of X.



PSEUDOCONVEX DOMAINS SPREAD OVER COMPLEX HOMOGENEOUS MANIFOLDS 13

7. Pseudoconvex reductive homogeneous spaces

Recall that the holomorphic reduction of X = G/H is given by π : G/H → G/J where J
is a closed complex subgroup of G containing H such that G/J is holomorphically separable
and O(G/H) ≃ π∗O(G/J). More precisely, one has

J =
{
g ∈ G; f(gH) = f(eH) for all f ∈ O(G)

}
.

If X = G/H is holomorphically convex, then the holomorphic reduction X = G/H →
Y = G/J coincides with the Remmert reduction of X, i.e., Y is Stein and the fiber J/H is
connected and compact. Conversely, if X = G/H admits an equivariant map onto a Stein
manifold with connected compact fibers, then X is holomorphically convex.

If D is a pseudoconvex non-Stein domain in X = G/H containing x0 = eH, then the

complex subgroup Ĥ constructed in Theorem 3.1 must be contained in J . However, even if

D = X = G/H is pseudoconvex non-Stein, the group Ĥ does not necessarily coincide with
J as the example of a non-compact Cousin group shows.

In this section we suppose that G is connected complex reductive. We shall see that the
base of the holomorphic reduction of a pseudoconvex X = G/H is Stein. We begin with the
case that G is semisimple.

Theorem 7.1. Let X = G/H be a complex homogeneous manifold with G a complex semisim-
ple Lie group. If X is pseudoconvex, then X is holomorphically convex.

Proof. Due to [BO73] the base of the holomorphic reduction π : X = G/H → G/J is quasi-
affine and J is an algebraic subgroup of G. Hence, π factorizes as

X = G/H
π //

%%❑
❑❑

❑❑
❑❑

❑❑
G/J

G/H

<<
①①①①①①①①

where H is the Zariski-closure of H in G. Moreover, we have O(G)H = O(G)H , see [BO73].
This shows that G/J is also the holomorphic reduction of G/H .

Let ϕ : X → R be a plurisubharmonic exhaustion function. By [Ber87], [BO88] we get
that ϕ, considered as a function on G, is already invariant under the right H-action on
G. Therefore ϕ pushes down to a plurisubharmonic exhaustion function on the homogeneous
quotient of algebraic groupsG/H andH/H is compact. Then Theorem 5.1 gives the existence

of an algebraic reductive subgroup Ĥ ⊂ G containing H with Ĥ/H compact. Note that

Ĥ = J . Considering now the fibration G/H → G/Ĥ , the claim follows. Here we used
implicitly the fact that quotients of reductive groups are Stein, if and only if the isotropy is
also reductive (see [Mat60], [On60]). �

Example 7.2. Let us give an example of a non-pseudoconvex semisimple manifold. Let G =
SL(3,C) and take Γ ≃ Z as a discrete subgroup of its maximal torus T ≃ C∗ ×C∗ such that
T/Γ is a non-compact Cousin group. Then we have Γ = T and the holomorphic reduction
of X = G/Γ is the Stein manifold G/T . However, X = G/Γ is not pseudoconvex since the
fiber T/Γ is not compact.

The above theorem does not hold in the reductive case as the simple example of a Cousin
groups shows. The following non-abelian and (in general) non-holomorphically convex exam-
ples of pseudoconvex reductive manifolds indicate their complexity.

Example 7.3. Let G := SL(2,C) × C∗ and H ≃ C∗ × C∗ the subgroup of G given by the
product of the diagonal matrices D in SL(2,C) and the second factor in G. Let Γ ≃ Z be
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a discrete subgroup of H and J ⊂ H the smallest connected real subgroup containing Γ
and the maximal compact subgroup of H. Then J ≃ S1 × S1 × R. Consider the complex
homogeneous space X := G/Γ. We shall see that X is pseudoconvex.

