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Tomographic reconstruction from a few views: a multi-marginal

optimal transport approach

I. Abraham ∗, R. Abraham, M. Bergounioux †, G. Carlier, ‡

September 18, 2014

Abstract

In this article, we focus on tomographic reconstruction. The problem is to determine the
shape of the interior interface using a tomographic approach while very few X-ray radiographs
are performed. We use a multi-marginal optimal transport approach. Preliminary numerical
results are presented.

Keywords: tomographic reconstruction, multi-marginal optimal transport.

1 Introduction

In this article, we focus on a specific application of tomographic reconstruction for a physical
experiment whose goal is to study the behavior of a material under a shock. The problem is
to determine the density. For this purpose, very few X-ray radiographs are performed, and the
density of the object must then be reconstructed using a tomographic approach (see Figure 1.1).

In [3] we mentioned that several techniques exist for tomographic reconstruction, providing
an analytic formula for the solution (see for instance [15] or [13]) as soon as a large number of
projections of the object, taken from different angles, are available. There is a huge literature
about theoretical and practical aspects of the problem of reconstruction from projections, the
applications of which concern medicine, optics, material science, astronomy, geophysics, and
magnetic resonance imaging (see [6]). When only few projections are known, these methods
cannot be used directly, and some alternative methods have been proposed to reconstruct the
densities (see for instance [12]).

As in any tomographic reconstruction process, this problem leads to an ill-posed inverse
problem (see [20]). As X-rays must cross a very dense object and only a few number of them
arrive at the detector, it is therefore necessary to add some amplification devices and very
sensitive detectors, which cause a high noise level [25, 24] .
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Figure 1.1: Tomography experiment

Figure 1.2: Different projections around the tomography axis

The tomographic reconstruction with few views problem has been widely studied. If a large
number of radiographs is available, we can use several efficient methods that lead to exact
formulas to compute the solution (see [21, 22] or [15]).

Missing data problems can been studied with such methods as well ([22], chapter 6 or [26]).
It is the case, for example, when the object is measured on a subset of its support (so-called inner
problem, see for example [9]). These techniques, as, for instance, the back-filtered projection
(in the full case) or the back-projection for the projection derivatives (in the missing data case
[23]) require a fine sampling of measures (here radiographs) to be performing ([22], chapter 4).
Therefore, they are not useful in the case where few projection data are available.

The number of available projections (views) is closely related to the ill-posedness of the
reconstruction problem. Indeed, the smaller the number of data is, the larger is the kernel of the
related operator. Roughly speaking, there are an infinity of solutions and this infinity is linked
to the kernel dimension. Some methods have been proposed that allow a partial reconstruction
of the object [12]. In the case where we deal with specific objects there exists methods selecting
a solution with respect to some prior : in [17], [16] the authors use a bayesian model while an
optimization approach is used in [5],[4] where the problem is modelled as a minimal cost flow
problem.

Recently a Mumford-Shah like method has been investigated [19, 27]. In [3] we have assumed
that the initial physical setup is axially symmetric so that a single radiograph suffices in theory
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to reconstruct the 3D object. The inverse problem remains ill-posed : existence and uniqueness
of a solution are ensured but there is a lack of stability. However, interesting results have been
obtained with a variational method ([7, 3]).

In the present paper, we do not assume that the object is axially symmetric any longer but
we have more than one radiograph. However, due to the experimental setup, we only deal with
very few radiographs, taken from three angles that we suppose to be 0,π4 and π

2 for sake of
simplicity. So the regularization term to choose is not straightforward. The previously quoted
methods are efficient as soon as we have much more data sets (projections) than we have. In [1]
we used a variational method involving regularization terms that were not necessarily consistent
with the physical point of view and numerical results were not convincing.

