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Abstract

We investigate the macroscopic energy diffusion of a disordered harmonic chain of oscillators, whose
hamiltonian dynamics is perturbed by a degenerate conservative noise. After rescaling space and time
diffusively, we prove that the equilibrium energy fluctuations evolve according to a linear heat equation.
The diffusion coefficient is obtained from Varadhan’s non-gradient approach, and is equivalently defined
through the Green-Kubo formula. Since the perturbation is very degenerate and the symmetric part of
the generator does not have a spectral gap, the standard non-gradient method is reviewed under new
perspectives.
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1 Introduction

This paper deals with diffusive behaviour in heterogeneous media for interacting particle systems.
More precisely, we address the problem of energy fluctuations for chains of oscillators with random de-
fects. In the last fifty years, it has been recognized that introducing disorder in interacting particle systems
has a drastic effect on the conduction properties of the material [8]. The most mathematically tractable
model of oscillators is the one-dimensional system with harmonic interactions [1]. The anharmonic case
is poorly understood from a mathematical point of view, but since the works of Peierls [24, 25], it is
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admitted that non-linear interactions between atoms should play a crucial role in the derivation of the
Fourier law. In [2, 5, 7] (among many others) the authors propose to model anharmonicity by stochastic
perturbations, in order to recover the expected macroscopic behavior: in some sense, the noise simulates
the effect of non-linearities. Being inspired by all these previous works, the aim of this paper is to prove
the diffusive energy behavior of disordered harmonic chains perturbed by an energy conserving noise.
Moreover we prove that all the disorder effects are, on a sufficiently large scale, contained in a diffusion
coefficient, which depends on the statistics of the field, but not on the randomness itself.

On the one hand, the disorder effect has already been investigated for lattice gas dynamics: the first
article dealing with scaling limits of particle systems in random environment is the remarkable work
of Fritz [12], and since then the subject has attracted a lot of interest, see for example [11, 15, 22,
26]. These papers share one main feature: the models are non-gradient1 due to the presence of the
disorder. Except in [12], non-gradient systems are usually solved by establishing a microscopic Fourier
law up to a small fluctuating term, following the sophisticated method initially developed by Varadhan
in [30], and generalized to non-reversible dynamics in [17]. These previous works mostly deal with
systems of particles that evolve according to an exclusion process in random environment: the particles
are attempting jumps to nearest neighbour sites at rates which depend on both their position and the
objective site, and the rates themselves come from a quenched random field. Different approaches are
adopted to tackle the non-gradient feature: whereas the standard method of Varadhan is helpful in
dimension d ě 3 only (see [11]), the “long jump” variation developed by Quastel in [26] is valid in any
dimension. The study of disordered chains of oscillators perturbed by a conservative noise has appeared
more recently, see for instance [3, 4, 9]. In all these papers, the thermal conductivity is defined by the
Green-Kubo formula only. Here, we also define the diffusion coefficient through hydrodynamics and we
prove that both definitions are equivalent.

On the other hand, the study of one-dimensional chains of oscillators is an active field of research. In
[19], the authors derive the diffusive scaling limit for a homogeneous (without disorder) chain of cou-
pled harmonic oscillators, perturbed by a noise which randomly flips the sign of the velocities (called
velocity-flip noise), so that the energy is conserved but not the momentum. We want to investigate here
the scaling limit of equilibrium fluctuations for the same chain of harmonic oscillators, still perturbed
by the velocity-flip noise, but now provided with i.i.d. random masses. In [29], for the same model,
an exact fluctuation-dissipation relation (see for example [20]) reproduces the Fourier law at the micro-
scopic level. With random masses, however, the fluctuation-dissipation equations are no longer directly
solvable. We therefore adapt Varadhan’s non-gradient approach, which allows one to show that an ap-
proximate fluctuation-dissipation decomposition holds. The main ingredients of the usual non-reversible
non-gradient method are: first, a spectral gap estimate for the symmetric part of the dynamics, and sec-
ond, a sector condition for the total generator. The rigorous study of the disordered harmonic chain
perturbed by the velocity-flip noise contains three major obstacles: (i) first, the symmetric part of the
generator (which, in our case, comes only from the stochastic noise) is poorly ergodic, and does not
have a spectral gap when restricted to micro-canonical manifolds. This issue is usually critical to apply
Varadhan’s method ; (ii) second, the degeneracy of the perturbation implies that the asymmetric part of
the generator cannot be controlled by its symmetric part (in technical terms, the sector condition does
not hold) ; (iii) finally, the energy current depends on the disorder, and has to be approximated by a
fluctuation-dissipation equation which takes into account the fluctuations of the disorder itself.

