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Abstract. The properties of local optimal solutions in multi-objective
combinatorial optimization problems are crucial for the effectiveness of
local search algorithms, particularly when these algorithms are based on
Pareto dominance. Such local search algorithms typically return a set of
mutually nondominated Pareto local optimal (PLO) solutions, that is, a
PLO-set. This paper investigates two aspects of PLO-sets by means of
experiments with Pareto local search (PLS). First, we examine the im-
pact of several problem characteristics on the properties of PLO-sets for
multi-objective NK-landscapes with correlated objectives. In particular,
we report that either increasing the number of objectives or decreasing
the correlation between objectives leads to an exponential increment on
the size of PLO-sets, whereas the variable correlation has only a minor
effect. Second, we study the running time and the quality reached when
using bounding archiving methods to limit the size of the archive handled
by PLS, and thus, the maximum size of the PLO-set found. We argue
that there is a clear relationship between the running time of PLS and
the difficulty of a problem instance.

1 Introduction

Several state-of-the-art algorithms for multi-objective combinatorial optimiza-
tion problems (MCOPs) are based on local search. These local search algorithms
are either based on solving multiple scalarizations of the objective function vec-
tor, or they are based on Pareto dominance. The most successful local search
algorithms combine both approaches [3,4,10,13]. These successes explain the in-
creasing interest on understanding the role of local optimal solutions in the
context of MCOPs. Previous works have focused on the properties of individual
local optimal solutions [14]. However, algorithms for MCOPs typically return not
a single solution, but a set of solutions that approximates the Pareto set. Thus,
local search algorithms for MCOPs are typically concerned by (Pareto) local
optimal sets (PLO-sets), that is, sets of (Pareto) local optimal solutions where



solutions are mutually nondominated and are also local optimal with respect to
the neighborhood of the other solutions in the set [12].

Experimental studies on PLO-sets have been so far limited to the study of
some of their properties for the bi-objective traveling salesman problem, in par-
ticular the number of solutions in each PLO-set and the connectedness of PLO-
sets [11]. This paper extends significantly this initial work in two aspects. First,
we consider multi-objective NK-landscapes with correlated objectives (ρMNK-
landscapes) [14], which allow us to examine the effect of various problem char-
acteristics on the properties of PLO-sets. Second, we examine the effect of using
bounded archiving methods [7,9] in order to limit the size of the PLO-set han-
dled by the local search. Archiving methods are often used in both local search
and evolutionary multi-objective algorithms, and there are a few recent works
on their theoretical properties [2,8,9]. Several authors have mentioned as inter-
esting future work the experimental study of the PLO-sets induced by bounded
archiving. To the best of our knowledge, we present in this paper the first results
of such a study. Our conclusions not only give support to previous theoretical
results, but also give insights on how to improve local search algorithms for par-
ticularly difficult MCOPs. In the following, we recall the required background
on problems and algorithms in Section 2; we provide the experimental setup of
our study in Section 3; we discuss our experimental results in Section 4; and we
conclude in the last section.

2 Background

Multi-objective Combinatorial Optimization. A multi-objective combina-
torial optimization problem (MCOP) is defined by an objective function vector
f = (f1, . . . , fm) with m ≥ 2 objective functions, and a discrete set X of feasible
solutions in the solution space. Let Z = f(X) ⊆ Rm be the set of feasible out-
come vectors in the objective space. Each solution x ∈ X is assigned an objective
vector z ∈ Z on the basis of the multidimensional function vector f : X → Z
such that z = f(x). When all objectives are to be maximized, a solution x
weakly dominates another solution x′ if ∀i ∈ {1, . . . ,m}, fi(x) ≥ fi(x

′). If, in
addition, ∃i ∈ {1, . . . ,m} such that fi(x) > fi(x

′), then we say that x dominates
x′ (x ≺ x′). When x ⊀ x′ ∧ x′ ⊀ x, we say that x and x′ are mutually nondom-
inated. A solution x⋆ ∈ X is Pareto optimal if ∄x ∈ X such that x ≺ x⋆. The
set of all Pareto optimal solutions is the Pareto set. Its mapping in the objective
space is the Pareto front. One of the goals in multi-objective optimization is to
identify the Pareto set, or a good approximation of it.