If dimR SL(2,C) ∩ J = 1, we get that the real fibration X = G/Γ → G/J has compact
fibers and that SL(2,C) acts transitively on the base G/J = SL(2,C)/K where K ⊂ D is
the compact diagonal in SL(2,C). Therefore a left K-invariant plurisubharmonic exhaustion
function on SL(2,C) induces a plurisubharmonic exhaustion function on X. Note that there
are two possibilities for the Zariski-closure of Γ: First it might be isomorphic to C∗ in
which case X is an elliptic curve bundle over SL(2,C), then holomorphically convex and
Kähler, see [GMO11, Theorem 5.1]. On the other hand, for generic Γ, the manifold X is a
holomorphic fiber bundle with non-compact Cousin fibers over the affine quadric, so it is not
holomorphically convex. Depending on whether the projection of Γ to the central C∗-factor
is closed or not, X may or may not be Kähler.

If dimR SL(2,C)∩J = 2, then Γ ⊂ D ⊂ SL(2,C) and X is an elliptic curve bundle over the
product of the affine quadric and C∗. Hence X is pseudoconvex and holomorphically convex
but, since the SL(2,C)-orbits are not closed in X, these examples are not Kähler.

Theorem 7.4. Let G be connected complex reductive and X = G/H be pseudoconvex. Then
the holomorphic reduction G/J of X is Stein and we have O(J/H) = C.

Proof. We define N to be the union of all connected components of the normalizer NG(H) of
H in G which meet H so that N/H is a connected complex Lie group. Note that N contains
Z := Z (G)0 ≃ (C∗)k.

Consider the holomorphic principal bundle X = G/H → G/N with structure group N/H
and let N/H → N/I be the holomorphic reduction of its fiber. We obtain a new principal
bundle X = G/H → G/I whose fiber I/H is now a Cousin group. Due to Lemma 6.1
the base G/I is again pseudoconvex. Moreover, G/H and G/I have the same holomorphic
reduction. Suppose that dimG/I < dimG/H holds. Arguing by induction over dimG/H
we may assume that the holomorphic reduction of G/I is Stein, hence the same is true for
X = G/H.

Therefore we must deal with the case dimG/I = dimG/H. This implies that I = H,
i.e., that N/H is Stein. As noted above, the group Z ≃ (C∗)k acts holomorphically on
N/H. Since the latter is Stein, Z has a closed orbit in N/H and since Z is normal, all of
its orbits are closed. In particular, we have Z ∩ H ≃ (C∗)l1 . Thus we obtain a fibration
X = G/H → G/(HZ) which is a principal bundle with structure group (C∗)k−l1 . Due to
Lemma 6.1 its ase G/(HZ) is pseudoconvex. Since the derived group G′ acts transitively on
G/(HZ), Theorem 7.1 yields that G/(HZ) is holomorphically convex. Let us consider the
commutative diagram

G/H //

��

π
''◆◆

◆◆
◆◆

◆◆
◆◆

◆
G/H

��

G/
(
H ∩ (HZ)

)

77♣♣♣♣♣♣♣♣♣♣♣

ww♣♣♣
♣♣
♣♣
♣♣
♣♣

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

G/HZ // G/HZ

where the bars denote the Zariski closure inside G. It is sufficient to show that G/H is pseudo-
convex since G/H is then holomorphically convex by Theorem 5.1 and since the holomorphic
reductions of G/H and G/H coincide by [BO73].
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The proof of Theorem 7.1 shows thatHZ/HZ is compact. Since Z is an algebraic subgroup
of G, we have HZ = HZ. This implies that HZ/H ≃ Z/(Z ∩ H) ≃ (C∗)k−l2 . Consider
the fiber bundle H/H → H/

(
H ∩ (HZ)

)
. The torus H ∩ Z acts transitively on its fiber.

Hence this fiber satisfies
(
H ∩ (HZ)

)
/H ≃ (H ∩ Z)/(H ∩ Z) ≃ (C∗)l2−l1 . Consequently,

the map π is a (C∗)l2−l1-principal bundle and Lemma 6.1 shows that G/
(
H ∩ (HZ)

)
is

pseudoconvex. Again from HZ = HZ we conclude that H acts transitively on HZ/HZ,
hence that H/

(
H ∩ (HZ)

)
≃ HZ/HZ is compact. Therefore G/H is pseudoconvex, thus

G/J is Stein.
We still must prove O(J/H) = C. Since G/J is Stein, J is reductive by [Mat60] or

[On60]. Now consider the holomorphic reduction J/H → J/I. Since J/H is a closed complex
submanifold of X = G/H, it is pseudoconvex, hence by the above J/I is Stein. Therefore, I
is reductive and G/I is Stein. From the factorization G/H → G/I → G/J we obtain I = J .
Hence O(J/H) = C, as was to be shown. �

A compact Kähler G/H is a product of a compact complex torus and a homogeneous flag
manifold; see Matsushima [Mat57] and Borel-Remmert [BR62]. For G reductive we have the
following extension of this result for a Kähler pseudoconvex G/H under the assumption that
O(G/H) ≃ C. In particular, Theorem 7.5 applies to the fiber of the holomorphic reduction
of any Kähler pseudoconvex reductive homogeneous manifold because of Theorem 7.4.