1Roughly speaking, the gradient property states that the microscopic current (of density, or energy, depending on the conser-
vation law under consideration) can be decomposed as a local gradient. We refer to Section 2.2 for more details.
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To overcome the second obstacle (ii), namely the lack of sector condition due to the high degeneracy
of the velocity-flip noise, we add a second stochastic perturbation, that exchanges velocities (divided by
the square root of mass) and positions at random independent Poissonian times, so that a kind of sector
condition can be proved (see Proposition 5.7: we call it the weak sector condition). However, the spectral
gap estimate and the usual sector condition still do not hold when adding the exchange noise, meaning
that the stochastic perturbation remains very degenerate; in other words, the noises are still far from
ergodic. To sum up, the final model that we rigorously investigate here is: the coupled harmonic chain
with random masses, perturbed by two degenerate stochastic noises, one which exchanges velocities
and positions, the other one which flips the sign of velocities. The main results and contributions of this
article are

• an adaptation of the non-gradient method to a microscopic model for which neither the spectral
gap inequality nor the sector condition hold (Theorem 3.3 and Theorem 5.9), which makes no use
of the closed forms theory. In particular, the main novelty is Lemma 4.3 ;

• the macroscopic behavior of the equilibrium fluctuations of the energy, which is diffusive, with a
diffusion coefficient D depending only on the statistics of the random masses field (Theorem 3.1) ;

• the equivalence between two definitions of the diffusion coefficient: the one obtained via Varad-
han’s approach, and the one obtained from the Green-Kubo formula (Theorem 7.3).

Our model has one crucial feature, that makes an adaptation of Varadhan’s approach possible despite the
lack of spectral gap of the symmetric part of the generator: thanks to the harmonicity of the chain, the
generator of the dynamics preserves homogeneous polymonials together with their degree. In particular,
the derivation of the sector condition and the non-gradient decomposition of closed discrete differential
forms at the center of the non-gradient method (see [28, 16] for more details) can be carried out rather
explicitly in a suitable space of quadratic functions, without need for a spectral gap. Although some
further complications appear in the study of our model, this is one of its clear advantages. It allows us to
avoid significant technical difficulties usually inherent to Varadhan’s approach, and to adapt the latter to
a model with a very degenerate noise. In particular, if the chain is not assumed to be harmonic, a stronger
noise than ours is generally needed: the one proposed by Olla and Sasada in [23] is strong enough so
that the spectral gap and the sector condition hold, and they were able to use ideas from Varadhan’s
approach to determine the scaling limit of the equilibrium fluctuations. Our purpose here is to show,
using elements of the non-gradient method as well, that in the presence of i.i.d. random masses, the
annealed (i.e. averaged out over the masses’ randomness) equilibrium fluctuations of the energy evolve
following an infinite Ornstein-Uhlenbeck process. The covariances characterizing this linearised heat
equation are given in terms of the diffusion coefficient, which is defined through a variational formula.
We opted for a rather detailed redaction, even if some proofs may look standard to expert readers. We
hope that this choice will be beneficial for the reader not already familiar with the non-gradient method.