Pareto Local Optimal Sets. Set-based local search algorithms for MCOPs
generally combine the use of a neighborhood operator with the management
of an archive of mutually nondominated solutions found so far. A neighborhood
operator is a mapping function N : X → 2X that assigns a set of solutions
N (x) ⊂ X to any solution x ∈ X. N (x) is called the neighborhood of x, and
a solution x′ ∈ N (x) is called a neighbor of x. A solution x ∈ X is a Pareto



local optimum (PLO) with respect to a neighborhood structure N if there is no
neighbor x′ ∈ N (x) such that x′ ≺ x [12]. A set S ⊆ X is a Pareto local optimal
set (PLO-set) with respect to N if, and only if, it contains only PLO-solutions
with respect to N and all solutions are mutually nondominated [12]. In addition,
a set S ⊆ X is a maximal PLO-set with respect to N if, and only if, ∀s′ ∈ N (S),
∃s ∈ S such that s ≺ s′ ∨ f(s) = f(s′), where N (S) =

⋃
s∈S N (s) [12]. In other

words, any neighbor of any solution in a maximal PLO-set is weakly dominated
by a solution in the set.

Pareto Local Search. A typical example of a multi-objective local search algo-
rithm is Pareto Local Search (PLS) [12]. PLS is an extension of the conventional
hill-climbing algorithm to the multi-objective case. An archive of nondominated
solutions is initialized with at least one solution. At each iteration, one solu-
tion is chosen at random from the archive and all its neighbors are evaluated
and compared against the archive. Each neighbor is added to the archive, and
marked as unvisited, if it is not dominated by any other solution in the archive.
Moreover, solutions in the archive dominated by this neighbor are removed. Once
all neighbors have been evaluated, the current solution is marked as visited. The
algorithm stops once all solutions from the archive are marked as visited.

PLS is known to be a well-performing algorithm, either as a stand-alone
approach or as a hybrid component, for many MCOPs [3,4,10,13]. Moreover, in-
dependently of the initial archive, PLS always terminates and returns a maximal
PLO-set [12]. However, the archive of (unvisited) solutions may grow exponen-
tially with respect to the instance size and, in that case, PLS may require an
exponential number of iterations. In such a situation, it would be more interest-
ing to bound the size of the archive in order to prevent an exponential grow, but
still return a (perhaps non-maximal) PLO-set.

Given an archive A and a maximum size µ, a bounded archiving method, or
archiver for short, will return a new archive A′ ⊆ A such that |A′| ≤ µ [7,9].
We can use an archiving method in PLS such that whenever a new solution x′

is added to the archive A and |A ∪ {x′}| = µ + 1, then the archiving method
will select one solution to be removed. This is equivalent to the µ + λ strat-
egy [2], with λ = 1. The various archiving methods differ on how the solution to
be removed is selected. Here we focus on two archiving methods, hypervolume
archiver (HVA) [6] and multi-level grid archiver (MGA) [8], which are the only
known archiving methods belonging to the class with the most desirable conver-
gence properties [9]. Two of these properties are: (i) accepting solutions outside
the objective space region dominating the current archive (diversifies) and (ii)
a subsequent archive cannot be worse in terms of Pareto dominance than an
earlier archive (⊳-monotone).

When PLS uses either HVA or MGA as its archiving method, then a run of
PLS will stop at a PLO-set, but not necessarily at a maximal PLO-set. Indeed,
there may exist a solution s′ ∈ N (A), such that ∄s ∈ A with s ≺ s′, but the
archiving method chose to discard s′ in order to maintain |A| ≤ µ. Therefore,
it is expected that when using an archiving method, PLS will converge faster



but to a possibly worse PLO-set. Moreover, since the decision of which solutions
are discarded are fundamentally different for HVA and MGA, we would expect
that each method may converge to disjoint sets of PLO-sets. In the experiments
presented here, we study the properties of the PLO-sets returned by the classical
PLS (using an unbounded archive) and when PLS uses either HVA or MGA to
bound the archive size.

