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Abstract. Differential evolution (DE) is a very powerful and simple
algorithm for single- and multi-objective continuous optimization prob-
lems. However, its success is highly affected by the right choice of pa-
rameters. Authors of successful multi-objective DE algorithms usually
use parameters which do not render the algorithm invariant with re-
spect to rotation of the coordinate axes in the decision space. In this
work we try to see if such a choice can bring consistently good perfor-
mance under various rotations of the problem. We do this by testing a
DE algorithm with many combinations of parameters on a testbed of
bi-objective problems with different modality and separability charac-
teristics. Then, we explore how the performance changes when we rotate
the axes in a controlled manner. We find out that our results are con-
sistent with the single-objective theory but only for unimodal problems.
On multi-modal problems, unexpectedly, parameter settings which do
not render the algorithm rotationally invariant have a consistently good
performance for all studied rotations.

Keywords: differential evolution, rotational invariance, multi-objective
optimization, parameter analysis

1 Introduction

Differential evolution [6] started as a simple single-objective continuous optimiza-
tion heuristic. The need for a versatile multi-objective optimizer has motivated
researchers to generalize the basic algorithm for multi-objective problems. Now
we have a great number of multi-objective DE variants. Many of them use the
same mechanism to generate new individuals. In a problem with n variables a
new individual is created using a crossover variation operator which randomly
selects k; k ≤ n variables which are perturbed. The magnitude of the mutation
is generated by scaling a difference of randomly chosen individuals.

Many research papers on DE such as [1] or [9] provide little insight into how
the authors chose the parameters for their benchmarking. We find this striking
since many authors choose their parameters such that the crossover operator
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perturbs only a small number of variables in an existing individual. In other
words, the search for the Pareto optimal set proceeds along the coordinate axes.
Since these algorithms perform very well [1][9], we have a suspicion that this
may be due to some characteristic of the problem, such as separability, that
makes it easy to optimize along the axes. This would mean that if the axes are
transformed, the algorithm should lose some performance.

Very strict warning against the practice of perturbing a small number of
variables at a time has been raised as soon as 1996 by Salomon [8]. Salomon
empirically demonstrated that the stellar performance of many popular single-
objective genetic algorithms owes to the fact that most of the benchmark func-
tions were separable and that the low mutation rate caused them to be optimized
one component at a time. Once Salomon stripped the separability by rotating the
principal axes of the benchmark functions, many algorithms were significantly
slowed down, while some failed to converge completely. Salomon’s theoretical
results state that, in some cases, the probability of finding the global optimum
can drop below that of random search. We are concerned that the same is true
for the multi-objective realm since many authors perform their experiments with
separable test functions.

In DE the number of variables that are perturbed is controlled by a pa-
rameter. If all variables are perturbed, the algorithm has the same performance
regardless of rotation. Let us have a parameter setting, that perturbs only a
small proportion of the variables, which outperforms a setting that perturbs all
variables. In this work we attempt to answer this question: Is this exceptionally
good performance on a problem with a particular alignment of the coordinate
axes balanced by exceptionally bad performance on a different alignment?

We do this empirically by observing the performance of a simple multi-
objective algorithm DEMO (Differential evolution for multi-objective optimiza-
tion) [9] on a bi-objective subset of the WFG (Walking Fish Group) test suite [3].
We run all our experiments with a fixed population size and a fixed number of
variables, while varying the parameters. Then we gradually rotate the problems
in a controlled manner and observe the new behavior.

The answer to our question is, unexpectedly, negative. We find a statisti-
cally significant difference between the performance on the rotated problems
and the original ones. Closer inspection reveals that a systematic performance
loss happens when we rotate the separable problems, but the performance is
still significantly better than for a rotationally invariant algorithm. We find that
this happens for multi-modal problems, while single-modal problems exhibit the
behavior we would expect from the work of Salomon.