Finally, we also show that the diffusion coefficient can be equivalently given by the Green-Kubo
formula. The latter is defined as the space-time variance of the current at equilibrium, which is only
formal in the sense that a double limit (in space and time) has to be taken. As in [3], where the disordered
harmonic chain is perturbed by a stronger energy conserving noise, we prove here that the limit exists,
and that the homogenization effect occurs for the Green-Kubo formula: for almost every realization of
the disorder, the thermal conductivity exists, is independent of the disorder, is positive and finite. This
allows us to prove that the diffusion coefficient D obtained through the variational formula in Varadhan’s
method, and the coefficient D defined through the Green-Kubo formula, are actually equal: D“ D.

To conclude this introduction, we introduce in more details the model on which this article focuses.
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As explained earlier, we consider here an infinite harmonic hamiltonian system described by the sequence
tpx , rxuxPZ, where px stands for the momentum of the oscillator at site x , and rx represents the distance
between oscillator x and oscillator x ` 1. Each atom x P Z has a mass Mx ą 0, thus the velocity of
atom x is given by px{Mx . We assume the disorder M :“ tMxuxPZ to be a collection of real i.i.d. positive
random variables such that

@ x P Z,
1
C
ďMx ď C, (1)

for some finite constant Cą 0. The equations of motions are given by
$

’

’

&

’

’

%

dpx

dt
“ rx ´ rx´1,

drx

dt
“

px`1

Mx`1
´

px

Mx
,

(2)

so that the dynamics conserves the total energy

E :“
ÿ

xPZ

"

p2
x

2Mx
`

r2
x

2

*

.

To overcome the lack of ergodicity of deterministic chains2, we add a stochastic perturbation to (2).
The noise can be easily described: at independently distributed random Poissonian times, the quantity
px{
?

Mx and the interdistance rx are exchanged, or the momentum px is flipped into ´px . This noise
still conserves the total energy E , and is very degenerate. The main goal of this paper is to prove that
the energy fluctuations in equilibrium converge in a suitable space-time scaling limit (Theorem 3.1).

Even if Theorem 3.1 could be proved mutatis mutandis for this harmonic chain described by tpx , rxu,
for pedagogical reasons we now focus on a simplified model, which has the same features and involves
simplified computations3. From now on, we study the dynamics on new configurations tηxuxPZ P RZ

written as
mxdηx “ pηx`1´ηx´1qdt, (3)

where m :“ tmxuxPZ is the new disorder with the same characteristics as in (1). It is notationally
convenient to change the variable ηx into ωx :“

?
mxηx , so that the total energy reads

E “
ÿ

xPZ
ω2

x .

Let us now introduce the corresponding stochastic energy conserving dynamics: the evolution is de-
scribed by (3) between random exponential times, and at each ring one of the following interactions can
happen:

a. Exchange noise – the two nearest neighbour variables ωx and ωx`1 are exchanged;
b. Flip noise – the variable ωx at site x is flipped into ´ωx .
As a consequence of these two perturbations, the dynamics only conserves the total energy, the other

important conservation laws of the hamiltonian part being destroyed by the stochastic noises4. It is not

2For the deterministic system of harmonic oscillators, it is well known that the energy is ballistic, destroying the validity of
the Fourier law. For more details, see the remarkable work of Lebowitz, Lieb and Rieder [21], which is the standard reference.

3We invite the reader to see [6] for the origin of this new particle system.
4It is now well understood that the ballisticity of the harmonic chain is due to the infinite number of conserved quantities.

In 1994, Fritz, Funaki and Lebowitz [13] propose different stochastic noises that are sufficient to destroy the ballisticity of the
chain: the velocity-flip noise is one of them.
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difficult to check that the following family tµβuβą0 of grand-canonical Gibbs measures on RZ is invariant
for the resulting process tωxptq ; x P Z, t ě 0u:

µβpdωq :“
ź

xPZ

c

β

2π
exp

ˆ

´
β

2
ω2

x

˙

dωx . (4)

The index β stands for the inverse temperature. Note that with our notational convenience, µβ does not
depend on the disorder m. Observe also that the dynamics is not reversible with respect to the measure
µβ . We define eβ :“ β´1 as the thermodynamical energy associated to β , namely the expectation of
ω2

0 with respect to µβ , and χpβq “ 2β´2 as the static compressibility, namely the variance of ω2
0 with

respect to µβ .
To state the convergence result, let us define the distribution-valued energy fluctuation field, as fol-

lows: at time 0, it is given by

YN
0 :“

1
?