In the present paper we investigate a different modelling using optimal transport method.
To our knowledge, this point of view is new in this context. We consider that the data are
twofold : on one hand, one has the finite number of projected images of the objet to recover
that lie in a n-1 D space (if the object is a nD one). On the other hand, we assume that we
have a prior ρ0 that can be the result of numerical simulation. We want to transport ρ0 to some
better object while fitting the projected data.

The paper is organized as follows. We first make this optimal transport model precise.
Section 3 is devoted to the primal and dual formulation of the problem. We give a multi-marginal
formulation in section 4. In last section we present numerical hints an some preliminary results.

2 An optimal transport model

In what follows, we assume that the X-sources are far enough from the object so that we
may assume that the X-rays are parallel. Therefore we can separate the horizontal planes and
reconstruct them independently (see Figure 2.1).

Figure 2.1: Parallel X-rays : the information along a detector segment depends on a planar slice
of the object.

As mentioned in [3] that radiography measures the attenuation of X-rays through the object
and the reconstruction of the object requires the inversion of the Radon transform restricted to
any horizontal slice. Therefore, we focus now on the inversion in the 2D framework.

We do not formulate as a least squares problem any longer. So the Radon operator is not
used in the fitting data term as it was in [1, 3, 7]. It plays a hidden role via the projected
data and we do not want to inverse it. Our philosophy is different : we want to transport
an objet ρ0 to another that has the desired projected data. In the sequel we use the optimal
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transport formalism. Moreover, we denote by bold letters the vectors and by regular ones the
real numbers. The data of the tomographic reconstruction problem with a few views are:

• a prior ρ0 that is a probability measure on R
d that has a finite second moment,

• a set of (unitary) directions di ∈ Sd−1, i = 1, . . . , k and a corresponding collection of
probability measures on the real line, πi, i = 1, . . . , k having finite second moments.

We wish to reconstruct a probability measure ρ from the prior ρ0 and the knowledge of the
πi’s that correspond to X-ray measurement on lines whose directions are di. Due to noise in the
measurement, it is generally not the case that ρ0 and the πi’s match perfectly, that is we do not
assume that πi coincides with the measure Πdi#ρ0 defined by

∫

R

ϕ(t)Πdi#ρ0(dt) =

∫

Rd

ϕ(di · x)ρ0(dx), ∀ϕ ∈ Cc(R), (2.1)

where Cc(R), is the space of continuous functions with compact support.
Recall that if T a map from R

n to R
p then T#µ denotes the push-forward of the measure µ

through the map T (i.e. T#µ(A) := µ(T−1(A)), for any A ⊂ R
p).

Variational approaches consist in looking for ρ as the minimizer of a certain cost that takes
into account the various data of the problem. The novelty of our approach is to consider, instead
of more familiar L2 criteria, optimal transport costs (for the quadratic cost eventhough other
choices are possible without adding much difficulty to the problem). The variational problem
we introduce below is very close to the Wasserstein barycenter problem studied in [2] for which
we refer for certain proofs that can be adapted directly. Here, we shall rather emphasize the
differences with respect to [2] both from a theoretical and numerical point of view due to the
fact that the πi’s are one-dimensional.

3 The variational problem and its dual

3.1 Primal formulation

In the sequel, P2(R
d) (respectively P2(R)) will denote the set of probability measures on R

d (R)
with finite second moment. For µ and ν in P2(R

d), the squared-2-Wasserstein distance between
µ and ν is by definition

W 2(µ, ν) := inf
γ∈Γ(µ,ν)

∫

Rd×Rd

|x− y|2γ(dx, dy)

where Γ(µ, ν) denotes the set of probability measures on R
d ×R

d having µ and ν as marginals.
The fact that the previous infimum is attained is classical, also, we recall a useful dual formula
due to Kantorovich (see for instance [28]) that enables one to express W 2 as

W 2(µ, ν) = sup
(f,g)∈Cb(Rd)×Cb(Rd)

{
∫

Rd

fdµ+

∫

Rd

gdν : f(x) + g(y) ≤ |x− y|2
}

Slightly abusing notations, we shall also use the notations W 2 for the squared 2-Wasserstein
distance between probability measures on the real line and the notation Γ(µ, ν) for the set of
probability measures having µ and ν as marginals even if µ and ν are probability measures on
spaces with different dimensions.
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Given positive weights λ0, λ1, . . . , λk, ρ0 ∈ P2(R
d), and πi ∈ P2(R) for i = 1, . . . , k, we

consider as cost the weighted sum of squared 2-Wasserstein distances i.e.

