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Abstract

The classical setting of community detection consists of networks exhibiting a clustered structure.

To more accurately model real systems we consider a class of networks (i) whose edges may carry

labels and (ii) which may lack a clustered structure. Specifically we assume that nodes possess

latent attributes drawn from a general compact space and edges between two nodes are randomly

generated and labeled according to some unknown distribution as a function of their latent at-

tributes. Our goal is then to infer the edge label distributions from a partially observed network.

We propose a computationally efficient spectral algorithm and show it allows for asymptotically

correct inference when the average node degree could be as low as logarithmic in the total number

of nodes. Conversely, if the average node degree is below a specific constant threshold, we show

that no algorithm can achieve better inference than guessing without using the observations. As a

byproduct of our analysis, we show that our model provides a general procedure to construct ran-

dom graph models with a spectrum asymptotic to a pre-specified eigenvalue distribution such as a

power-law distribution.

Keywords: Community Detection, Stochastic Blockmodel, Spectral Methods, Galton-Watson Tree

1. Introduction

Detecting communities in networks has received a large amount of attention and has found numer-

ous applications across various disciplines including physics, sociology, biology, statistics, com-

puter science, etc (see the exposition Fortunato (2010) and the references therein). Most previous

work assumes networks can be divided into groups of nodes with dense connections internally and

sparser connections between groups, and considers random graph models with some underlying

cluster structure such as the stochastic blockmodel (SBM), a.k.a. the planted partition model. In

its simplest form, nodes are partitioned into clusters, and any two nodes are connected by an edge

independently at random with probability p if they are in the same cluster and with probability q
otherwise. The problem of cluster recovery under the SBM has been extensively studied and many

efficient algorithms with provable performance guarantees have been developed (see e.g., Chen and

Xu (2014) and the references therein).

Real networks, however, may not display a clustered structure; the goal of community detec-

tion should then be redefined. As observed in Heimlicher et al. (2012), interactions in many real

networks can be of various types and prediction of unknown interaction types may have practical
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merit such as prediction of missing ratings in recommender systems. Therefore an intriguing ques-

tion arises: Can we accurately predict the unknown interaction types in the absence of a clustered

structure? To answer it, we generalize the SBM by relaxing the cluster assumption and allowing

edges to carry labels. In particular, each node has a latent attribute coming from a general compact

space and for any two nodes, an edge is first drawn and then labeled according to some unknown

distribution as a function of their latent attributes. Given a partial observation of the labeled graph

generated as above, we aim to infer the edge label distributions, which is relevant in many scenarios

such as:

• Collaborative filtering: A recommender system can be represented as a labeled bipartite graph

where if a user rates a movie, then there is a labeled edge between them with the label being

the rating. One would like to predict the missing ratings based on the observation of a few

ratings.

• Link type prediction: A social network can be viewed as a labeled graph where if a person

knows another person, then there is a labeled edge between them with the label being their

relationship type (either friend or colleague). One would like to predict the unknown link

types based on the few known link types.

• Prediction of gene expression levels: A DNA microarray can be looked as a a labeled bipartite

graph where if a gene is expressed in a sample, then there is a labeled edge between them with

the label being the expression level. One would like to predict the unobserved expression level

based on the few observed expression levels.

1.1. Problem formulation

The generalized stochastic blockmodel (GSBM) is formally defined by seven parameters n, X ,
P, B, L, µ, ω, where n is a positive integer; X is a compact space endowed with the probability

measure P ; B : X × X → [0, 1] is a function symmetric in its two arguments; L is a finite set

with P(L) denoting the set of probability measures on it; µ : X × X → P(L) is a measure-valued

function symmetric in its two arguments; ω is a positive real number.

Definition 1 Suppose that there are n nodes indexed by i ∈ {1, . . . , n}. Each node i has an

attribute σi drawn in an i.i.d. manner from the distribution P on X . A random labeled graph is

generated based on σ: For each pair of nodes i, j, independently of all others, we draw an edge

between them with probabilityBσi,σj
; then for each edge (i, j), independently of all others, we label

it by ℓ ∈ L with probability µσi,σj
(ℓ); finally each labeled edge is retained with probability ω/n

and erased otherwise.

Given a random labeled graph G generated as above, our goal is to infer the edge label distribution

µσi,σj
for any pair of nodes i and j. To ensure the inference is feasible, we shall make the following

identifiability assumption: Let νx,y := Bx,yµx,y and

∀x 6= x′ ∈ X ,
∑

ℓ∈L

∫

X
|νx,y(ℓ)− νx′,y(ℓ)|P (dy) > 0; (1)

otherwise x, x′ are statistically indistinguishable and can be combined as a single element in X . We

emphasize that the model parameters (X , P,B,L, µ) are all fixed and do not scale with n, while ω
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could scale with n. Notice that nω characterizes the total number of observed edge labels and thus

can be seen as a measure of “signal strength”.

1.2. Main results

We show that it is possible to make meaningful inference of edge label distributions without knowl-

edge of any model parameters in the relatively “sparse” graph regime with ω = Ω(log n). In

particular, we propose a computationally efficient spectral algorithm with a random weighing strat-

egy. The random weighing strategy assigns a random weight to each label and constructs a weighted

adjacency matrix of the label graph. The spectral algorithm embeds the nodes into a finite, low di-

mensional Euclidean space based on the leading eigenvectors of the weighted adjacency matrix and

uses the empirical frequency of labels on the local neighborhood in the Euclidean space to estimate

the underlying true label distribution.

In the very “sparse” graph regime with ω = O(1), since there exist at least Θ(n) isolated nodes

without neighbors and to infer the edge label distribution between two isolated nodes the observed

labeled graph G does not provide any useful information, it is impossible to make meaningful

inference for at least a positive fraction of node pairs. Moreover, we show that it is impossible

to make meaningful inference for any randomly chosen pair of nodes when ω is below a specific

non-trivial threshold.