N

ÿ

xPZ
δx{N

 

ω2
xp0q ´ eβ

(

,

where δu is the Dirac measure at point u P R. We assume that the dynamics is at equilibrium, namely
that tωxp0quxPZ is distributed according to the Gibbs measure µβ . It is well known that YN

0 converges
in distribution as NÑ8 towards a centered Gaussian field Y, which satisfies

EY
“

YpFqYpGq
‰

“ χpβq

ż

R
FpyqGpyqdy,

for continuous test functions F, G. One of the main results of this article, Theorem 3.1 below, states that
the energy fluctuations evolve diffusively in time: starting from µβ , and averaging over the disorder m,
the energy field

YN
t “

1
?

N

ÿ

xPZ
δx{N

 

ω2
xptN

2q ´ eβ
(

converges in distribution as N Ñ8 to the solution of the linear Stochastic Partial Differential Equation
(SPDE)

BtY “ DB2
yY `

b

2DχpβqByW, t ą 0, y P R.

where D is the diffusion coefficient, defined by variational formula (see Definition 2.4 below), and W is
the standard normalized space-time white noise.

We note that one could think of using the well-known entropy method [14] to further derive the
hydrodynamic equation: in that case, the initial law is not assumed to be the equilibrium measure µβ ,
but a local equilibrium measure (see (81) below). We conjecture that this property of local equilibrium
propagates in time, and that an hydrodynamic limit result holds. In other words, let e0 : T Ñ R be a
bounded function, where T denotes the torus r0,1q. The problem is to show that the empirical energy
profile 1

N

ř

x δx{N ω
2
xptN

2q converges as NÑ8 to the macroscopic profile ept, ¨q : TÑ R solution to

$

&

%

Be
Bt
pt, uq “ D

B2e
Bu2

pt, uq, t ą 0, u P T,

ep0, uq “ e0puq.

Unfortunately, even if the diffusion coefficient D is well defined through the non-gradient approach, this
does not straightforwardly provide a method to prove such a result. This topic is discussed in Section 9.

Let us now give the plan of the article. Section 2 is devoted to properly introducing the model and
all definitions that are needed. The convergence of the energy fluctuations field (in the sense of finite
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dimensional distributions) is stated and proved in Section 3. The main point is to identify the diffusion
coefficient D (Section 5), by adapting the non-gradient method of Varadhan [30]. This is done in several
steps: in Section 4, we derive the so-called Boltzmann-Gibbs principle, in Section 5 we obtain the diffusion
coefficient as resulting from a projection of the current in some suitable Hilbert space, and finally Section
6 improves the description of the diffusion coefficient through several variational formulas. In Section 7
we prove the convergence of the Green-Kubo formula, and demonstrate rigorously that both definitions
of the diffusion coefficient are equivalent. In Section 8, we present a second disordered model, where
the interaction is described by a potential V which is not assumed to be harmonic anymore. For this
anharmonic chain, we need a very strong stochastic perturbation, which has a spectral gap, and satisfies
the sector condition. We conclude in Section 9 by highlighting the step where the usual techniques for
proving hydrodynamic limits fail. In Appendices, technical points are detailed: in Appendix A, the space
of square-integrable functions w.r.t. the standard Gaussian law is studied through its orthonormal basis
of Hermite polynomials. The sector condition is proved in Appendix B for a specific class of functions
suitable for our needs. In Appendix C, the tightness for the energy fluctuation field is investigated for
the sake of completeness.