Theorem 7.5. Let G be connected complex reductive and X = G/H be pseudoconvex and
Kähler with O(X) ≃ C. Then G/H is a homogeneous rational manifold, H/H is a Cousin
group, and the bundle G/H → G/H is holomorphically trivial.

Remark 7.6. Note that for any Kähler pseudoconvex reductive homogeneous manifold, since
the base G/J of its holomorphic reduction G/H → G/J is Stein, J/H is compact if and

only if G/H is holomorphically convex. Moreover, J is reductive and ĥ = j′ ⊕ V in this
setting, where j′ denotes the derived Lie algebra of j and V is the complex vector subspace
of Ck defined in the proof of Lemma 6.1 with the space Ck considered as the Lie algebra of
the Cousin group C. Note also that Example 7.3 shows that in general G/H → G/J is not
holomorphically trivial.

Proof. In order to prove the first claim we will show that G/H is pseudoconvex. Since X
is Kähler, G′ ∩ H is algebraic by [GMO11, Theorem 5.1]. Note that G′ ∩ H is a closed
normal subgroup of H and that H/(G′ ∩H) is an Abelian complex Lie group. Since G′ ∩H
is algebraic, NG(G

′ ∩ H) is also an algebraic subgroup of G, hence must contain H. Thus
H/(G′ ∩ H) is an affine algebraic group containing H/(G′ ∩ H) as a Zariski-dense closed
complex subgroup. This implies that H/(G′ ∩H) is Abelian as well. Hence

H/H ∼=
(
H/(G′ ∩H)

)
/
(
H/(G′ ∩H)

)

is an Abelian complex Lie group which cannot have a factor isomorphic to C. Therefore we
have shown that G/H → G/H is a holomorphic principal bundle with fiber the product of
a Cousin group and possibly (C∗)k. Applying Lemma 6.1 we see that G/H is pseudoconvex,
thus holomorphically convex by Theorem 5.1. Since O(G/H) = C, the space G/H is compact
and thus homogeneous rational.

In order to complete the proof we will show that the principal bundle G/H → G/H is
holomorphically trivial and that H/H is a Cousin group and we show the latter first. Since
H/H = C × (C∗)k where C is a Cousin group, we have the factorization G/H → G/L →
G/H where L/H = C et H/L = (C∗)k. Due to Lemma 7.7 below, the principal bundle
G/L → G/H is holomorphically trivial. Hence, k ≥ 1 would contradict the fact that every
holomorphic function on G/H is constant. This shows that H/H is a Cousin group.



16 BRUCE GILLIGAN, CHRISTIAN MIEBACH, AND KARL OELJEKLAUS

Finally, let us consider the two fibrations

G/H
p1

//

p2

��

G/H ≃ G′/(G′ ∩H)

G/G′H,

where G′/(G′ ∩H) is homogeneous rational and G/G′H is a Cousin group. The restriction
of p1 to the p2-fiber G

′/(G′∩H) is still surjective. Thus it is a holomorphic bundle with fiber
the algebraic variety (G′∩H)/(G′∩H) which is a closed subgroup of the Cousin group H/H.
This implies that (G′ ∩H)/(G′ ∩H) is finite. Since the parabolic group G′ ∩H is connected,
we obtain G′ ∩H = G′ ∩H, and hence G/H is the product of G/H and H/H. �

Lemma 7.7. Let S be a connected semisimple complex Lie group, let P be a parabolic sub-
group of S, and let p : X → S/P be an equivariant holomorphic principal bundle with structure
group T = (C∗)k. If X is pseudoconvex, then the bundle is trivial.