As a byproduct of our analysis, we show how the GSBM can generate random graph models

with a spectrum asymptotic to a pre-specified eigenvalue distribution such as e.g. a power law by

appropriately choosing model parameters based on some Fourier analysis.

1.3. Related work

Below we point out some connections of our model and results to prior work. More detailed com-

parisons are provided after we present the main theorems.

The SBM and spectral methods If the node attribute space X is a finite set and no edge label is

available, then the GSBM reduces to the classical SBM with finite number of blocks. The spectral

method and its variants are widely used to recover the underlying clusters under the SBM, see,

e.g., McSherry (2001); Coja-Oghlan (2010); Tomozei and Massoulié (2010); Rohe et al. (2011);

Chaudhuri et al. (2012). However, the previous analysis relies on the low-rank structure of the edge

probability matrix. In contrast, the edge probability matrix under the GSBM is not low-rank, and

our analysis is based on establishing a correspondence between the spectrum of a compact operator

and the spectrum of a weighted adjacency matrix (see Proposition 4). Similar connection appears

before in the context of data clustering considered in von Luxburg et al. (2005), where a graph is

constructed based on observed attributes of nodes and clustering based on the graph Laplacian is

analyzed. In contrast our setup does not assume the observation of node attributes. Also in our case

the observed graphs could be very sparse, while the graphs considered in von Luxburg et al. (2005)

are dense.

Latent space model If the node attribute space X is a finite-dimensional Euclidean space and no

edge label is present, then the GSBM reduces to the latent space model, proposed in (Hoff et al.

(2002); Handcock et al. (2007)). If we further assume the node attribute space X is the probability

simplex endowed with Dirichlet distribution with a parameter α, and B is a bilinear function, then
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the SBM reduces to the mixed membership SBM proposed in Airoldi et al. (2008), which is a

popular model for studying the overlapping community detection problem.

Exchangeable random graphs If we ignore the edge labels, the GSBM fits exactly into the

framework of “exchangeable random graphs” and the edge probability function B is known as

“graphon” (see e.g., Airoldi et al. (2013) and the references therein). It is pointed out in Bickel and

Chen (2009) that some known functions can be used to approximate the graphon, but no analysis

is presented. Our spectral algorithm approximates the graphon using the eigenfunctions and the

approximation error is determined by the tail of the spectrum of a suitably defined compact operator

(see eq. (8)). The exchangeable random graph models with constant average node degrees has been

studied in Bollobás et al. (2007), but the focus there is on the phase transition for the emergence of

the giant connected component.

Phase transition if ω = O(1) There is an emerging line of works Decelle et al. (2011); Mossel

et al. (2012, 2013); Massoulié (2014); Heimlicher et al. (2012); Lelarge et al. (2013) that try to

identify the sharp phase transition threshold for positively correlated clustering in the regime with a

bounded average node degree. All these previous works focus on the two communities case. Here

we consider the more general case with multiple communities and identify a threshold below which

positively correlated clustering is impossible. However, our phase transition threshold is not sharp.

1.4. Notation

For two discrete probability distributions µ and ν on L, let ‖µ − ν‖TV := 1
2

∑

ℓ∈L |µ(ℓ) − ν(ℓ)|
denote the total variation distance. Throughout the paper, we say an event occurs “a.a.s.” or “asymp-

totically almost surely” when it occurs with a probability tending to one as n→ ∞. We use the stan-

dard big O notation. For instance, for two sequences {an}, {bn}, an ∼ bn means limn→∞
an
bn

= 1.

2. Spectral reconstruction if ω = Ω(log n)

Let A ∈ {0, 1}n×n denote the adjacency matrix of G and Lij ∈ L denote the label of edge (i, j) in

G. Our goal reduces to infer µσi,σj
based on A and L. In this section, we study a polynomial-time

algorithm based on the spectrum of a suitably weighted adjacency matrix. The detailed description

is given in Algorithm 1 with four steps.

Step 1 defines the weighted adjacency matrix Ã using a random weighing function W of edge

labels. Step 2 extracts the top r eigenvalues and eigenvectors of Ã for a given integer r. Step 3

embeds n nodes in R
r based on the spectrum of Ã. Step 4 constructs an estimator of µσi,σj

using

the empirical label distribution on the edges between node j and nodes in the local neighborhood of

node i. Note that the random weight function W chosen in Step 1 is the key to exploit the labeling

information encoded inG. If νx,y were known, better deterministic weight function could be chosen

to allow for sharper estimation, e.g. (Lelarge et al. (2013)). However, no a priori deterministic

weight function could ensure consistent estimation irrespective of νx,y. The function hǫ(x) :=
min(1,max(0, 2 − x/ǫ)) used in Step 4 is a continuous approximation of the indicator function

I{x≤ǫ} such that hǫ(x) = 1 if x ≤ ǫ and hǫ = 0 if x ≥ 2ǫ.
Our performance guarantee of Spectral Algorithm 1 is stated in terms of the spectrum of the

integral operator defined as

Tf(x) :=

∫

X
K(x, y)f(y)P (dy), (5)
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Algorithm 1 Spectral Algorithm (A,L, r, ǫ)

1: (Random Weighing) Let W : L → [0, 1] be a random weighing function, with i.i.d. weights

W (ℓ) uniformly distributed on [0, 1]. Define the weighted adjacency matrix as Ãij = W (Lij)
if Aij = 1; otherwise Ãij = 0.

2: (Spectral Decomposition) For a given positive integer r, extract the r largest eigenvalues of Ã

sorted in decreasing order |λ(n)1 | ≥ |λ(n)2 | ≥ · · · ≥ |λ(n)r | and the corresponding eigenvectors

with unit norm v1, v2, . . . , vr ∈ R
n.