2 The harmonic chain perturbed by stochastic noises

2.1 Generator of the Markov process

Let us define the dynamics on the finite torus TN :“ Z{NZ, meaning that boundary conditions are
periodic. The space of configurations is given by ΩN “ RTN . The configuration tωxuxPTN

evolves accord-
ing to a dynamics which can be divided into two parts, a deterministic one and a stochastic one. The
disorder is an i.i.d. sequence m“ tmxuxPZ which satisfies:

@ x P Z,
1
C
ď mx ď C,

for some finite constant C ą 1. The corresponding product and translation invariant measure on the
space ΩD “ rC

´1, CsZ is denoted by P and its expectation is denoted by E. For a fixed disorder field
m“ tmxuxPZ, we consider the system

?
mxdωx “

ˆ

ωx`1
?

mx`1
´
ωx´1
?

mx´1

˙

dt, t ě 0, x P TN,

and we superpose to this deterministic dynamics a stochastic perturbation described as follows: with
each atom x P TN (respectively each bond tx , x ` 1u, x P TN) is associated an exponential clock of rate
γ ą 0 (resp. λ ą 0), and all clocks are independent one from another. When the clock attached to the
atom x rings, ωx is flipped into ´ωx . When the clock attached to the bond tx , x ` 1u rings, the values
ωx and ωx`1 are exchanged. This dynamics can be equivalently defined by the generator Lm

N of the
Markov process tωxptq ; x P TNutě0, which is written as

Lm
N “Am

N ` γS
flip
N `λSexch

N ,

where

Am
N “

ÿ

xPTN

ˆ

ωx`1
?

mx mx`1
´

ωx´1
?

mx´1mx

˙

B

Bωx
,
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and, for all functions f : ΩD ˆΩN Ñ R,

Sflip
N f pm,ωq “

ÿ

xPTN

´

f pm,ωxq ´ f pm,ωq
¯

,

Sexch
N f pm,ωq “

ÿ

xPTN

´

f pm,ωx ,x`1q ´ f pm,ωq
¯

.

Here, the configuration ωx is the configuration obtained from ω by flipping the value at site x:

pωxqz “

#

ωz if z ‰ x ,

´ωx if z “ x ,

and the configuration ωx ,x`1 is obtained from ω by exchanging the values at sites x and x ` 1:

pωx ,x`1qz “

$

’

’

&

’

’

%

ωz if z ‰ x , x ` 1,

ωx`1 if z “ x ,

ωx if z “ x ` 1.

We denote the total generator of the noise by SN :“ γSflip
N `λSexch

N .
It is straightforward to see that the total energy

ř

ω2
x is conserved by the dynamics and that the

following translation invariant product Gibbs measures µN
β

on ΩN are invariant for the process:

dµN
β pωq :“

ź

xPTN

c

β

2π
exp

ˆ

´
β

2
ω2

x

˙

dωx .

The index β stands for the inverse temperature, namely
ş

ω2
0dµN

β
“ β´1. Let us note that the Gibbs

measures do not depend on the disorder m. From the definition, our model is not reversible with respect
to the measure µN

β
. More precisely, Am

N is an antisymmetric operator in L2pµN
β
q, whereas SN is symmetric.

NOTATIONS – In the following, we denote by Ω the space of configurations in the infinite line, that is
Ω :“ RZ, and by µβ the infinite product Gibbs measure on RZ. The natural scalar product in L2pµβq is
denoted by x¨, ¨yβ . Moreover, we denote by P‹

β
the probability measure on ΩD ˆΩ defined by

P‹β :“ Pbµβ .

Throughout this article we will widely use the fact that P‹
β

is translation invariant. We write E‹
β

for

the corresponding expectation, and E‹
β
r¨, ¨s for the scalar product in L2pP‹

β
q. We also define the static

compressibility which is equal to the variance of the one-site energy ω2
0 with respect to µβ , namely

χpβq :“ xω4
0yβ ´xω

2
0y

2
β “

2
β2

.