Proof. An equivariant holomorphic T–principal bundle p : X → S/P is of the form X ≃
S×P T where the twisted product is defined by a holomorphic group homomorphism P → T .
Since T is Abelian, this homomorphism factorizes over P/P ′ ≃ (C∗)l. Since P/P ′ is reductive,
the factorized homomorphism is algebraic and in particular its image is an algebraic subtorus

T̃ of T . Hence, we obtain a second fiber bundle

X ≃ S ×P T

p

��

// T/T̃

S/P.

Let us assume in a first step that S = SL(2,C) and thus that P is a Borel subgroup of S.
Then P/P ′ ≃ C∗ and the bundle X ≃ S ×P T → S/P ≃ P1 is non-trivial if and only if
P/P ′ → T is non-constant. If this is the case, the fiber of S ×P T → T/C∗ is isomorphic
to a finite quotient of S/P ′ ≃ C2 \ {0}, hence we find a closed embedding of such a finite
quotient of C2 \{0} inside X. Since this implies that X is not pseudoconvex, we have proved
the claim for S = SL(2,C).

For arbitrary S we find root subgroups Sα ≃ SL(2,C) of S such that Sα ∩ P is a Borel
in Sα. If the homomorphism P → T is not trivial, then its restricition to Sα ∩ P is not
trivial for some root α. Since Sα ×(Sα∩P ) T is a closed complex submanifold of X, this is in
contradiction with the previous case. �

The following example shows that a general pseudoconvex reductive homogeneous manifold
is not a Cousin bundle over a holomorphically convex manifold.

Example 7.8. Let Γ ⊂ S = SL(2,C) be a cocompact discrete subgroup such that Γ/Γ′

contains an element of infinite order. Existence of such Γ is shown in e.g. [Mill76]. Then
there is a homomorphism ϕ : Γ → C∗ with dense image in S1 ⊂ C∗. We define the reductive
homogeneous manifold X = G/ΓG where G := S × C∗ and ΓG is the graph of ϕ, hence a
discrete subgroup of G. By construction, X is the total space of a holomorphic C∗-principal
bundle over the compact base S/Γ.

We claim that X is pseudoconvex. Let ρ be an S1-invariant strictly plurisubharmonic
exhaustion of C∗. Then the function G → R≥0, (s, z) 7→ ρ(z), is a ΓG-invariant plurisub-
harmonic function of G, hence descends to a plurisubharmonic function on X = G/ΓG. The
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fibers of this function are the closures of finitely many S-orbits in X, thus compact. Therefore
X is indeed pseudoconvex.

One sees that Γ̂G = S has no locally closed orbit in X and that O(X) = C so that X is
neither Kähler nor holomorphically convex.

8. The structure of pseudoconvex solvmanifolds

In this section we prove a structure theorem for pseudoconvex solvmanifolds, i.e., homoge-
neous spaces X = G/H where G is connected solvable. Replacing G by its universal covering
we will assume from now on that G is simply connected. Note that then every connected Lie
subgroup of G is automatically closed and simply connected.

We start with the following observation from [Huc10] which deals with the nilpotent case.

Theorem 8.1. Assume that G is nilpotent and that H is a closed complex subgroup of G.
Then the complex nilmanifold X = G/H is pseudoconvex.

Proof. The normalizer NG(H
0) in G of the connected component H0 of the identity of H

is connected, hence also simply connected, e.g., see Lemma 2 in [Mat60]. So G/NG(H
0) is

biholomorphic to Ck for some k. By the Oka Principle the bundle G/H → G/NG(H
0) is

holomorphically trivial. Therefore we need only consider its fiber which has the form N/Γ,
where Γ := H/H0 is a discrete subgroup of the simply connected group N := NG(H

0)/H0. In
the case of a connected, simply connected nilpotent Lie group the exponential map exp: n →
N is biholomorphic. The pre-image of Γ in n spans a (real) Lie subalgebra nΓ whose associated

connected Lie group NΓ contains Γ cocompactly. We now set n̂Γ := nΓ + inΓ and let N̂Γ

denote the corresponding connected complex Lie group. Then N/N̂Γ is biholomorphic to Cl

for some l and applying the Oka Principle again we see that N/Γ is biholomorphic to the

product N̂Γ/Γ × Cl. So finally we see that it suffices to consider the nilmanifold N̂Γ/Γ in
order to ensure the existence of a pseudoconvex exhaustion on X.