3: (Spectral Embedding) Embed the n nodes in R
r by letting

zi :=
√
n

(

λ
(n)
1

λ
(n)
1

v1(i), . . . ,
λ
(n)
r

λ
(n)
1

vr(i)

)

. (2)

4: (Label Estimation) For a given small positive parameter ǫ, define the estimator µ̂ij of µσi,σj
by

letting

µ̂ij(ℓ) :=

∑

i′ hǫ(||zi′ − zi||2)I{Li′j=ℓ}
ǫ+

∑

i′ hǫ(||zi′ − zi||2)Ai′j
. (3)

Define the estimator B̂ij of ω
nBσi,σj

by letting

B̂ij(ℓ) :=

∑

i′ hǫ(||zi′ − zi||2)Ai′j

ǫ+
∑

i′ hǫ(||zi′ − zi||2)
. (4)

where the symmetric kernel K is defined by

K(x, y) :=
∑

ℓ

W (ℓ)νx,y(ℓ) ∈ [0, |L|]. (6)

Since K is bounded, the operator T , acting on the function space L2(P ), is compact and therefore

admits a discrete spectrum with finite multiplicity of all of its non-zero eigenvalues (see e.g. Kato

(1966) and von Luxburg et al. (2005)). Moreover, any of its eigenfunctions is continuous on X .

Denote the eigenvalues of operator T sorted in decreasing order by |λ1| ≥ |λ2| ≥ · · · and its

corresponding eigenfunctions with unit norm by φ1, φ2, · · · . Define

d2(x, x′) :=
∫

X
|K(x, y)−K(x′, y)|2P (dy). (7)

It is easy to check that with probability 1 with respect to the random choices of W (ℓ), by the

identifiability condition (1), d(x, x′) > 0 for all x 6= x′ ∈ X . By Minkowski inequality, d(x, x′)
satisfies the triangle inequality. Therefore, d(x, x′) is a distance on X . By the definition of λk and

φk, we have (the following serie converges in L2(P × P ), see Chapter V.4 in Kato (1966)):

K(x, y) =

∞
∑

k=1

λkφk(x)φk(y), (8)

and thus d2(x, x′) =
∑∞

k=1 λ
2
k (φk(x)− φk(x

′))2.
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To derive the performance guarantee of Spectral Algorithm 1, we make the following continuity

assumption on νx,y. Similar continuity assumptions appeared before in the literature on the latent

space model and the exchangeable random graph model (see e.g., (Chatterjee, 2012, Section 4.4)

and (Airoldi et al., 2013, Section 2.1)).

Assumption 1 For every ℓ ∈ L, νx,y(ℓ) is continuous on X 2, hence by compactness of X uniformly

continuous. Let ψ(·) denote a modulus of continuity of all functions (x, y) → νx,y(ℓ) and (x, y) →
Bx,y. That is to say, for all x, x′, y, y′,

|Bx,y −Bx′,y′ | ≤ ψ(d(x, x′) + d(y, y′))

and similarly for νx,y(ℓ).

Let ǫr :=
∑

k>r λ
2
k for a fixed integer r, characterizing the tail of the spectrum of the operator

T . The following theorem gives an upper bound of the estimation error of µ̂ij for most pairs (i, j)
in terms of ǫr and ǫ.

Theorem 2 Suppose Assumption 1 holds. Assume that ω ≥ C log n for some universal positive

constant C and r chosen in Spectral Algorithm 1 satisfies |λr| > |λr+1|. Then a.a.s. the estimators

µ̂ and B̂ given in Spectral Algorithm 1 satisfy

Bσi,σj
|µ̂ij(ℓ)− µσi,σj

(ℓ)| ≤ 2ψ(2|λ1|ǫ) +
1

|λ1|2ǫ2
√
ǫr

∫

X h|λ1|ǫ(d(σi, x))P (dx)
:= η, ∀ℓ ∈ L,

|B̂ij −
ω

n
Bσi,σj

| ≤ ω

n
η, (9)

for a fraction of at least (1−√
ǫr) of all possible pairs (i, j) of nodes.

Note that if ǫr goes to 0, the second term in η given by (9) vanishes, and η simplifies to 2ψ(2|λ1|ǫ)
which goes to 0 if ǫ further goes to 0. In the case whereBσi,σj

is strictly positive, Theorem 2 implies

that the estimation error of the edge label distribution goes to 0 as successively ǫr and ǫ converge to

0. Note that ǫ is a free parameter chosen in Spectral Algorithm 1 and can be made arbitrarily small

if ǫr is sufficiently small. The parameter ǫr measures how well the compact space X endowed with

measure P can be approximated by r discrete points, or equivalently how well our general model

can be approximated by the labeled stochastic block model with r blocks. The smaller ǫr is, the

more structured, or the more “low-dimensional” our general model is. In this sense, Theorem 2

establishes an interesting connection between the estimation error and the structure present in our

general model.

A key part of the proof of Theorem 2 is to show that for any fixed k, the normalized k-th largest

eigenvalue λ
(n)
k /λ

(n)
1 of the weighted adjacency matrix Ã asymptotically converges to λk/λ1 where

λk is the k-th eigenvalue of integral operator T , and this is precisely why our spectral embedding

given by (2) is defined in a normalized fashion. The following simple example illustrates how we

can derive closed form expressions for the spectrum of integral operator T .

Example 1 Take X = [0, 1] and P as the Lebesgue measure. Assume unlabeled edges. Let

Bx,y = g(x−y) where g is an even (i.e. g(−·) = g(·)), 1-periodic function. Denote its Fourier series

expansion by g(x) =
∑

k≥0 gk cos(2πkx). For instance, if g(x) = |x| for x ∈ [−1/2, 1/2], then

g0 = 1/4 and gk = [(−1)k − 1]/(π2k2) for k ≥ 1. If g(x) = I{−1/4≤x≤1/4} for x ∈ [−1/2, 1/2],
then g0 = 1/2 and gk = 2 sin(πk/2)/(πk) for k ≥ 1.