2.2 Energy current

Since the dynamics conserves the total energy, there exist instantaneous currents of energy jx ,x`1

such that Lm
N pω

2
xq “ jx´1,xpm,ωq ´ jx ,x`1pm,ωq. The quantity jx ,x`1 is the instantaneous amount of

energy flowing between the particles x and x ` 1, and is equal to

jx ,x`1pm,ωq “ ´
2ωxωx`1
?

mx mx`1
`λpω2

x ´ω
2
x`1q.
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We write jx ,x`1 “ jAx ,x`1 ` jSx ,x`1 where jAx ,x`1 (resp. jSx ,x`1) is the current associated to the antisym-
metric (resp. symmetric) part of the generator:

jAx ,x`1pm,ωq “ ´
2ωxωx`1
?

mx mx`1

jSx ,x`1pm,ωq “ jSx ,x`1pωq “ λpω
2
x ´ω

2
x`1q.

As mentionned in the introduction, this model is non-gradient, i.e. the current cannot be directly written
as the gradient of a local function. Moreover, there is not an exact fluctuation-dissipation equation, as in
[29].

2.3 Cylinder functions

For every x P Z and every measurable function f on ΩD ˆ Ω, we define the translated function
τx f on ΩD ˆ Ω by: τx f pm,ωq :“ f pτxm,τxωq, where τxm and τxω are the disorder and particle
configurations translated by x P Z, respectively:

pτxmqz :“ mx`z , pτxωqz “ωx`z .

Let Λ be a finite subset of Z, and denote by FΛ the σ-algebra generated by tmx ,ωx ; x P Λu. For a
fixed positive integer `, we define Λ` :“ t´`, ...,`u. If the box is centered at site x ‰ 0, we denote it by
Λ`pxq :“ t´`` x , ...,`` xu. If f is a measurable function on ΩDˆΩ, the support of f , denoted by Λ f , is
the smallest subset of Z such that f pm,ωq only depends on tmx ,ωx ; x P Λ f u and f is called a cylinder
(or local) function if Λ f is finite. In that case, we denote by s f the smallest positive integer s such that
Λs contains the support of f and then Λ f “ Λs f

. For every cylinder function f : ΩD ˆΩÑ R, consider
the formal sum

Γ f :“
ÿ

xPZ
τx f

which is ill defined, but for which both gradients

∇0pΓ f q :“ Γ f pm,ω0q ´ Γ f pm,ωq,

∇0,1pΓ f q :“ Γ f pm,ω0,1q ´ Γ f pm,ωq,

only involve a finite number of non-zero contributions and are therefore well defined. Similarly, we
define for any x P TN

p∇x f qpm,ωq :“ f pm,ωxq ´ f pm,ωq,

p∇x ,x`1 f qpm,ωq :“ f pm,ωx ,x`1q ´ f pm,ωq.

DEFINITION 2.1. We denote by C the set of cylinder functions ϕ on ΩD ˆΩ, such that

(i) for all ω P Ω, the random variable m ÞÑ ϕpm,ωq is continuous on ΩD;

(ii) for all m P ΩD, the function ω ÞÑ ϕpm,ωq belongs to L2pµβq and has mean zero with respect to µβ .

DEFINITION 2.2. We introduce the set of quadratic cylinder functions on ΩD ˆΩ, denoted by Q Ă C, and
defined as follows: f P Q if there exists a sequence

 

ψi, jpmq
(

i, jPZ of cylinder functions on ΩD, with finite
support in ΩD, such that

(i) for all i, j P Z and all ω P Ω, the random variable m ÞÑψi, jpmq is continuous on ΩD ;
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(ii) ψi, j vanishes for all but a finite number of pairs pi, jq, and is symmetric: ψi, j “ψ j,i ;

(iii) f is written as
f pm,ωq “

ÿ

iPZ
ψi,ipmqpω

2
i`1´ω

2
i q `

ÿ

i, jPZ
i‰ j

ψi, jpmqωiω j . (5)

One easily checks that Q is invariant under the action of the generator Lm
N . In other words, quadratic

functions are homogeneous polynomials of degree two in the variable ω, that have mean zero with
respect to µβ for every m P ΩD. Another definition through Hermite polynomials is given in Appendix A
(see Section A.3). We are now ready to define two sets of functions that will play a crucial role later on.