In the following section we provide background information on DE and on
the previous related work on DE parameters. In Section 3 we introduce the
experimental design, where we explain which problems are used and why were
they chosen. In addition we introduce a new performance metric called the rela-
tive hypervolume, and explain the controlled manner in which the rotations are
generated. In Section 4 we present our data along with a discussion. Finally, in
Section 5, we present the conclusion.
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Algorithm 1: Modified DEMO [9] algorithm

1 initialize P = {X1, ..., XN} uniformly randomly in the decision space
2 for generation := 1 to Gmax do Evolutionary loop
3 for target := 1 to N do Generational loop
4 randomly generate mutually distinct r1, r2, r3 6= target
5 Xmutant := Xr1 + F(Xr2 −Xr3)
6 randomly generate inv ∈ {1, . . . , n}
7 for i := 1 to n do
8 if rand(0.0; 1.0) < Cr or i = inv then
9 Xtrial,i := Xmutant,i

10 else
11 Xtrial,i := Xtarget,i

12 end

13 end

14 project Xtrial to decision space
15 if Xtarget dominates Xtrial then
16 discard Xtrial

17 else if Xtrial dominates Xtarget then
18 replace Xtarget with Xtrial

19 else if Xtarget and Xtrial are mutually non-dominated then
20 add Xtrial to the end of the population
21 end

22 end

23 Trim the P to size N using non-dominated sorting[9] and MNN diversity[4]

24 end

2 Background

2.1 Differential Evolution

In this section, we describe the variant of DE which we use in this work. It is a
slightly modified version of the DEMO algorithm [9] described in Algorithm 1.
The modified parts are highlighted with yellow color in lines 14 and 23. Let
us look at the algorithm in detail. First, the population of the algorithm is
randomly initialized (line 1). Then, the algorithm runs for a fixed number of
generations (evolutionary loop). In each generation, DE iterates through the
entire population generating a trial individual, which is compared to an existing
target individual. The trial is generated utilizing the traditional method in lines
4 to 13. Here we introduce the parameters of DE.

To generate a new individual, three distinct individuals are selected from
the population. By forming a difference between two of them, scaling it by
a fixed parameter F, and adding to a third individual we obtain a so called
mutant individual (line 5). The trial individual is created by crossover between
the mutant and the target. First, a randomly chosen variable from the mutant
is inherited (line 6). Next, each other variable is inherited from the mutant with
a fixed crossover probability of Cr. Otherwise it comes from the target.
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After the individual is generated we project it to the decision space. This is a
modification of the original algorithm which did not explicitly deal with domain
issues. The purpose is to keep the algorithm as simple as possible while being
able to optimize problems with simple constraints. Next the trial is compared to
the target. If one of them is dominated by the other, we discard the dominated
one. If they are mutually non-dominated, we keep them both. At the end of
the generation loop, the population is trimmed to size N using non-dominated
sorting and the M nearest neighbor diversity estimation procedure [4]. We chose
this procedure because it achieves a better distribution along the Pareto front
than the original crowding distance computation.

Note that Cr = 1 is the only value of Cr for which the DE algorithm is
rotationally invariant with probability 1. Rotational invariance does not by itself
imply good performance. Its merit is that it allows us to generalize a single
observation to an entire invariance class [2].

2.2 Crossover Probability and Separability

In this section we summarize what we know about the relationship between the
separability of the test functions and the good choice of Cr parameter.

There are many different types of separability. One of the simplest is additive
separability. A function f : D ⊆ Rn → R is called additively separable if:

∃f1, . . . , fn such that f(x1, . . . , xn) =

n∑
i=1

fi(xi)

The most important consequence of additive separability is that the n-dimensional
problem can be optimized sequentially one variable at a time. Therefore separa-
ble problems are not subject to the curse of dimensionality [8].

Salomon [8] illustrates the problems of algorithms which vary the individuals
one variable at a time on a quadratic function of two variables in Figure 1. The
ellipses in the left part are contours of a separable quadratic function. We can
see two individuals on one of the contours. The blue individual represents an in-
dividual in a randomized algorithm. If we mutate one variable of this individual,
the probability to get an improvement in the objective function is relatively high,
since the improvement intervals d1, d2 are long. If we rotate the coordinate axes,
thus rendering the function non-separable, the improvement intervals shrink.

One more illustration of problems which arise is using a sequential deter-
ministic algorithm which finds the optimum with respect to one variable at a
time. The red individual illustrates the path of one such an algorithm. When the
function is aligned with the axes, this algorithm achieves optimum in just two
iterations, while in the rotated case the algorithm not only progresses slower,
but never actually reaches the optimum.