6
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For the above example, Tf = g ∗ f where ∗ denotes convolution. Fourier series analysis entails

that λk must coincide with Fourier coefficient g0 or gk/2 for k ≥ 1 (gk/2 appearing twice in the

spectrum of T ). This example thus gives a general recipe for constructing random graph models

with spectrum asymptotic to a pre-specified eigenvalue profile. For g(x) = |x| on [−1/2, 1/2], we

find in particular that λ1 = 1/4 and |λ2k| = |λ2k+1| = 1/(π2(2k − 1)2), which is a power-law

spectrum with the decaying exponent being 2. For g(x) = I{−1/4≤x≤1/4} on [−1/2, 1/2], λ1 = 1/2
and |λ2k| = |λ2k+1| = 1/(π(2k − 1)), which is a power-law spectrum with the decaying exponent

being 1.

Comparisons to previous work Theorem 2 provides the first theoretical result on inferring edge

label distributions to our knowledge. For estimating edge probabilities, Theorem 2 implies or im-

proves the best known results in several special cases.

For the SBM with finite r blocks, ǫr is zero. By choosing ǫ sufficiently small in Theorem 2,

we see that our spectral method is asymptotically correct if ω = Ω(log n), which matches with best

known bounds (see e.g., Chen and Xu (2014) and the references therein). For the mixed membership

SBM with finite r blocks, the best known performance guarantee given by Anandkumar et al. (2013)

needs ω to be above the order of several log n factors, while Theorem 2 only needs ω to be the order

of log n. However, Theorem 2 requires the additional spectral gap assumption and needs ǫr to

vanish. Also, notice that Theorem 2 only applies to the setting where the edge probability p within

the community exceeds the edge probability q across two different communities by a constant factor,

while the best known results in Chen and Xu (2014); Anandkumar et al. (2013) apply to the general

setting with any r, p, q.

For the latent space model, Chatterjee (2012) proposed a universal singular value thresholding

approach and showed that the edge probabilities can be consistently estimated if ω ≥ n
k

k+2 with

some Lipschitz condition on B similar to Assumption 1, where k is the dimension of the node

attribute space. Our results in Theorem 2 do not depend on the dimension of the node attribute

space and only need ω to be on the order of log n.

For the exchangeable random graph models, a singular value thresholding approach is shown in

Chatterjee (2012) to estimate the graphon consistently. More recently, Airoldi et al. (2013) shows

that the graphon can be consistently estimated using the empirical frequency of edges in local neigh-

borhoods, which are constructed by thresholding based on the pairwise distances between different

rows of the adjacency matrix. All these previous works assume the edge probabilities are constants.

In contrast, Theorem 2 applies to much sparser graphs with edge probabilities could be as low as

log n/n.

3. Impossibility if ω = O(1)

We have seen in the last section that Spectral Algorithm 1 achieves asymptotically correct inference

of edge label distributions so long as ω = Ω(log n) and ǫr = 0. In this section, we focus on the

sparse regime where ω is a constant, i.e., the average node degree is bounded and the number of

observed edge labels is only linearly in n. We identify a non-trivial threshold under which it is

fundamentally impossible to infer the edge label distributions with an accuracy better than guessing

without using the observations.

To derive the impossibility result, let us consider a simple scenario where the compact space

X = {1, . . . , r} is endowed with a uniform measure P , Bx,y = a
a+b if x = y and Bx,y = b

a+b

7
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if x 6= y for two positive constants a, b, and µx,y = µ if x = y and µx,y = ν if x 6= y for two

different discrete probability measures µ, ν on L. Since ω is a constant, the observed labeled graph

G is sparse and has a bounded average degree. Similar to the Erdős-Rényi random graph, there are

at least Θ(n) isolated nodes without neighbors. To infer the edge label distribution between two

isolated nodes, the observed labeled graph G does not provide any useful information and thus it is

impossible to achieve the asymptotically correct inference of edge label distribution for two isolated

nodes. Hence we resort to a less ambitious objective.

Objective 1 Given any two randomly chosen nodes i and j, we would like to correctly determine

whether the label distribution is µ or ν with probability strictly larger than 1 − 1/r, which is

achievable by always guessing ν and is the best one can achieve if no graph information available.

Note that if Objective 1 is not achievable, then the expected estimation error is at least 1
2r‖µ −

ν‖TV. One might think that we can always achieve Objective 1 as long as ω > 0 such that the

graph contains a giant connected component, because the labeled graph G then could provide extra

information. It turns out that this is not the case. Define

τ =
1

r(a+ b)

∑

ℓ∈L
|aµ(ℓ)− bν(ℓ)|. (10)

Let ω0 = 1/τ and ωc = r(a+b)
a+(r−1)b . Then by definition of τ , we have ω0 > ωc. Note that when

ω > ωc, the average node degree is larger than one, and thus similar to Erdős-Rényi random graph,

G contains a giant connected component. The following theorem shows that Objective 1 is funda-

mentally impossible if ω < ω0 where ω0 is strictly above the threshold ωc for the emergence of the

giant connected component.

Theorem 3 If ω < ω0, then for any two randomly chosen nodes ρ and v,

∀x, y ∈ {1, . . . , r}, P(σρ = x|G, σv = y) ∼ 1

r
a.a.s .

The above theorem implies that it is impossible to correctly determine whether two randomly chosen

nodes have the same attribute or not with probability larger than 1 − 1/r and thus Objective 1 is

fundamentally impossible. In case a 6= b, it also implies that we cannot correctly determine whether

the edge probability between nodes i and j is a
a+b or b

a+b with probability strictly larger than 1−1/r.

This indicates the need for a minimum number of observations in order to exploit the information

encoded in the labeled graph.

Comparisons to previous work To our knowledge, Theorem 2 provides the first impossibility

result on inferring edge label distributions and node attributes in the case with multiple communities.