J(ρ) :=
λ0
2
W 2

2 (ρ0, ρ) +
1

2

k
∑

i=1

λiW
2(πi,Πdi#ρ).

For further use, let us remark that it is easy to see that one may express the one-dimensional
squared 2-Wasserstein distance between πi and Πdi#ρ equivalently either as

W 2(πi,Πdi#ρ) = inf
γi∈Γ(πi,Πdi#

ρ)

∫

R

(xi − yi)
2γi(dxi, dyi)

or

W 2(πi,Πdi#ρ) = inf
ηi∈Γ(πi,ρ)

∫

R

(xi − x · di)
2ηi(dxi, dx) (3.1)

Our aim is to study the following (convex) minimization problem

(P) inf
ρ∈P2(Rd)

J(ρ). (3.2)

First, it is easy to see that the direct method of the calculus of variations applies (see Prop.
2.3 in [2] for details) so that

Theorem 3.1. (P) admits at least a minimizer.

3.2 Dual formulation

To address uniqueness of the minimizer and further characterize it, we shall use a dual formu-
lation (see [11]) as in [8] (compact case) and [2] (P2 framework as in the present paper). Let f0
be a real-valued function defined on R

d; we then define fλ0

0 by the infimal convolution formula:

fλ0

0 (x0) := inf
x∈Rd

{

λ0
2
|x0 − x|2 − f0(x)

}

, ∀x0 ∈ R
d . (3.3)

Note as soon as it is finite, this infimum define a semiconcave function of x0. In a similar way,
for fi: R → R, we define

fλi

i (xi) := inf
yi∈Rd

{

λi
2
(xi − yi)

2 − fi(yi)

}

, ∀xi ∈ R.

By construction, one has

f0(x) + fλ0

0
(x0) ≤

λ0
2
|x0 − x|2, fi(yi) + fλi

i (xi) ≤
λi
2
(xi − yi)

2. (3.4)

Then define

F (f0, f1, . . . , fk) :=

∫

Rd

fλ0

0 (x0)ρ0(dx0) +
k
∑

i=1

∫

R

fλi

i (xi)πi(dxi)

and consider the (concave) maximization problem

sup
(f0,...,fk)∈K

F (f0, f1, . . . , fk) (3.5)
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where K consists of continuous functions that have at most quadratic growth at infinity and
such that

f0(x) +

k
∑

i=1

fi(di · x) = 0, ∀x ∈ R
d. (3.6)

The fact that sup(P∗) ≤ inf(P) is easy to see. Indeed, take (f0, . . . , fk) ∈ K, ρ ∈ P2(R
d),

γ0 ∈ Γ(ρ0, ρ) and ηi ∈ Γ(πi, ρ), and using (3.6), we have

λ0
2

∫

Rd×Rd

|x0 − x|2γ0(dx0, dx) +
k
∑

i=1

λi
2

∫

R×R

(xi − x · di)
2ηi(dxi, dx)

≥

∫

Rd

(f0(x) +

k
∑

i=1

fi(di · x))ρ(dx) + F (f0, f1, . . . , fk) = F (f0, f1, . . . , fk)

minimizing the left-hand side with respect to γ0 ∈ Γ(ρ0, ρ) and ηi ∈ Γ(πi, ρ) immediately gives
sup(P∗) ≤ inf(P). The fact that there is no duality gap and that (P∗) has a maximizer requires
some extra work for which we refer to [2]:

Theorem 3.2. The following duality relation holds

inf(P) = sup(P∗).

