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AN ORIGINAL 1D TRANSVERSAL MAGNETOTHERMAL CYCLE MODEL FOR PRELIMINARY DESIGN OF AMR REGENERATOR

A 1D transversal model has been developed for purpose of AMR optimization. The model is fast to compute and is focused on transversal exchange. It is applied vianumerous simulations to estimate the best working point considering a large number of parameters.The relevance of our model is validated throughtest caseswhich are compared with amore complex2D model.Method of similarity and dimensionless analysis areassociated to our approach in order to have guidelinesfor the system optimization.

INTRODUCTION

The magnetocaloric refrigeration is an environmentally friendly alternative to classic gas compression technology. An optimized system could fit the specification requested whileprovidingimproved efficiency. An optimization of a multiphysics system as active magnetic regenerative (AMR) cooling system is a complex task linked to the number of parameters and the simulation time. Many AMR cycle models based on different approaches have been developed [START_REF] Nielsen | Review on numerical modeling of active magnetic regenerators for room temperature applications[END_REF]. 1D longitudinal models [START_REF] Risser | Numerical simulation of magnetocaloric system behaviour for an industrial application[END_REF] are fast but have to face the main issue of description of the heat transfer with a single coefficient.Whereas 2D models require more important computing time and memory, therefore they are not suitable for optimization. In this paper, we present an optimization approach based on the method of similarity and a new 1D transversal model for the analysis of the AMR local behavior. The weak coupling between temperature and fluid mechanics authorizes to decouple the physics areas and solve the periodic fluid flow beforehand. Thus in all our simulations, the periodic fluid solution previously solved is introduced in the thermal model. The magnetic field is also assumed to be homogeneous. Velocity: 𝑣 * 1/𝛼 1

METHOD OF SIMILARITY

The optimization of the system leads to study degrees of freedom. The method of similarity looks for a transformation which keeps invariant the systembehavior.An optimal situationrevealsa set of solutionsthrough a linear transformation linking space, time, etc. A dimensionless analysis ofthe thermal equationdescribing the AMR is done Eq. ( 1) with𝜇 viscosity,𝑐 volumetric thermal capacity,𝜆 thermal conductivity, 𝑠 entropy, subscript𝑚 for MCM and 𝑤 for the fluid, 𝑇 temperature, 𝑣 fluid velocity.The same analysis is achieved for the fluid equation and for the boundary condition at the interface between fluid and MCM.-‖ indicatesdimensionless variables whereasthe superscript -*‖represents the characteristic quantities. Δ𝑇 * is the temperature spanbetween the hot and cold sources. 𝑆𝑟𝑐 representsthe magnetocaloric effect. In the same manner, the magnetic workand cooling power densitiesare written on Eq. ( 2),neglecting the conduction heat transfer. 1)remains similar when the y size is multiplied by a factor 𝛼if the others variables meet the requirements specified in the2 nd column of Table 1. Thus,Q Cold is increased by a factor 1/𝛼 2 while COPis kept constant. This method is very powerful and constitutes a general principle that needs only few assumptions. Also,it urges us to reduce the size of the regenerator in order to improve the exchange surface. We also use this property to fix, in a first study, one degree of freedom, for instance the thickness of the magnetocaloric material is chosen equal to0.5 mm.

1D TRANSVERSAL MODEL

The 1D model is developed for quick optimization. It mainly focuses on the transversal direction (Fig. 1,dash line) of the regenerator and not on the longitudinal one as currently done. The key assumption is to assume an invariant of the behavior along the regenerator.Mathematically we translate this invariance by forcing each term of the thermal equation to be independent of the position. The solution is given by the form 𝑇 = 𝑎 + 𝑏𝑥 + 𝑓 𝑦, 𝑡 with 𝑎 and b two constants. Tosolve both thethermal and fluid equations in steady state, Sturm-Liouville for piecewise continuous domainsand Fourier methods are used. An accurate and fast resolution is then achieved in one second, so the influence of many parameters can be explored. For a set of parameters and a given working point, a 2D model is developed with Comsol software and comparisonsare presentedin Fig. 2.a and c. The model shows in particular that the regenerator can work in more or less regenerative way (Fig. 2.b).Indeed multiple periodsare possible for the same cooling power. In this case, the temperature variation of the fluid changes in accordance with Fig. An optimization approach based on an original 1D transverse model is presented.From an existing system, the method of similarity allows parameters variation ranges to be first estimated. Secondly,the 1D modelapplication leads to an optimum set of parameters. Finally, 2D simulations can be performed to validate andrefine this optimum.