The previous work focuses on the case with two community case. If r = 2 and no edge label is

available, it is conjectured in Decelle et al. (2011) and later proved in Mossel et al. (2012, 2013);

Massoulié (2014) that the positively correlated clustering is feasible if and only if (a−b)2 > 2(a+b),
or equivalently, ω > 1/2τ2. If the edge label is available, it is conjectured in Heimlicher et al. (2012)

that the the positively correlated clustering is feasible if and only if ω > 1/τ ′ with

τ ′ =
1

2(a+ b)

∑

ℓ∈L

(aµ(ℓ)− bν(ℓ))2

aµ(ℓ) + bν(ℓ)
≤ τ.

8
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It is proved in Lelarge et al. (2013) that the positively correlated clustering is infeasible if ω < 1/τ ′.
Comparing to the previous works, the threshold 1/τ given by Theorem 3 is not sharp in the special

case with two communities.

4. Numerical experiments

In this section, we explore the empirical performance of our Spectral Algorithm 1 based on Example

1. In particular, suppose n = 1500 nodes are uniformly distributed over the space X = [0, 1]. Let

Bx,y = g(x − y) where g is even, 1-periodic and defined by g(x) = |x| for x ∈ [−1/2, 1/2].
Assume unlabeled edges first.

We simulate the spectral embedding given by Step 3 of Algorithm 1 for a fixed observation

probability ω/n = 0.6. Pick r = 3 in Algorithm 1. Note that the eigenvector v1 corresponding to

the largest eigenvalue is nearly parallel to the all-one vector and thus does not convey any useful

information. Therefore, our spectral embedding of n nodes are based on v2 and v3. In particular,

let zi = (v3(i), v2(i)) ∈ R
2. As we derived in Section 2, the second and third largest eigenvalues

of operator T are given by λ2 = λ3 = −1/π2, and the corresponding eigenfunctions are given

by φ2(x) =
√
2 cos(2πx) and φ3(x) =

√
2 sin(2πx). Proposition 4 shows that zi asymptotically

converges to fi =
√

2
n(cos(2πσi), sin(2πσi)). We plot fi and zi in a two-dimensional plane as

shown in Fig. 1(a) and Fig. 1(b), respectively. For better illustration, we divide all nodes into

ten groups with different colors, where the k-th group consists of nodes with attributes given by
1
n [100(k − 1) + 1, 100(k − 1) + 2, . . . , 100k]. As we can see, zi is close to fi for most nodes i,
which coincides with our theoretical finding.
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Figure 1: (a): The spectral embedding given by fi; (b): The spectral embedding given by zi.

Then we simulate Spectral Algorithm 1 on estimating the observed edge probability ω
nBσi,σj

between any node pair (i, j) by picking r = 3 and setting ǫ = 0.5median{‖zi − zj‖}. We measure

the estimation error by the normalized mean square error given by ‖B̂ − ω
nB

∗‖F /‖B̄ − ω
nB

∗‖F ,

where B∗ is the true edge probability defined by B∗
ij = Bσi,σj

; B̂ is our estimator defined in (4);

B̄ij is the empirical average edge probability defined by B̄ij =
∑

i′ Ai,i′/(n − 1). Our simulation

result is depicted in Fig. 2(a).
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Figure 2: (a): Estimating the observed edge probability; (b): Estimating the edge label distribution.

Next we consider labeled edges with two possible labels +1 or −1 and µx,y(+1) = 2g(x− y).
We simulate Spectral Algorithm 1 for estimating µσi,σj

between any node pair (i, j) by choosing

the weight function as W (±1) = ±1. We again measure the estimation error by the normalized

mean square error given by ‖µ̂− ω
nµ

∗‖F /‖µ̄−µ∗‖F , where µ∗ is the true label distribution defined

by µ∗ij = µσi,σj
; µ̂ is our estimator defined in (3); µ̄ij is the empirical label distribution defined by

µ̄ij(+1) =
∑

i′ I{Lii′=+1}/
∑

i′ Aii′ . Our simulation result is depicted in Fig. 2(b). As we can see

from Fig. 2, when ω/n is larger than 0.1, our spectral algorithm performs better than the estimator

based on the empirical average.

5. Proofs

5.1. Proof of Theorem 2

Our proof is divided into three parts. We first establish the asymptotic correspondence between the

spectrum of the weighted adjacency matrix Ã and the spectrum of the operator T using Proposi-

tion 4. Then, we prove that the estimator of edge label distribution converges to a limit. Finally,

we upper bound the total variation distance between the limit and the true label distribution using

Proposition 5.

Proposition 4 Assume that ω ≥ C log n for some universal positive constant C and r chosen in

Spectral Algorithm 1 satisfies |λr| > |λr+1|. Then for k = 1, 2, . . . , r+1, almost surely λ
(n)
k /λ

(n)
1 ∼

λk/λ1. Moreover, for k = 1, 2, . . . , r, almost surely there exist choices of orthonormal eigenfunc-

tions φk of operator T associated with λk such that limn→∞
∑n

i=1(vk(i)− 1√
n
φk(σi))

2 = 0.

By Proposition 4, we get the existence of eigenfunctions φk of T associated with λk such that

a.a.s., by letting

fm :=

(

λ1
λ1
φ1(σm), . . . ,

λr
λ1
φr(σm)

)

,

we have

n
∑

m=1

||zm − fm||22 =
n
∑

m=1

r
∑

k=1

(

√
n
λ
(n)
k

λ
(n)
1

vk(m)− λk
λ1
φk(σm)

)2

= o(n).

10
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By Markov’s inequality,

1

n
|{m ∈ {1, . . . , n} : ||zm − fm||2 ≥ δn}| ≤

∑n
m=1 ||zm − fm||22

nδ2n
=

1

δ2n
o(1).

Note that δn can be chosen to decay to zero with n sufficiently slowly so that the right-hand side of

the above is o(1). We call nodes m satisfying ‖zm − fm‖2 ≥ δn “bad nodes”. Let I denote the set

of “bad nodes”. It follows from the last display that |I| = o(n). Let J denote the set of nodes with

at least γn fraction of edges directed towards “bad nodes”, i.e.,

J = {j : |{i ∈ I : Aij = 1}| ≥ γn|{i : Aij = 1}|}.