Moreover, (P∗) admits a solution (f0, f1, . . . , f1) that can be chosen in such a way that the
functions v1, . . . , vk defined by

vi(t) :=
λi
2
t2 − fi(t), t ∈ R, i = 1, . . . , k (3.7)

are convex (which in particular implies that the functions f1, . . . , fk can be chosen semiconcave
on R and f0 semiconvex on R

d).

From the previous duality result we may deduce (as usual with convex duality) the following
optimality conditions. Let ρ solve (P), γ0 ∈ Γ(ρ0, ρ) be an optimal transport plan for W 2(ρ0, ρ)
and ηi ∈ Γ(πi, ρ) be optimal in (3.1), we then have

J(ρ) =
λ0
2

∫

Rd×Rd

|x0 − x|2γ0(dx0, dx) +

k
∑

i=1

λi
2

∫

R×R

(xi − x · di)
2ηi(dxi, dx)

= F (f0, f1 . . . , fk) =

∫

Rd×Rd

(fλ0

0 (x0) + f0(x))γ0(dx0, dx)+

k
∑

i=1

∫

R×R

(fλi

i (xi) + fi(x · xi))ηi(dxi, dx)

so that for γ0-a.e. (x0,x) one has

fλ0

0 (x0) =
λ0
2
|x0 − x|2 − f0(x) = inf

z∈Rd

{

λ0
2
|x0 − z|2 − f0(z)

}

(3.8)

and, similarly for ηi-a.e. (xi,x),

fλi

i (xi) =
λi
2
(xi − x · di)

2 − fi(x · xi) = inf
z∈R

{

λi
2
(xi − z)2 − fi(z)

}

. (3.9)
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If fλ0

0 is differentiable at x0, it is immediate to deduce from (3.8) that

∇fλ0

0 (x0) = λ0(x0 − x), i.e. x = x0 −
1

λ0
∇fλ0

0 (x0). (3.10)

Similarly, if fλi

i is differentiable at xi, one deduces from (3.9) that

(fλi

i )′(xi) = λi(xi − x · di), i.e. x · di = xi −
1

λi
(fλi

i )′(xi). (3.11)

Definition 3.3. A probability measure µ on R
d is said to vanish on small sets if and only if

µ(A) = 0 for every Borel set A of Rd, having Hausdorff dimension less than or equal to d− 1.

Since semiconvex functions are differentiable on the complement on a small set, one imme-
diately deduces from the duality theorem 3.2 the following uniqueness result:

Corollary 3.4. If ρ0 vanishes on small sets, problem (P) admits a unique solution ρ. More
precisely, if (f0, f1, . . . , fk) solves (P∗), then ρ = T0#ρ0 where

T0(x0) := x0 −
1

λ0
∇fλ0

0 (x0), ∀x0 ∈ R
d.

Proof. The proof is a straightforward consequence of the fact that fλ0

0 being semiconvex, it is
differentiable ρ0 a.e. and formula (3.10).

Remark 3.5. Assume that ρ0 vanishes on small sets, once one knows a solution of (P∗), one
deduces the minimizer ρ of (P) by the previous corollary. Now we claim that (P∗) is in principle
easier to solve since it only involves the k potentials of one variable, f1, . . . , fk (from which one
deduces f0 by (3.6) and then fλ0

0 and thus finally ρ by the previous corollary).