Setting m := nΓ ∩ inΓ and letting M denote the corresponding closed complex subgroup

of N̂Γ, we consider the pair (N̂Γ/M,NΓ/M). Note that this pair is pseudoconvex in the
sense of Loeb [Loe85], since nilpotent Lie algebras always have purely imaginary spectra.
So there exists an (NΓ/M)-right invariant strictly plurisubharmonic exhaustion function on

N̂Γ/M that pulls back to an NΓ-right invariant plurisubharmonic exhaustion function on N̂Γ.

Thus we see that the nilmanifold N̂Γ/Γ is pseudoconvex. It then follows that the original
nilmanifold G/H is also pseudoconvex. �

Definition 8.2. A (principal) Cousin group tower of length one is a Cousin group. A (prin-
cipal) Cousin group tower of length n > 1 is a (principal) holomorphic bundle with fiber a
Cousin group and base a (principal) Cousin group tower of length n− 1.

The fiber of the holomorphic reduction of a nilmanifold carries no non-constant holomor-
phic functions, in fact it is a Cousin group tower. For a general solvmanifold X = G/H
this is no longer true as we have seen in Example 2.6 where the fiber of the holomorphic
reduction is C∗ ×C∗. However, in the rest of this section we will prove that pseudoconvexity
of the solvmanifold X = G/H is sufficient (though not necessary, see Example 8.6) to ensure
that the fiber of its holomorphic reduction is a Cousin group tower and therefore has no
non-constant holomorphic functions.

We will need the following observation.

Lemma 8.3. Let G be a connected complex Lie group and Γ ⊂ G a discrete subgroup.
Furthermore let H1 ⊂ H2 ⊂ G be two closed connected complex subgroups which are both
normalized by Γ. Suppose that ΓH2 is closed in G and that (Γ∩H2)H1 is closed in H2. Then
ΓH1 is closed in G.
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Proof. Any subgroup of a not necessarily connected Lie group L is closed in L if and only
if its intersection with L0 is closed in L0. Therefore ΓH1 is closed in ΓH2 (and hence closed
in G) if and only if ΓH1 ∩H2 is closed in H2. Since ΓH1 ∩H2 = (Γ ∩H2)H1, the lemma is
proved. �

We prove our result first for a special class of solvmanifolds.

Proposition 8.4. Let X = G/Γ be a solvmanifold with Γ ⊂ G discrete such that O(X) ≃ C.
If X is pseudoconvex, then there is a connected normal Abelian subgroup C ⊂ G such that
ΓC is closed in G and the fibration G/Γ → G/ΓC has the Cousin group CΓ/Γ as fiber.

Proof. Since G′ is a connected nilpotent subgroup of G, the exponential map exp: g′ → G′ is
biholomorphic and we can construct the smallest connected complex subgroup of G′ contain-

ing Γ′ as in the proof of Theorem 8.1, i.e., by S1 := Ĝ′
Γ′ . Let L ⊂ G be the identity component

of the centralizer of S1 in G. As remarked in the proof of [BO69, Abspaltungssatz 3.2], the
group LΓ is a closed subgroup of G. Therefore, it follows from [BO69, Satz 1.1] that L is
normal in G. One gets the fibration

X = G/Γ → G/LΓ.

By hypothesis, X is a pseudoconvex manifold and therefore there is a maximal connected

complex subgroup Ĥ ⊂ G such that Ĥ is normalized by Γ and ĤΓ/Γ is relatively compact

in X. Since O(X) ≃ C, we have Ĥ ⊳ G. Consider the Lie algebra [g, ĥ] ⊂ g′. If [g, ĥ] = 0,

then ĥ ⊂ z(g) and hence ĥ ⊂ l. If [g, ĥ] 6= 0, then 0 6= ĥ ∩ g′ ⊳ g and in particular ĥ ∩ g′ ⊳ g′.

The Lie algebra ĥ ∩ g′ being normal in g′, it follows that (ĥ ∩ g′) ∩ z(g′) 6= 0. Since z(g′) ⊂ l,

it follows that in both cases ĥl := ĥ ∩ l 6= 0 is a non-trivial ideal in g.