Multi-Objective NK-landscapes with Correlated Objectives. We study
the effect of various characteristics of MCOPs on the properties of PLO-sets
by means of ρMNK-landscapes, which are artificial multi-objective multimodal
problems with objective correlation [14]. They extend both single-objective NK-
landscapes [5] and multi-objective NK-landscapes with independent objective
functions [1]. Feasible solutions are binary strings of size n. The parameter k
refers to the number of variables that influence a particular position from the
bit-string (the epistatic interactions). The objective function vector is defined
as f : {0, 1}n → [0, 1)m. Each objective function is to be maximized, and can
be formalized as follows: fi(x) = 1

n

∑n

j=1
cij(xj , xj1 , . . . , xjk), i ∈ {1, . . . ,m},

where cij : {0, 1}
k+1 → [0, 1) defines the component function associated with

each variable xj , j ∈ {1, . . . , n}, for objective fi, and where k < n. By increasing
the number of variable interactions k from 0 to (n − 1), ρMNK-landscapes can
be gradually tuned from smooth to rugged.

We generate an instance of a ρMNK-landscape by randomly setting the po-
sition of these epistatic interactions, following a uniform distribution. The same
epistatic degree k and the same epistatic interactions are used for all the objec-
tives. Component function values are sampled within the range [0, 1) following a
multivariate uniform distribution of dimension m with a correlation coefficient ρ.
A positive (resp. negative) correlation coefficient decreases (resp. increases) the
degree of conflict between the objective function values.

3 Experimental Setup

In the following, we investigate ρMNK-landscapes with a problem size n ∈
{8, 16}, an epistatic degree k ∈ {1, 2, 4, 8} such that k < n, an objective space di-
mension m ∈ {2, 3, 5}, and an objective correlation ρ ∈ {−0.7,−0.2, 0.0, 0.2, 0.7}
such that ρ > −1

m−1
, because the corresponding correlation matrix is symmet-

ric positive-definite [14]. The investigated problem sizes allow us to enumerate
the solution space exhaustively, and then to solve all the instances to optimality.
One independent random instance is considered for each parameter combination:
〈ρ,m, n, k〉. This leads to a total of 91 problem instances.

In our implementation of PLS for ρMNK-landscapes, the neighborhood struc-
ture is taken as the 1-bit-flip. The archive is initialized with one random solution
from the solution space. At each iteration, the neighborhood of the selected so-
lution is explored exhaustively in a random order. This order has an impact on
the dynamics of PLS since bounded archiving methods treat incoming solutions



sequentially. The cost of each iteration of PLS is exactly n evaluations, corre-
sponding to the neighborhood size. We experiment with three variants of PLS.
PLSunb corresponds to the classical PLS with an unbounded archive. PLShva
and PLSmga use HVA and MGA, respectively, to bound the size of the archive
to a maximum of µ solutions, where µ ∈ {10, 20, 40, 80}. We consider 25 differ-
ent seeds for the random number generator used in PLS, and we run each PLS
variant on each problem instance using each random seed. This leads to a total
of 20 475 runs.

4 Experimental Analysis

4.1 Cardinality of Pareto Local Optimal Sets

Figure 1 shows the size of the PLO-sets identified by PLSunb with respect to
different instance characteristics. Each point gives the mean value over the 25
random seeds on the same instance, and the error bars indicate the standard
deviation. PLO-set sizes are plotted in logarithmic scale.

In general, the cardinality of PLO-sets increases exponentially with the num-
ber of objectives m, as shown in Figs. 1a–1c. The correlation between objective
values ρ is also a crucial factor: the cardinality of the PLO-sets increases expo-
nentially with the linear decrease of ρ (Fig 1c). The cardinality of PLO-sets also
increases with lower k, but much less noticeably (Fig. 1a). Moreover, the small
error bars in Figs. 1a–1d indicate that, for a given instance, maximal PLO-sets
consistently have roughly the same size.