4 Multi-marginal reformulation

Our aim now is to give an equivalent linear reformulation that takes the form of a multi-marginal
optimal transport problem. For x := (x0, x1, . . . , xk) ∈ R

d × R
k, let us define

c(x) := inf
x∈Rd

{

λ0
2
|x0 − x|2 +

k
∑

i=1

λi
2
(xi − x · di)

2

}

. (4.1)

This quadratic problem has a unique minimizer that we denote T (x); its expression is easy to
compute and reads as

T (x) =

(

λ0 id+
k
∑

i=1

λidi ⊗ di

)−1

(λ0x0 +
k
∑

i=1

λixidi). (4.2)

Replacing and developing the squares then gives

c(x) =
λ0
2
|x0|

2 +

k
∑

i=1

λi
2
x2i −

1

2
T (x) · (λ0x0 +

k
∑

i=1

λixidi)
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which we can rewrite in a more concise way as

c(x) =
λ0
2
|x0|

2 +
k
∑

i=1

λi
2
x2i −

1

2
Az(x) · z(x) (4.3)

with

A :=

(

λ0 id+
k
∑

i=1

λidi ⊗ di

)−1

and z(x) := λ0x0 +
k
∑

i=1

λixidi. (4.4)

The multi-marginal optimal transport problem then reads

inf
γ∈Γ(ρ0,π1,...,πk)

∫

Rd×Rk

c(x)γ(dx) (4.5)

where Γ(ρ0, π1, . . . , πk) denotes the set of probability measures on R
d ×R

k having ρ0, π1, . . . , πk
as marginals and c is the cost computed above. Again the existence of an optimal measure for
(4.5) is easy to prove.

4.1 Equivalence

The connection between (P) and (4.5) is then given by

Proposition 4.1. If γ solves (4.5) then ρ := T#γ (where T is given by (4.2)) solves (P).

Proof. Let γ be a solution of (4.5). Let ρ ∈ P2(R
d), γ0 ∈ Γ(ρ0, ρ) be an optimal transport plan

for W 2(ρ0, ρ) and ηi ∈ Γ(πi, ρ) be optimal in (3.1). Using the disintegration theorem (see for
instance [10]) we may write

γ0 = γx0 ⊗ ρ, ηi = ηxi ⊗ ρ.

Then define ξ ∈ P2(R
d × R

d × R
k) by

ξ :=

(

γx0

k
⊗

i=1

ηxi

)

⊗ ρ

i.e. for every ϕ ∈ Cc(R
d × R

d × R
k)

∫

Rd×Rd×Rk

ϕdξ =

∫

Rd

(

∫

Rd×Rk

ϕ(x0,x, x1, . . . , xk)γ
x
0 (dx0)η

x
1 (dx1) · · · η

x
k(dxk)

)

ρ(dx).

Let then γ ∈ P2(R
d × R

k) be defined by:
∫

Rd×Rk

ψdγ =

∫

Rd×Rd×Rk

ψ(x0, x1, . . . , xk)ξ(dx0, dx, dx1, . . . , dxk).

for every ψ ∈ Cc(R
d×R

k). By construction, the projection of ξ on the (x0,x) variables (respec-
tively (xi,x) variables) is γ0 (respectively ηi), this implies in particular that γ ∈ Γ(ρ0, π1, . . . , πk).
We then have

J(ρ) =

∫

Rd×Rd×Rk

(λ0
2
|x0 − x|2 +

k
∑

i=1

λi
2
(xi − x · di)

2
)

ξ(dx0, dx, dx1, . . . , dxk)

≥

∫

Rd×Rk

c(x)γ(dx) ≥

∫

Rd×Rk

c(x)γ(dx)
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(again using the concise notation x := (x0, x1, . . . , xk)). Now for ρ := T#γ, we have

J(ρ) ≤

∫

Rd××Rk

(λ0
2
|x0 − T (x)|2 +

k
∑

i=1

λi
2
(xi − T (x) · di)

2
)

γ(dx)

=

∫

Rd×Rk

c(x)γ(dx)

.

Which proves the optimality of ρ in (P).

Remark 4.2. It directly follows from the previous proposition and the fact that T is linear that
ρ has compact support as soon as ρ0 and π1, . . . , πk are compactly supported, more precisely,
recalling (4.2)-(4.4), we have

spt(ρ) ⊂ A(λ0 spt(ρ0) +
k
∑

i=1

λi spt(πi)di).