Note that the average node degree in G is Θ(ω). Since ω ≥ C log n by assumption, it follows from

the Chernoff bound that the observed node degree is Θ(ω) with high probability. Therefore, we

can choose γn decaying to zero while still having |J | = o(n), i.e., all but a vanishing fraction of

nodes have at most γn fraction of edges directed towards “bad nodes”. We have thus performed an

embedding of n nodes in R
r such that for m,m′ /∈ I,

||zm − zm′ ||2 =
1

|λ1|
dr(σm, σm′) +O(δn), (11)

where pseudo-distance dr is defined by d2r(x, x
′) :=

∑r
k=1 λ

2
k (φk(x)− φk(x

′))2 .
The remainder of the proof exploits this embedding and the fact that pseudo-distance dr and

distance d are apart by at most ǫr in some suitable sense. For a randomly selected pair of nodes

(i, j), one has a.a.s. i /∈ I and j /∈ J . Therefore, node j has at most γn = o(1) fraction of edges

directed towards “bad nodes”. Hence, by (11),

∑

i′

hǫ(||zi′ − zi||2)I{Li′j=ℓ} =
∑

i′

I{Li′j=ℓ}h|λ1|ǫ (dr(σi, σi′) +O(δn)) +O(ωγn), (12)

and

∑

i′

hǫ(||zi′ − zi||2)Ai′j =
∑

i′

h|λ1|ǫ (dr(σi, σi′) +O(δn))Ai′j +O(ωγn). (13)

The first term in the R.H.S. of (12) is a sum of i.i.d. bounded random variables with mean given by

ω

n

∫

X
h|λ1|ǫ (dr(σi, x) +O(δn)) νx,σj

(ℓ)P (dx).

Since ω ≥ C log n by assumption, it follows from the Bernstein inequality that a.a.s.

∑

i′

hǫ(||zi′ − zi||2)I{Li′j=ℓ} =(1 + o(1))ω

∫

X
h|λ1|ǫ (dr(σi, x) +O(δn)) νx,σj

(ℓ)P (dx)

+O(ωγn). (14)

The first term in the R.H.S. of (13) is a sum of i.i.d. bounded random variables with mean given by

ω

n

∫

X
h|λ1|ǫ (dr(σi, x) +O(δn))Bx,σj

P (dx).

11
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It again follows from the Bernstein inequality that a.a.s.

∑

i′

hǫ(||zi′ − zi||2)Ai′j =(1 + o(1))ω

∫

X
h|λ1|ǫ (dr(σi, x) +O(δn))Bx,σj

P (dx)

+O(ωγn). (15)

Note that hǫ(x) is a continuous function in x. Therefore,

lim
n→∞

h|λ1|ǫ (dr(σi, x) +O(δn)) = h|λ1|ǫ(dr(σi, x)).

By the dominated convergence theorem, it follows from (3), (14), (15) that a.a.s.

µ̂i,j(ℓ) ∼
∫

X h|λ1|ǫ(dr(σi, x))νx,σj
(ℓ)P (dx)

∫

X h|λ1|ǫ(dr(σi, x))Bx,σj
P (dx)

:= µ∗i,j(ℓ). (16)

Similarly, we have a.a.s.

B̂i,j(ℓ) ∼
ω

n

∫

X h|λ1|ǫ(dr(σi, x))Bx,σj
P (dx)

∫

X h|λ1|ǫ(dr(σi, x))P (dx)
:= B∗

i,j . (17)

The following proposition upper bounds the difference between the limit µ∗i,j(ℓ) (resp. B∗
i,j(ℓ)) and

µσi,σj
(ℓ) (resp. Bσi,σj

).

Proposition 5 Suppose Assumption 1 holds. Then there exists a fraction of at least (1 − √
ǫr) of

all possible pairs (i, j) of nodes such that

Bσi,σj
|µ∗i,j(ℓ)− µσi,σj

(ℓ)| ≤ 2ψ(2|λ1|ǫ) +
1

|λ1|2ǫ2
√
ǫr

∫

X h|λ1|ǫ(d(σi, x))P (dx)
:= η, ∀ℓ ∈ L,

|B∗
i,j −

ω

n
Bσi,σj

| ≤ ω

n
η. (18)

Applying Proposition 5, our theorem then follows.

5.2. Proof of Theorem 3

Proof of Theorem 3 relies on a nice coupling between the local neighborhood of ρ with a simple

labeled Galton-Watson tree. It is well-known that the local neighborhood of a node in the sparse

graph is “tree-like”. In the case with r = 2, the coupling result is first studied in Mossel et al. (2012)

and generalized to the labeled tree in Lelarge et al. (2013). In this paper, we extend the coupling

result to any finite r ≥ 2.

Let d = ω a+(r−1)b
r(a+b) and consider a labeled Galton-Watson tree T with Poisson offspring distri-

bution with mean d. The attribute of root ρ is chosen uniformly at random from X . For each child

node, independently of everything else, it has the same attribute with its parent with probability
a

a+(r−1)b and one of r − 1 different attributes with probability b
a+(r−1)b . Every edge between the

child and its parent is independently labeled with distribution µ if they have the same attribute and

with distribution ν otherwise.

The labeled Galton-Watson tree T can also be equivalently described as follows. Each edge is

independently labeled at random according to the probability distribution P(ℓ) = aµ(ℓ)+(r−1)bν(ℓ)
a+(r−1)b .