Fig. 1 .

 1 Fig. 1.AMR system, the 1D transversalmodel focuses on blue dash line. MCM for magnetocaloric material

Fig. 1 .

 1 Fig.1.1D transverse model results and comparisons with 2D model 𝑣 = 2.5 cm/s, 𝑒 𝑊𝑎𝑡𝑒𝑟 half of the water thickness,Δ𝑇 𝑎𝑑𝑖𝑎 = 1 K, 𝑙𝑒𝑛𝑔𝑡 = 10 cm,𝑇 𝑜𝑡 -𝑇 𝑐𝑜𝑙𝑑 = 3 𝐾.

TABLE 1 . SCALED VARIABLES Parameters Conduction dominance Frictiondominance

 1 

	Size 𝑦:𝑦 𝑤 * ,𝑦 𝑚 *	𝛼	𝛼
	Size 𝑥:𝑥 *	𝛼	𝛼 2
	Time: 𝑡 *	𝛼 2	𝛼 2

  Two cases are distinguished. The first is when conductive heat exchange prevails over heat produced by viscous friction, i.e.1 ≫ . In this case,Eq. (1)remainssimilar when the y sizeis multiplied by a factor 𝛼if the others variables are multiplied by the values given in the 1 st column of Table1. Thus, the power density(Q Cold )is increased by 1/𝛼 2 while the coefficient of performance (COP) is kept constant. But the heat produced by viscous friction rapidly increases in 1/𝛼 2 compared to other terms and leads to the second case where viscous friction term prevails over longitudinal conduction(1 ≫ 

	𝑦 𝑤 2 𝑥 * 2 ≫	2𝜇 𝑣 * 2 Δ𝑇 * 𝜆 𝑤 *																
																				2𝜇 𝑣 * 2 Δ𝑇 * 𝜆 𝑤 *	≫	2 𝑦 𝑤 𝑥 * 2 .)In this
	case,Eq. (																
					𝑐 𝑤 * Δ𝑇 *	1 𝑡 * 𝑐 𝑚 𝜕𝑇 𝜕𝑡 * 𝑐 𝑚 + 𝑡 * Δ𝑇 *	𝑣 * 𝑥 * 𝑣 𝜕𝑇 𝜕𝑡 = 𝜕𝑇 𝜕𝑥 Δ𝑇 * 𝑦 𝑚 = 𝜆 𝑚 * * 2 Δ𝑇 * 𝑦 𝑤 𝜆 𝑤 * * 2 𝜕 2 𝑇 𝜕𝑦 2 +	𝜕 2 𝑇 𝜕𝑦 2 + 𝑆𝑟𝑐 * 𝐻 * 𝑡 * 𝑆𝑟𝑐	𝜆 𝑤 * Δ𝑇 * 𝑥 * 2 𝜕𝐻 𝜕𝑡 +	𝜕 2 𝑇 𝜕𝑥 2 + Δ𝑇 * 𝑥 * 2 2𝜇𝑣 * 2 𝑦 𝑤 * 2 𝜕𝑥 2 𝜆 𝑚 * 𝜕 2 𝑇	𝜕𝑣 𝜕𝑦	2	(1)
	𝑤 =	𝑥 * 𝑥 * 𝑦 𝑚 * 𝑡 *	𝑠𝑝𝑎𝑐𝑒 1×1	1 0	-𝑦 𝑚 * 𝑇𝑠 𝑚	* 𝑑𝑠 𝑚 𝑑𝑡	+	2𝑡 * 𝜇𝑣 * 2 𝑦 𝑤 *	𝜕𝑣 𝜕𝑦	2	dt	dy 𝑑𝑥	𝑞 𝑐𝑜𝑙𝑑 =	𝑐 𝑤 * 𝑦 𝑤 * 𝑡 * Δ𝑇 * 𝑥 * 𝑦 𝑚 * 𝑡 *	1 0	1 0	𝑣 * 𝑣 𝑇 (0, 𝑡 )𝑑𝑡	𝑑𝑦	(2)
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