4.2 Duality

It follows from the expression (4.3) that (4.5) is equivalent to

sup
γ∈Γ(ρ0,π1,...,πk)

1

2

∫

Rd×Rk

Az(x) · z(x)γ(dx) (4.6)

where the symmetric positive definite matrix A and the linear map z are defined in (4.4). It is
well known (see for instance [14]) that this linear problem admits as dual formulation

inf

{

∫

Rd

u0ρ0 +

k
∑

i=1

∫

R

uiπi : u0(x0) +

k
∑

i=1

ui(xi) ≥
1

2
Az(x) · z(x), ∀x ∈ R

d × R
k

}

(4.7)

and that the latter admits a minimizer which satisfies

u0(x0) = sup
(x1,...xk)

{

1

2
A(λ0x0 +

k
∑

i=1

λixidi) · (λ0x0 +
k
∑

i=1

λixidi)−
k
∑

i=1

ui(xi)

}

,

as well as

uj(xj) = sup
(x0,xi 6=j)







1

2
A(λ0x0 +

k
∑

i=1

λixidi) · (λ0x0 +
k
∑

i=1

λixidi))−
k
∑

i=1, i 6=j

ui(xi)− u0(x0)







which is easily seen to imply that x0 7→ u0(x0) −
λ2
0

2 Ax0 · x0 and xi 7→ ui(xi) −
λ2
i

2 (Adi · di)x
2
i

are convex so that the potentials u0, u1, . . . , uk are strongly convex (i.e. have an Hessian that
is bounded from below away from zero). By duality, if γ is optimal for (4.6) and (u0, u1, . . . , uk)
solves (4.7), then for γ a.e. x = (x0, x1, . . . , xk) one has

u0(x0) +

k
∑

i=1

ui(xi) =
1

2
Az(x) · z(x).
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So that if, in addition, u0 is differentiable at x0 and ui is differentiable at xi one has:

∇u0(x0) = λ0Az(x) ⇒ z(x) =
A−1∇u0(x0)

λ0
(4.8)

and (using the fact that u′i is injective since ui is strongly convex) we also have

u′i(xi) = λiAz(x) · di =
λi
λ0

∇u0(x0) · di ⇒ xi = (u′i)
−1
(λi
λ0

∇u0(x0) · di

)

. (4.9)

4.3 Characterization and regularity

From the previous duality relations we deduce the following result on uniqueness of the optimal
measure γ for (4.6) and that it is of Monge type (i.e. supported by a graph over the x0 variable):

Theorem 4.3. Assume that ρ0 vanishes on small sets at that πi does not charge points for
i = 1, . . . , k then (4.6) admits a unique solution γ that is of Monge-Type (i.e. induced by a map)
and given by

γ := Ψ#ρ0

where

Ψ(x0) :=
(

x0, (u
′
1)

−1
(λ1
λ0

∇u0(x0) · d1

)

, . . . , (u′k)
−1
(λk
λ0

∇u0(x0) · dk

))

and the strongly convex potentials u0, u1, . . . , uk solve the dual problem (4.7).

Proof. The proof follows at once from the fact that u0, u1, . . . , uk are differentiable γ-almost
everywhere (since these are convex potentials) and the relations (4.8)-(4.9).

Combining the previous with proposition 4.1 we immediately get

Corollary 4.4. Under the assumptions of theorem 4.3, the solution ρ of (P) is of Monge type
and given by

ρ = F#ρ0

where

F (x0) := A
(

λ0x0 +
∑

i=1

λi(u
′
i)
−1
(λi
λ0

∇u0(x0) · di

)

di

)

. (4.10)

In the sequel (especially for numerical tests) we use a formulation derived from equations
(4.9) and(4.10) as F (x0) = x0 + δx0, where δx0 stands for the displacement. Indeed, these two
equations yield

A−1(F (x0)) = A−1(x0 + δx0) = λ0x0 +

k
∑

i=1

λixi di .