Given the above results, restricting the size of the PLO-sets by using bound-
ing archiving methods must have a stronger effect as the correlation decreases
and the number of objectives increases. In the next section, we examine this
effect for each archiving method.

4.2 Quality of Local Optimal Sets

We examine the quality of the PLO-sets found by PLSunb, PLShva and PLSmga
in terms of two unary quality measures, namely, the hypervolume and the mul-
tiplicative epsilon [15]. In order to compare the hypervolume value for instances
with very different characteristics, we compute the hypervolume relative dif-
ference as hvr(A) = (hv(P ) − hv(A))/hv(P ), where A ⊆ Z is the image of a
PLO-set in the objective space and P is the exact Pareto front for the instance
under consideration. The reference point is set to the origin. The epsilon measure
gives the minimum multiplicative factor by which a PLO-set has to be shifted in
the objective space to weakly dominate the exact Pareto front. Thus, for both
measures, a lower value is preferred. Results are reported in Fig. 2 for different
parameter settings.

As conjectured above, a first observation is that, as the size of maximal PLO-
sets increases, the quality of PLO-sets obtained by bounded archiving decreases.
The increase in quality is almost logarithmic with respect to the archive size
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(d) n = 16, m = 5

Fig. 1. Mean size of the PLO-sets returned by PLSunb. Error bars give the standard
deviation.

limit (µ), as shown in Figs. 2a–2d. Here we show only results for m = 5, but the
trends are similar for a lower number of objectives, although less pronounced.
This trend appears independently of whether we measure quality in terms of
epsilon or hypervolume. Moreover, as in the single-objective case, the average
quality of local optima decreases with k [5], as shown in Figs. 2e–2f.

Lastly, there is not much difference in terms of quality between PLShva and
PLSmga. When differences occur, the PLO-sets returned by PLShva have a better
hypervolume (lower hvr value) than those returned by PLSmga (Figs. 2c–2d),
however, there is no clear winner in terms of epsilon value (Fig. 2a–2b).

4.3 Difficulty of Identifying Local Optimal Sets

For single-objective NK-landscapes, the number of iterations, or steps, of a con-
ventional hill-climbing algorithm provides an estimation of the average diameter
of the basins of attraction of local optima [5]. This diameter characterizes a
problem instance in terms of multimodality: The larger the length, the larger
the basin diameter and the lower the number of local optima. Conversely, the
smaller the length, the smaller the basin diameter and the higher the number
of local optima. Multimodality characterizes an important aspect of instance
difficulty (i.e., the number of local optima).
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(f) n = 16, m = 5, ρ = 0.0, µ = 10

Fig. 2. Mean quality of the PLO-sets found by PLSunb, PLShva and PLSmga measured
in terms of multiplicative epsilon (epsilon) and hypervolume relative difference (hvr).
Error bars give the standard deviation.

As in the single-objective case, the construction of ρMNK-landscapes implies
that they are isotropic, that the neighborhood has the same properties in every
direction of the objective space, and that the basins of attraction have a ball-
like shape. In this section, we report the length of PLS for different archiving
strategies. This allows us to study the running time, in terms of number of
iterations, required by PLS to identify a PLO-set. Moreover, when the PLS
length is smaller under one setting than another, we can reasonably assume
that there exist more PLO-sets in the corresponding landscape since the search
process got stuck more easily on a local optima. Figure 3 shows the PLS length
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Fig. 3. Mean length of PLSunb, PLShva and PLSmga. Error bars give the standard
deviation.

for the same problem instances shown in Fig. 2. The comparison between each
pair of plots shows clearly a relationship between the length of PLS (Fig. 3) and
the quality of the results (Fig. 2): Larger length corresponds to better quality in
general. Interestingly, bounding the archive size substantially reduces both the
quality of the obtained approximation as well as the running time of PLS. The
smaller the archive size, the larger the difference with PLSunb. However, this also
has the effect of increasing the number of PLO-sets. Indeed, when the archive
size is small, the PLS length is small, which suggests that the average distance
between a local optimum and the solutions from the corresponding basin of
attraction is also small and, hence, the number of PLO-sets is large.