Huband et al. from the Walking Fish Group (WFG) define separability from
the optimizational standpoint[3]. A variable xi is separable if the set of global
optima of a problem:

argmin
xi

f(x1, . . . , xn)
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Fig. 1: Illustration of variable-wise optimization on a rotated quadratic function

is the same for any choice of the other variables x1, . . . , xi−1, xi+1, . . . , xn. For ex-
ample, an additively separable function is WFG-separable, hence WFG-separability
is a generalization of additive separability. The authors define a separable multi-
objective problem as one where each objective is separable. The majority of the
frequently used DTLZ and ZDT problems are WFG-separable [3], while their
objective functions are not additively separable.

The multi-objective model is fundamentally different from the single-objective
model because all objectives are being optimized simultaneously. The global op-
tima of each optimized function constitute only a relatively small subset of the
Pareto optimal set. Therefore, it is appropriate to ask if the problems of se-
quential algorithms which are illustrated in Figure 1 persist in multi-objective
optimization. Also, while additively separable unimodal functions are inherently
similar to the quadratic function in Figure 1, it is not clear if the intuition holds
for multi-modal functions or for functions which are WFG-separable but not
additively separable.

2.3 Variance as a Common Currency

Probably the most significant work on the theoretical properties of DE has been
written by Zaharie [10]. Let us collect all the trial vectors that are generated in
the course of one generational loop of Algorithm 1 into a set Ptrial. Then the
relationship between the variance in decision space of P and Ptrial is given by
the simple equation E[V ar(Ptrial)] = cE[V ar(P )] where:

c = 2F2Cr +
Cr2 − 2Cr

N
+ 1 (1)

Zaharie omits the fact that in most DE variants the individuals which generate
the trial individual are chosen distinct from the target individual (Algorithm 1
line 4). However her results hold unchanged also after adding this assumption.

The work of Zaharie is important since it transforms the two parameters into
a single number c (common currency) which has a very intuitive interpretation.
If c < 1 we see that the algorithm tends to contract the population while if c > 1
it expands the population. Based on empirical data Kukkonen concluded in [5]
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[7] that a good choice of parameters is one that satisfies c ∈ [1.0; 1.5] with the
upper bound not very strict.

3 Experimental Design

In this section, we describe which test problems we chose and why. We explain
what we mean by rotating the problem and we propose a new performance metric
which we use.

3.1 WFG Problems

In order to explore the relationship between the control parameters of DE and the
characteristics of the problem, we chose 4 problems from the WFG test suite[3].
These problems have been chosen since they have the same Pareto front and
contain all possible combinations of the WFG-separability and modality charac-
teristics. They are summarized in Table 1. We chose the number of variables to
be 10 of which one is a positional variable.

Table 1: Characteristics of the selected WFG problems

WFG4 WFG7 WFG6 WFG9

separable yes yes no no
unimodal no yes yes no

3.2 Rotations in Rn

As humans we have a very good intuitive understanding of rotation in 2 or 3
dimensional space. However in higher dimensions things are not as intuitive as
they might seem. An elementary rotation by the angle φ is characterized by the
matrix:

Re =

(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)
We can generalize this rotation to n-dimensional space by taking an n-dimensional
identity matrix I and replacing Ii,i, Ii,j , Ij,i, Ij,j by Re

1,1, R
e
1,2, R

e
2,1, R

e
2,2 respec-

tively. We can see that the rotation is not executed around an axis as we might
intuitively feel, but around an n−2 dimensional subspace which is coincidentally
a 1-dimensional axis in the intuitive 3-dimensional case. For our experiments, we
generate the rotation matrix R by applying a rotation to each n−2 dimensional
subspace in sequence, one rotation after the other.

We rotate the entire decision space (DS). This way the entire Pareto optimal
set is always attainable since the entire decision space rotates along. In the case
of WFG problems this means rotating a n-dimensional hyper-box. For example,
in order to initialize the population in Algorithm 1 in the rotated DS (line 1),
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we first initialize the population in the original DS and then multiply by R−1.
Similar process is used to project the individual to the rotated DS on line 14.
To evaluate the objective value of an individual we first multiply the decision
vector by R and evaluate the original objective functions.