With (4.4), we get

A−1(δx0) +

k
∑

i=1

λi(di ⊗ di)x0 =

k
∑

i=1

λixi di

that is

A−1(δx0) =

k
∑

i=1

λi(xi − x0 · di)di .

10



Finally

F (x0) = x0 +A

(

k
∑

i=1

λi(xi − x0 · di)di

)

. (4.11)

Proceeding as in [2], we deduce the following regularity result:

Theorem 4.5. If, in addition to the assumptions of theorem 4.3, ρ0 belongs to L∞(Rd) then ρ
belongs to L∞(Rd) as well.

Proof. Recalling formula (4.10) and using the fact that A is nonsingular, we see that it is enough
to prove that ν := G#ρ0 is L∞ where G is defined by

G(x0) := λ0x0 +
k
∑

i=1

λi(u
′
i)
−1
(λi
λ0

∇u0(x0) · di

)

which, setting

ϕi(p) := λ0u
∗
i

(λi
λ0
p · di

)

, ∀p ∈ R
d

can be rewritten as

G = λ0 id+
k
∑

i=1

∇ϕi ◦ ∇u0.

If the convex functions u0 and ϕi were smooth we could then write

DG = λ0 id+S1S2

where S1 and S2 are symmetric positive definite which would imply that det(DG) ≥ λd0 hence
that

ρ0(x0) = det(DG(x0))ν(G(x0)) ≥ λd0ν(G(x0))

which gives the desired L∞ bound on ν. We refer to [2], proof of proposition 5.1, for a detailed
regularization to recover this inequality in general.

5 Numerical experiments

In this section, we give preliminary results. Indeed, the numerical realization is quite delicate
and deserves a finer study (by comparing different points of view) that will be perfomed in a
forthcoming paper. What follows is rather an validation of the model than a complete numerical
investigation.

Let us describe the numerical process to solve problem (4.7)

inf

{

∫

Rd

u0 ρ0 +

k
∑

i=1

∫

R

uiπi | u0(x0) +

k
∑

i=1

ui(xi) ≥
1

2
Az(x) · z(x), ∀x ∈ R

d × R
k

}

.

where u = (u1, · · · , uk), x = (x1, · · · , xk) ∈ R
k, x = (x0,x) ∈ R

d × R
k, A, and z(x) are defined

by equations (4.3) and (4.4).
The above constraint can be equivalently written as

∀x0 ∈ R
d u0(x0) = − min

x∈Rk

k
∑

i=1

ui(xi)−
1

2
Az(x0,x) · z(x0,x) , (5.1)
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so that problem (4.7) writes

inf
u

{

k
∑

i=1

∫

R

uiπi −

∫

Rd

min
x∈Rk

(

k
∑

i=1

ui(xi)−
1

2
Az(x0,x) · z(x0,x)

)

ρ0 dx0

}

. (5.2)

We set

H(u,x0,x) =
k
∑

i=1

ui(xi)−
1

2
Az(x0,x) · z(x0,x)

and compute, if possible, a solution to

min
x∈Rk

H(u,x0,x) . (5.3)

Note that the existence and uniqueness of solutions is not a priori ensured. It depends on the
behaviour of the functions u with respect to the quadratic form Az(x0,x) · z(x0,x). Indeed we
know by the theory that the solution u is strongly convex. We must ensure coercivity for H.
This will be the case if the strong convexity constant of u is greater that the one of the quadratic
form. The latter is driven by the parameters λi, i = 0, · · · , k. As the different directions di play
the same role it is consistent to choose λi = 1, i = 1, · · · , k. The only parameter to tune is
λ = λ0. Roughly speaking the spectral radius of A is driven by 1/λ. Therefore, if λ is large
then we should get coercivity for H (and uniqueness somehow, via strict convexity) and problem
(5.3) has a unique solution : this corresponds to the case where displacements are small and so
is the transportation. On the other hand, if λ is too small they may be no solution to (5.3).
This remark is important from a numerical point of view to set the inital guess of an iterative
process : functions ui have to be quite large at infinity.
Assuming that problem (5.3) has at least a solution x∗ we may use Euler equation and set
∇xH(u,x0,x

∗) = 0. A short computation gives :

∀i = 1, · · · , k
∂H

∂xi
(u,x0,x) = u′i(xi)− λiAz(x0,x) · di .