Let L̃ ⊂ L be the smallest connected subgroup containing ĤL := Ĥ ∩ L such that L̃ is
normalized by Γ, L̃Γ is closed in G and O(L̃Γ/Γ) ≃ C. Then L̃ again is a normal subgroup
of G. In order to simplify the notation, we omit the tilde and now have the fibration

X = G/Γ → G/LΓ

with O(LΓ/Γ) ≃ C. Note that the fiber is isomorphic to L/(L ∩ Γ) where L is a simply

connected solvable Lie group. Now define Λ := Γ∩L. Since L∩ Ĥ is non-trivial, the discrete
group Λ is also non-trivial and a normal subgroup of Γ. We will now apply the same reduction
steps as before to the homogeneous manifold L/Λ which has the same properties as X = G/Γ.
In order to be able to carry over the results of this iteration to LΓ/Γ we must check carefully
that all the groups constructed inside L are normalized by Γ.

If Λ′ is trivial, then Λ and hence L are abelian and the lemma is proved. Therefore suppose

that S2 := L̂′
Λ′ ⊂ L′ is non-trivial and let L2 be the connected component of the centralizer

of S2 in L. Since Λ⊳Γ, we have that Γ normalizes S2 and hence L2. As a consequence we

get that L2 ⊳G. Furthermore ĥl ∩ l2 6= 0, for the same reasons as above. By Lemma 8.3 we
get that ΓL2 is a closed subgroup of G.

Now we can iterate the construction from the proof of [BO69, Abspaltungssatz 3.2] to
produce a chain of subgroups L ⊃ L2 ⊃ · · · in G which are normalized by Γ and such that
ΓLj is closed in G. Since this process must terminate after finitely many steps, we finally get
the Abelian group C such that O(CΓ/Γ) ≃ C as claimed. �

After these preparations we are able to prove the main result of this section.

Theorem 8.5. Suppose X = G/H is a pseudoconvex solvmanifold with holomorphic reduc-
tion G/H → G/J . Then the base G/J is Stein and the fiber J/H is a Cousin group tower.
In particular, O(J/H) ≃ C.
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Proof. The fact that G/J is Stein is proven in [HO86]. We have ĥ ⊂ j since the base is
holomorphically separable by definition. We claim that O(J/H) ≃ C. If not, then there
would exist a holomorphic reduction J/H → J/J1 of J/H with dimJ > dimJ1. We would
continue taking holomorphic reductions in this way: given Jn−1 we define the closed complex
subgroup Jn by means of the holomorphic reduction Jn−1/H → Jn−1/Jn, where dim Jn <
dimJn−1. The process stops after a finite number of steps and we obtain a subgroup Jk with
O(Jk/H) ≃ C, where we assume that k is the smallest positive integer such that Jk/H has

this property. Note that dim Jk/H > 0, since recursively we have ĥ ⊂ jn for 1 ≤ n ≤ k and

dim ĥ > dim h.
We claim that Jk/H is a Cousin group tower. Since Jk/NJk(H

0) is Stein by Lie’s Flag
Theorem, it follows that NJk(H

0) = Jk and thus the isotropy is discrete. In this case we
write Γ instead of H. We now apply Proposition 8.4 to Jk/Γ and get the requisite subgroup
C ⊂ Jk such that Jk/Γ → Jk/CΓ has a Cousin group as fiber. By Lemma 6.1 the base Jk/CΓ
is pseudoconvex and O(Jk/CΓ) ≃ C. By recursion, Jk/Γ is a Cousin group tower and so by
repeated use of Lemma 6.1 we conclude that G/Jk is pseudoconvex.

Finally, we shall show that k ≥ 1 yields a contradiction. Consider the subgroups H ⊂ Jk ⊂
Jk−1 ⊂ Jk−2 ⊂ G, where we set J−1 := G and J0 := J . Then Jk−2/Jk, as a closed submanifold
of G/Jk, is pseudoconvex. Moreover, we have the fibration Jk−2/Jk → Jk−2/Jk−1. Both
Jk−2/Jk−1 and Jk−1/Jk are holomorphically separable implying Jk−2/Jk is Stein by Remark
2.5. This implies Jk−2/Jk is the holomorphic reduction of Jk−2/H. But, by construction
Jk−2/Jk−1 is the holomorphic reduction of Jk−2/H. Since dim Jk < dim Jk−1, we obtain the
desired contradiction. A posteriori we see that J = Jk, i.e., that O(J/H) ≃ C. The argument
given in the previous paragraph then shows that J/H is indeed a Cousin group tower. �

We finish with an example which shows that the converse of Theorem 8.5 does not hold.