12
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The attribute of root ρ is first chosen uniformly at random from X . Then, for each child node,

independently of everything else, it has the same attribute with its parent with probability 1− (r −
1)ǫ(ℓ) and one of r − 1 different attributes with probability ǫ(ℓ), where

ǫ(ℓ) =
bν(ℓ)

aµ(ℓ) + (r − 1)bν(ℓ)
. (19)

Recall that GR denote the neighborhood of ρ in G within distance R and ∂GR denote the nodes

at the boundary of GR. Let TR denote the tree T up to depth R and ∂TR denote the set of leaf nodes

of TR. The following lemma similar to coupling lemmas in Mossel et al. (2012) and Lelarge et al.

(2013) shows that GR can be coupled with the labeled Galton-Watson tree TR.

Lemma 6 Let R = θ log n for some small enough constant θ > 0, then there exists a coupling

such that a.a.s. (GR, σGR
) = (TR, σTR), where σGR

denote the node attributes on the subgraph

GR.

For the labeled Galton-Watson tree, we show that if ω < ω0, then the attributes of leaf nodes

are asymptotically independent with the attribute of root.

Lemma 7 Consider a labeled Galton-Waltson tree T with ω < ω0. Then as R→ ∞,

∀x ∈ {1, . . . , r}, P(σρ = x|T , σ∂TR
) → 1

r
a.a.s.

By exploiting Lemma 6 and Lemma 7, we give our proof of Theorem 3. By symmetry, P[σρ =
x|G, σv = y] = P[σρ = x′|G, σv = y] for x, x′ 6= y and x 6= x′. Therefore, we only need to show

that P[σρ = y|G, σv = y] ∼ 1/r for any y ∈ X and it further reduces to showing that

P[σρ = y|G, σv = y, σ∂GR
] ∼ 1/r. (20)

Let R = θ log n be as in Lemma 6 such that GR = o(
√
n) and thus v /∈ GR a.a.s.. Lemma 4.7

in Mossel et al. (2012) shows that σρ is asymptotically independent with σv conditional on σ∂GR
.

Hence, P[σρ = y|G, σv = y, σ∂GR
] ∼ P[σρ = y|G, σ∂GR

]. Also, note that P(σρ = y|G, σ∂GR
) =

P(σρ = y|GR, σ∂GR
). Lemma 6 implies that P(σρ = y|GR, σGR

) ∼ P(σρ = y|TR, σ∂TR), and by

Lemma 7, P(σρ = y|TR, σ∂TR) ∼ 1
r . Therefore, equation (20) holds.
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Appendix A. Proof of Proposition 4

We first introduce notations used in the proof. Several norms on matrices will be used. The spectral

norm of a matrixX is denoted by ‖X‖ and equals the largest singular value. The Frobenius norm of

a matrix X is denoted by ‖X‖F and equals the square root of the sum of squared singular values. It

follows that ‖X‖F ≤ √
r‖X‖2 if X is of rank r. For vectors, the only norm that will be used is the

usual l2 norm, denoted as ‖x‖2. Introduce a n×nmatrix Â defined by Âij = K(σi, σj). Recall that

r is a fixed positive integer in Spectral Algorithm 1. Denote r the largest eigenvalues of Â sorted

in decreasing order by |λ′(n)1 | ≥ · · · ≥ |λ′(n)r | of Â. Let v′1, . . . , v
′
r ∈ R

n be the corresponding

eigenvectors with unit norm. An overview of the proof is shown in Fig. 3.

Ã Â T
Lemma 9 and 10 Lemma 8

{λ(n)
k
, vk}rk=1 {λ′(n)

k
, v′

k
}r
k=1

{λk, φk}rk=1

Figure 3: Proof outline for showing the asymptotic correspondence between the spectrum of Ã and

that of T .

Lemma 8 follows from the results of Koltchinskii (1998) and their application as per Theorem

4 and Theorem 5 of von Luxburg et al. (2005).
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Lemma 8 Under our assumptions on operator T , for k = 1, 2, . . . , r + 1, almost surely 1
nλ

′(n)
k ∼

λk, and there exist choices of orthonormal eigenfunctions φk of operator T associated with λk such

that limn→∞
∑n

i=1(v
′
k(i)− 1√

n
φk(σi))

2 = 0.

Lemma 9 gives sharp controls for the spectral norm of random symmetric matrices with bounded

entries initially developed by Feige and Ofek (2005) and extended by Tomozei and Massoulié (2010)

and Chatterjee (2012).

Lemma 9 Let M be a random symmetric matrix with entries Mij independent up to symmetry,

Mij ∈ [0, 1] and such that E[Mij ] = ω/n. If ω ≥ C log n/n for a universal positive constant C,

then for all c > 0 there exists c′ > 0 such that with probability at least 1− n−c, one has

‖M − E[M ]‖ ≤ c′
√
ω. (21)

Lemma 10, a consequence of the famous Davis-Kahan sin θ Theorem Davis and Kahan (1970),

controls the perturbation of eigenvectors of perturbed matrices.

Lemma 10 For two symmetric matrices M , M ′ and orthonormal eigenvectors (u1, . . . , ur) (re-

spectively u′1, . . . , u
′
r) associated with the r leading eigenvalues of M (respectively M ′), denoting

U = [u1, . . . , ur], U
′ = [u′1, . . . u

′
r], there exists an orthogonal r × r matrix O such that

‖U − U ′O‖ ≤
√
2‖M −M ′‖

|θr| − |θr+1| − ‖M −M ′‖ , (22)

where θk is the k-th largest eigenvalue of M ′ in absolute value.

We omit proofs of lemmas which can be found in the mentioned literature. Next, we present

the proof of our proposition. Applying Lemma 10 to M = Ã and M ′ = (ω/n)Â, then we have

U = [v1, . . . , vr], U
′ = [v′1, . . . , v

′
r], and θk = (ω/n)λ

′(n)
k for k = 1, . . . , r + 1. By Lemma

9 and observing that E[Ã] = (ω/n)Â, it readily follows that ‖M − M ′‖ = O(
√
ω) with high

probability. By Weyl’s inequality, we have |λ(n)k − θk| ≤ ‖M −M ′‖ = O(
√
ω). Moreover, by

Lemma 8, for k = 1, . . . , r+1, θk ∼ ωλk. Hence, λ
(n)
k /λ

(n)
1 = λk/λ1+O(1/

√
ω). By assumption,

|λr| > |λr+1|, and thus the right-hand side of (22) is O(1/
√
ω). Note that U,U ′O are of rank r, it

follows that

‖U − U ′O‖F ≤
√
2r‖U − U ′O‖ = O(1/

√
ω).