Surprisingly, when the archive is unbounded as reported in Fig. 1, the PLS
length increases from k = 1 to k = 4 (despite we know that the number of
PLO-solutions increases linearly with k [14]) and only becomes smaller for k = 8
(Fig. 3). This increase in PLS length contradicts known results from single-
objective optimization [5]. In fact, in the case of PLO-sets, both the number of
PLO-solutions and the average size of the neighborhood of a PLO-set influence
the number of PLO-sets. First, when the number of PLO-solutions increases,
it is expected that the number of PLO-sets also increases, which will decrease
the PLS length. By contrast, when a PLO-set is larger, the number of neighbor
solutions in this set is larger as well. This potentially reduces the number of
PLO-sets, making PLS run longer. The balance between these two effects could
explain the PLS length; i.e., the PLS length starts to decrease when the number
of PLO-solutions has a larger impact on the number of PLO-sets than the size
of PLO-sets. Overall, these results suggest that the length of PLS could provide
an estimation of the number of PLO-sets, and thus a measure of difficulty for
archive-based local search.

5 Conclusions

In this paper, we analyzed the characteristics of local optima in set-based multi-
objective local search when applied to multi-objective NK-landscapes with corre-
lated objectives. First, the main factors affecting the cardinality of the maximal
PLO-sets returned by PLSunb are the number of objectives and the correla-
tion between them. By changing these two factors, the PLO-set size can vary
from a few tens to tens of thousands. Our results confirm trends already no-
ticed for other MCOP problems. In particular, the exponential increase in the
PLO-set size with lower objective correlation has already been reported for the
bi-objective QAP [13]. Another interesting observation is that, given a partic-
ular instance, the variability of PLO-set sizes is usually a very small fraction
of the average size, that is, most maximal PLO-sets for a given instance have
roughly the same size. This is not an obvious conjecture to make, and we cur-
rently do not know if it is also the case for other MCOPs. Our experiments also
strongly indicate that the relationship between local search length and number
of local optima, which is well-studied in the single-objective case [5] and in the
case of PLO-solutions [14], also applies to PLS and PLO-sets. Our results clearly
show that shorter PLS lengths typically correspond to lower quality results (and
hence, more difficult instances). A precise estimation of this relationship in the
case of PLO-sets would require to determine the exact number of PLO-sets for
a given instance.

From an algorithm design point of view, this work helps to better capture
the relation between running time and approximation quality according to the
problem instance characteristics. From a theoretical point of view, it would be
interesting to understand precisely the relationships between the PLO-sets ob-
tained by each archiving method. Moreover, it is clear to us that there is a direct
relationship between the PLO-solutions of a problem, and the number and size



of PLO-sets, however, a precise formulation remains to be described. Finally, we
left for future work discussing the implications of the results reported here with
respect to theoretical bounds reported in the literature [2]. Finally, complemen-
tary studies on other MCOPs and larger problem instances would allow us to
better understand the structure of PLO-sets for different archiving techniques.
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Belgian F.R.S.-FNRS, of which he is a postdoctoral researcher.

References

1. Aguirre, H.E., Tanaka, K.: Working principles, behavior, and performance of
MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)

2. Bringmann, K., Friedrich, T.: Convergence of hypervolume-based archiving algo-
rithms I: Effectiveness. In: Krasnogor, N., et al. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2011), pp. 745–752. ACM
Press, New York, NY (2011)

3. Drugan, M.M., Thierens, D.: Stochastic Pareto local search: Pareto neighbourhood
exploration and perturbation strategies. J. Heuristics 18(5), 727–766 (2012)
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