Therefore the solution x∗(u,x0) is implicitely given by the following system :

∀i = 1, · · · , k
∂H

∂xi
(u,x0,x

∗) = u′i(x
∗
i )− λiAz(x0, x

∗
1, · · · , x

∗
k) · di = 0 . (5.4)

With (4.4) relation (5.4) writes:

∀i = 1, · · · , k u′i(x
∗
i ) = λiλ0Ax0 · di +

k
∑

p=1

αi,px
∗
p ,

where we have set αi,p = λp(Adp · di) for i, p = 1, · · · , k. Setting A = (ai,p)i,p=1,··· ,k gives that
x∗(u,x0) is solution of the following system

∀i = 1, · · · , k u′i(x
∗
i ) = λ0Ax0 · (λidi) + (Ax∗)i . (5.5)

Once x∗(u,x0) is computed, the cost functional in problem (4.7) reads

Φ(u) =
k
∑

i=1

∫

R

uiπi −

∫

Rd

H(u,x0,x
∗(u,x0))ρ0 dx0 .
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To use a numerical method to minimize Φ we need to compute ∇Φ(u).
Let be ϕ : R → R and i ∈ {1, · · · , k}.

∂Φ

∂ui
(u) · ϕ =

∫

R

ϕπi −

∫

Rd

(

∂H

∂ui
((u,x0,x

∗(u,x0)) · ϕ

)

ρ0 dx0 .

The computation of
∂H

∂ui
((u,x0,x

∗) · ϕ gives

∂H

∂ui
(u,x0,x

∗) · ϕ = ϕ(x∗i ) +

k
∑

j=1

∂H

∂xj
(u,x0,x

∗)
∂x∗j
∂ui

(u,x0,x
∗) · ϕ .

Therefore

∀i = 1, · · · , k
∂Φ

∂ui
(u) · ϕ =

∫

R

ϕπi −

∫

Rd

ϕ(x∗i (u,x0))ρ0 dx0 , (5.6)

where x∗(u,x0) satisfies (5.5). We decided to use a Galerkin type method to approximate the
solution. More precisely, we choose a suitable basis (FEM, spectral or spline) to decompose
the function. Here, we decided to use a spline basis, so that u is described by very few scalar
coefficients. In addition, such an approach allows to compute the integral quantities once at the
begining of the process. The algorithm writes :

Algorithm 1

Given λi, i = 0, · · · , k, di, i = 1, · · · , k. Compute integrals (x0 and ϕ are known ), A and A.

1. Choose u0

2. Iteration k : uk has been computed

(a) Compute x∗
k(uk,x0) solving for every i = 1, · · · , k

u′k,i(x
∗
k,i)− (Ax∗)i = λ0Ax0 · (λidi)

(b) Compute uk+1

uk+1 = uk − τk∇Φ(uk).

We present here below two academic examples obtained with two views in orthogonal direc-
tions: k = 2, d1 ⊥ d2 . In both cases λi = 1, i = 1, 2.

13



(a) Groundtruth (desired object) (b) Prior ρ0 (c) Computed object

Figure 5.1: Ellipse example

The method is promising but preliminary tests show a great lack of numerical stability .
Numerical realization appears to be quite challenging and need further investigation.

6 Conclusion

We proposed an original model based on optimal transport theory that allows to perform tomog-
raphy reconstruction of an object once a prior is given, in the case there are few radiographs.
The main novelty lies both in the use of optimal transport to model the problem and the fact
that marginal data belong to different spaces.

The numerical realization is not straightforward and has to be further investigated. This
will be done in a future work.
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