3.3 Relative Hypervolume

In our experiments, we use only one performance metric, the hypervolume (HV)
[11], since it includes information on both convergence and spread of the indi-
viduals. With WFG problems, it is not easy to choose the reference point for the
HV. Even if we choose the point as tight as possible, there are some individuals
after the initialization of DE which dominate the reference point. Therefore the
HV at the start is not zero and it is hard to say if a certain attained HV is good
or bad. Moreover, it is hard to make quantitative comparisons based on HV. If
some algorithm achieves HV of 100 and another one achieves a HV of 99.98, it
may seem that the difference is not very big, but it all depends on the HV at
initialization. If the algorithms started with HV = 0, the interpretation of the
results would be quite different from one where HV = 99.99 at the start.

We attempt to mitigate this problem by subtracting the HV at initialization
(HVinit) and normalizing the result using the maximal attainable hypervolume
(HVmax). We define the relative hypervolume (RHV) in the following equation:

RHV :=
HV −HVinit

HVmax −HVinit
(2)

We compute HVmax deterministically by integrating the space between the true
Pareto front (PF) and the reference point. From (2), we have RHV ∈ [1;−∞).
RHV = 1 implies convergence, RHV at initialization is 0 and RHV < 0 indicates
an algorithm which is receding from the Pareto front.

We use RHV since its normalized nature is more intuitive and it is more
robust with respect to the selection of the reference point. It may be more
meaningful to compare two algorithm runs in terms of RHV. If we have two
algorithm runs starting from the same randomly initialized population then the
ratio of their RHVs is independent of the choice of the reference point. 4 On the
other hand, two independent runs which produce the same final population may
yield different relative hypervolume.

4 Results and Discussion

In our experiments we varied the parameters F ∈ [0.05; 1.5], Cr ∈ [0; 1] equidis-
tantly with a resolution of 0.05. For each combination we performed 10 runs of
Algorithm 1. To simplify the setup, the population size was kept constant at
100 individuals and the length of each run was 250 generations. We explored the
rotations from 0 to 90 degrees with a resolution of 5 degrees. In the following we
discuss our results on a subset of the experimental data. To simplify the analysis,
in each section we keep either F, Cr or the rotation angle fixed.

4 Given that the reference point is dominated by all individuals in the population.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 2: Average RHV without rotation

(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 3: Average RHV with rotation angle of 5 degrees

4.1 Fixed Rotation Angle

Figure 2 shows the average RHV on non-rotated problems. For illustration, we
plot the combinations of F and Cr which result in c = 1.0, 1.5 and 3.0 according
to (1). The circle marks the combination of parameters with the best RHV. The
data in all our figures from now on is presented from left to right in the same
order as in Table 1. The separable problems (S) are on the left, the non-separable
(NS) on the right, while the unimodal (UM) are on the inside and multi-modal
(MM) ones are near the page margins. For each problem, an L-shaped favorable
region containing RHV of 0.8 and higher, roughly corresponds to c ∈ [1; 1.5].
Low value of Cr is more robust, since it allows for a wider interval of F values.
Unexpectedly, this holds also for non-separable problems WFG6 and WFG9.

The effect of introducing a rotation by 5 degrees is shown in Figure 3. The two
figures seem identical, but the ratio of these averages in Figure 4 reveals a differ-
ence. A value of less than 1 indicates that the rotation caused the performance
to decrease. We highlighted the contour at level 1 and marked the maximal and
minimal value by circles. In order to make the results most readable we chose
a color scale of [0.5; 1.2] for separable problems and [0.6; 1.7] for non-separable
problems. The separable problems on the left half exhibit a performance loss
consistent with Salomon’s single-objective results. Performance dropped for al-
most all Cr smaller than 1. Non-separable WFG6 and WFG9 do not show such
a systematic decrease. In some areas we even see an increase of performance.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 4: Average RHV with a rotation of 5 degrees
Average RHV without a rotation

(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 5: Average RHV with a rotation of 45 degrees
Average RHV without a rotation