Example 8.6. Let n ≥ 3 and A ∈ SL(n,Z) such that A is diagonalizable over C and admits
s > 0 positive real eigenvalues α1, ..., αs and t > 0 pairs of complex conjugate eigenvalues
β1, β̄1, ..., βt, β̄t. Note that n = s+2t. Assume furthermore that the characteristic polynomial
of A is irreducible over Q. In particular αj 6= 1 for all j. The existence of such an A is easily
seen by using elementary number theory, see e.g. [OT05]. The fact that A is diagonalizable
implies that there is a real logarithm D ∈ sl(n,R) of A. This means that the one-parameter
group {exp(xD) | x ∈ R} lies in SL(n,R), which justifies the following construction. For
K = Z,R,C define a solvable group structure GK := K ⋉Kn on the cartesian product by

(x1, v1) · (x2, v2) :=
(
x1 + x2, exp(x1D)v2 + v1

)
.

Note that GZ is discrete cocompact in GR and that GR is a real form of the simply-connected
solvable complex Lie group GC. Now let H ⊂ {0} ⋉ Cn ⊂ GC be the t-dimensional complex
subgroup generated by A-eigenvectors corresponding to the eigenvalues β1, β2, . . . , βt. It was
shown in [OT05] that C := {0} ⋉ Cn/({0} ⋉ Zn)H is a Cousin group. Note that H is a
normal subgroup of GC. Now define X := GC/GZH. We get a (non-principal) fibration
X := GC/GZH → GC/GZ({0} ⋉Cn) with the Cousin group C as fiber and C∗ as base.

Suppose thatX is pseudoconvex and choose a plurisubharmonic exhaustion function. Since
GRH/GZH is compact, an integration argument as in [Loe85] gives a plurisubharmonic func-
tion on GC which is GRH-invariant and is an exhaustion function on GC/GRH. The max-
imal connected complex subgroup of GRH being H ⊕ H, we get the pseudoconvex couple
(GC/H ⊕H,GR/H ⊕H) in the sense of Loeb. But this couple has eigenvalues ln(αj) ∈ R∗

of the adjoint representation of its real form on itself. This is a contradiction. Therefore X
is a Cousin fiber bundle over a Stein manifold but is not pseudoconvex.
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komplexe Mannigfaltigkeiten., Comment. Math. Helv. 44 (1969), 269–281.
[BO73] W. Barth and M. Otte, Invariante holomorphe Funktionen auf reduktiven Liegruppen, Math. Ann.

201 (1973), 97–112.
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[Mat60] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J. 16
(1960), 205–218.

[Mill76] J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2)
104 (1976), no. 2, 235–247.

[Nis62] T. Nishino, Sur les espaces analytiques holomorphiquement complets, J. Math. Kyoto Univ. 1

(1961/1962), 247–254.
[On60] A.L. Onishchik, Complex hulls of compact homogeneous spaces, Dokl. Akad. Nauk SSSR 130 (1960),

pp. 726–729; English trans.: Sov. Math. 1 (1960), pp. 88–93.
[OT05] K. Oeljeklaus and M. Toma Non-Kähler compact complex manifolds associated to number fields,

Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 161–171.



PSEUDOCONVEX DOMAINS SPREAD OVER COMPLEX HOMOGENEOUS MANIFOLDS 21

[Tak64] A. Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif,
J. Math. Soc. Japan 16 (1964), 159–181.

[Ue80] T. Ueda, Pseudoconvex domains over Grassmann manifolds, J. Math. Kyoto Univ. 20 (1980), 391–
394.

[Zaf08] D. Zaffran, Holomorphic functions on bundles over annuli, Math. Ann. 341 (2008), no. 4, 717–733.

Department of Mathematics and Statistics, University of Regina, Regina, Canada S4S 0A2
E-mail address: gilligan@math.uregina.ca

Laboratoire de Mathématiques Pures et Appliquées, CNRS-FR 2956, Université du Littoral,
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