Therefore, by Lemma 8, there exist choices of orthonormal eigenfunctions φk of operator T associ-

ated with λk such that limn→∞
∑n

i=1(vk(i)− 1√
n
φk(σi))

2 = 0 for k = 1, . . . , r.

Appendix B. Proof of Proposition 5

The main idea of proof is to show that the pseudo-distance dr is close to distance d in an appropriate

sense. By definition, d(x, x′) ≥ dr(x, x
′) and moreover,

∫

X 2

[d2(x, x′)− d2r(x, x
′)]P (dx)P (dx′) =

∑

k>r

λ2k

∫

X 2

(

φk(x)− φk(x
′)
)2 ≤ 2

∑

k>r

λ2k = 2ǫr.
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Define d2>r(x, x
′) = d2(x, x′)− d2r(x, x

′). Markov’s inequality entails that
∫

X
P (dx′)I{∫

X
d2>r(x,x

′)P (dx)≥2
√
ǫr} ≤ √

ǫr.

Note that the following inequalities hold

0 ≤ hǫ(dr(x, x
′))− hǫ(d(x, x

′)) ≤ 1

2ǫ2
[

d2(x, x′)− d2r(x, x
′)
]

=
d2>r(x, x

′)
2ǫ2

. (23)

By the previous application of Markov’s inequality, for a fraction of at least 1 −√
ǫr of nodes i, it

holds that
∫

X
d2>r(x, σi)P (dx) ≤ 2

√
ǫr.

Combined with the previous Lipschitz property (23) and the definition of µ∗ given by (16), this

entails that for a fraction of at least 1−√
ǫr nodes i, one has

a

b+
√
ǫr

|λ1|2ǫ2
≤ µ∗i,j(ℓ) ≤

a+
√
ǫr

|λ1|2ǫ2

b
,

where we have introduced the following notations

a =

∫

X
h|λ1|ǫ(d(x, σi)νx,σj

(ℓ)P (dx), b =

∫

X
h|λ1|ǫ(d(x, σi)Bx,σj

P (dx).

Define

a′ =
∫

X
h|λ1|ǫ(d(σi, x))νσi,σj

(ℓ)P (dx), b′ =
∫

X
h|λ1|ǫ(d(σi, x))Bσi,σj

P (dx).

Then, µσi,σj
(ℓ) = a′/b′. Note that for positive constants c1 ≤ c2, c3 ≤ c4, | c1c2 − c3

c4
| ≤ 1

c4
(|c1 −

c3|+ |c2 − c4|). Hence,

|µ∗i,j(ℓ)− µσi,σj
(ℓ)| ≤

|a− a′|+ |b− b′|+
√
ǫr

|λ1|2ǫ2

b′
.

By assumption 1, for all x, x′, y, y′,

|Bx,y −Bx′,y′ | ≤ ψ(d(x, x′) + d(y, y′))

and similarly for νx,y(ℓ). Therefore,

|a− a′|+ |b− b′| ≤
∫

X
h|λ1|ǫ(d(σi, x))

[

|νx,σi
(ℓ)− νσi,σj

(ℓ)|+ |Bx,σi
−Bσj ,σi

|
]

P (dx)

≤ 2ψ(2|λ1|ǫ)
∫

X
h|λ1|ǫ(d(σi, x))P (dx).

It follows that

Bσi,σj
|µ∗i,j(ℓ)− µσi,σj

(ℓ)| ≤ 2ψ(2|λ1|ǫ) +
√
ǫr

|λ1|2ǫ2
1

∫

X h|λ1|ǫ(d(σi, x))P (dx)
= η.

The right-hand side goes to zero as one lets successively ǫr then ǫ go to zero. Similarly, we can

show |B∗
i,j − ω

nBσi,σj
| ≤ ω

nη.
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XU MASSOULIÉ LELARGE

Appendix C. Proof of Lemma 7

The proof technique is adapted from Section 5 in Mossel (2004). Consider two distributions on the

labeled Galton-Watson tree, one with the attribute of the root being x, and one with the attribute

of the root being y 6= x. We can couple the two distributions in the following way: if the two

distributions agree on the attribute of node v, then couple them together such that they also agree

for all the children of v; if the two distributions do not agree on the attribute of node v, use the

optimal coupling to make them agree as much as possible for each children of v. For each children

w with Lvw = ℓ, it is easy to check that under the optimal coupling, the two distributions will not

agree on the attribute of w with probability |1 − rǫ(ℓ)|, where ǫ(ℓ) is defined in (19). Hence, the

non-coupled nodes grow as a branching process with the branching number given by

ω
∑

ℓ

aµ(ℓ) + (r − 1)bν(ℓ)

r(a+ b)
|1− rǫ(ℓ)| = ωτ.

It is well known that if the branching number ωτ < 1, the branching process will eventually die

a.a.s. Thus as R→ ∞, a.a.s.

P(σ∂TR
|T , σρ = x) = P(σ∂TR

|T , σρ = y).

By Bayes’ formula, the theorem follows.

Appendix D. Bernstein Inequality

Theorem 11 LetX1, . . . , Xn be independent random variables such that |Xi| ≤M almost surely.

Let σ2i = Var(Xi) and σ2 =
∑n

i=1 σ
2
i , then

P(

n
∑

i=1

Xi ≥ t) ≤ exp

(

−t2
2σ2 + 2

3Mt

)

.

It follows then

P(

n
∑

i=1

Xi ≥
√
2σ2u+

2Mu

3
) ≤ e−u.

18
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