It seems that there is relatively little difference between the rotated and non-
rotated data. These result may seem not as significant as Salomon’s. However,
there is an important methodological difference. When he mentions that the
performance on the rotated benchmark is six orders of magnitude worse than
the performance on the non-rotated benchmark ([8, p.273]), he means that the
minimal attained value 2.65 · 105 is six orders of magnitude worse in absolute
numbers. But the value at initialization was three orders of magnitude greater
yet. This means that both algorithms started somewhere near 2.65 · 108 and the
non-rotated one progressed to 2.65 · 10−1 while the rotated one progressed to
2.65·105. In terms of relative hypervolume, this would be a very small difference 5.
In order to provide a scale-independent comparison, we compared all data using a
two-tailed Wilcoxon signed rank test at a significance level of 0.05. For separable
problems in Figures 4 and 5 we separate the parameter space with a dashed line
into two areas. The area on the right is such that the rotated and non-rotated
data is not significantly different, while on the left there is a significant decrease
in performance. The data for non-separable problems contains areas of both
significant decrease and significant decrease, as well as areas with no significant
difference so in this case the separation cannot be plotted so compendiously.

5 Assuming that the minimum of the given function is 0, the difference would be on
the order of 10−3.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 6: Average RHV for F = 0.5

(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 7: Average RHV for Cr = 0.1

The effects are more visible with 45 degree rotation in Figure 5. Again, there
is a systematic decrease in performance for the separable problems for Cr < 1.
However, this decrease does not imply that Cr = 1 is a good choice. Looking
at Figures 2 and 3, we see that Cr = 1 is a consistently bad choice for the
multi-modal problems WFG4 and WFG9.

4.2 Fixed F

In Figures 2 and 3 we see that F = 0.5 is compatible with many different values of
Cr and achieves consistently good performance. The average RHV for F = 0.5 is
shown in Figure 6. For multi-modal problems WFG4 and WFG9, very low values
of Cr are consistently good for all studied rotations, while for uni-modal problems
WFG6 and WFG7 big values of Cr yield a consistently good performance. On the
other hand, poor performance is achieved with big values of Cr for multi-modal
problems and small values for uni-modal problems. The data for WFG4 and
WFG9 suggests that the exceptionally good performance of a small Cr setting
does not have to be balanced by an exceptionally bad performance after the
problem is rotated. Based on the observation from Figure 6 we see that for each
problem either Cr = 0.1 or Cr = 0.9 perform well through the observed spectrum
of rotations.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 8: Average RHV for Cr = 0.9

(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 9: Average RHV with Cr = 0.1
Average RHV with Cr = 1

4.3 Fixed Cr

In Figures 7 and 8 we see data with a fixed value of Cr = 0.1 and Cr = 0.9
respectively. For Cr = 0.1 the regions with the best performance are for rotations
which are either close to 0 or 90 degrees. This is true also for non-separable
problems, but it is more visible for separable problems. The data for Cr = 0.9
seems different. The choice of Cr close to 1 means that the algorithm is nearly
rotationally invariant. The gained robustness with respect to coordinate rotation
is balanced by lost robustness in the choice of F. Almost in all cases the interval
with favorable values of F became shorter.

We see that for values of Cr < 1 there is a performance loss when the coordi-
nate axes are rotated, but does the performance drop bellow that of a rotationally
invariant choice of Cr = 1? The data supporting a negative answer is presented
in Figure 9. Here we divided the average RHV with Cr = 0.1 by the average RHV
attained with a rotationally invariant Cr = 1. The interpretation of the dashed
and full contour lines is the same as for Figures 4 and 5. For WFG4, the setting
of Cr = 0.1 statistically significantly outperformed Cr = 1 for all rotations and
all values of F. This means a definitive negative answer to our main question.
The results are similar for the second multi-modal problem WFG9. Here we see
a small region in which the data for Cr = 0.1 and Cr = 1 are not significantly
different and Cr = 1 is significantly better in a few isolated cases. The unimodal
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problems on the other hand show that Cr = 1 is significantly better for most
rotations and for the best performing values of F.

5 Conclusion

In this work we showed how the behavior of the differential evolution algorithm
on bi-objective problems changes when the coordinate axes of the decision space
are rotated. Our findings show that the change is significant even for small
rotations. There is a consistent drop in performance on separable problems while
the qualitative properties of the change for non-separable problems are much less
predictable. Unexpectedly, for multi-modal problems, low values of crossover
probability perform better through the observed spectrum of rotations. As a
future work we propose to see if this holds for problems other than the ones we
studied and if this is the case, to find the cause of this behavior.
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