DEFINITION 2.3. Let C0 be the set of cylinder functions ϕ on ΩDˆΩ such that there exists a finite subset Λ
of Z, and cylinder, measurable functions tFx ,GxuxPΛ defined on ΩD ˆΩ, that verify

ϕ “
ÿ

xPΛ

!

∇xpFxq `∇x ,x`1pGxq

)

,

and such that, for all x P Λ,

(i) for all ω P Ω, the functions m ÞÑ Fxpm,ωq and m ÞÑ Gxpm,ωq are continuous on ΩD;

(ii) for all m P ΩD, the functions ω ÞÑ Fxpm,ωq and ω ÞÑ Gxpm,ωq belong to L2pµβq.

Let Q0 Ă C0 XQ be the set of such functions ϕ, with the additional assumption that the cylinder functions
Fx , Gx are homogeneous polynomials of degree two in the variable ω (but not necessarily with mean zero
as before).

Finally, we introduce the infinite volume counterparts of Lm
N , Am

N , Sflip
N and Sexch

N , namely the operators
Lm, Am, Sflip and Sexch, acting on cylinder functions f on ΩD ˆΩ :

Lm f “Am f ` γSflip f `λSexch f

with

Am “
ÿ

xPZ

ˆ

ωx`1
?

mx mx`1
´

ωx´1
?

mx´1mx

˙

B

Bωx
,

and

Sflip f pm,ωq “
ÿ

xPZ
p∇x f qpm,ωq “

ÿ

xPZ

´

f pm,ωxq ´ f pm,ωq
¯

,

Sexch f pm,ωq “
ÿ

xPZ
p∇x ,x`1 f qpm,ωq “

ÿ

xPZ

´

f pm,ωx ,x`1q ´ f pm,ωq
¯

.

We shorten for convenience
S “ γSflip`λSexch

the Markov generator giving the symmetric part of Lm. Given Λ` “ t´`, . . . ,`u, we define Lm
Λ`

, resp.

SΛ` , as the restriction of the generator Lm, resp. S, to Λ`. For the jump dynamics Sexch, we consider in
SΛ` only the jumps with both ends in Λ`, namely

SΛ` f pm,ωq “ γ
ÿ

xPΛ`

p∇x f qpm,ωq `λ
ÿ

xPΛ`zt`u

p∇x ,x`1 f qpm,ωq.
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2.4 Dirichlet form and properties of C0 and Q0

Before giving the main properties of the sets introduced above, we introduce the usual quadratic form
associated to the generator: for any x P Z, any cylinder functions f , g P C, and any positive integer `, let
us define

D`pµβ ; f q :“
@

p´Lm
Λ`
q f , f

D

β
“
@

p´SΛ`q f , f
D

β
. (6)

Since
@

∇x f , g
D

β
“´

1
2

@

∇x f ,∇x g
D

β
and

@

∇x ,x`1 f , g
D

β
“´

1
2

@

∇x ,x`1 f ,∇x ,x`1 g
D

β
,

equation (6) in particular rewrites

D`pµβ ; f q “
γ

2

ÿ

xPΛ`

@

p∇x f q2
D

β
`
λ

2

ÿ

xPΛ`zt`u

@`

∇x ,x`1 f
˘2 D

β
. (7)

The symmetric form D` is called the Dirichlet form, and is well defined on C. It is a random variable with
respect to the disorder m. Note that, since the symmetric part of the generator does not depend on m,
we can write

E
“

D`pµβ ; f q
‰

“ D`pP‹β ; f q.

PROPOSITION 2.1. The following elements belong to Q0:

paq jS0,1, jA0,1.

pbq Lm f , S f and Am f , for all f PQ.

Proof. The first statement paq is directly obtained from the following identities: for x P Z, and k ě 1,

ω2
x`1´ω

2
x “∇x ,x`1

`

ω2
x

˘

(8)

ωxωx`k “´
1
2
∇x

`

ωxωx`1

˘

`

k´1
ÿ

`“1

∇x``,x```1

`

ωxωx``
˘

. (9)

Then, if f PQ is of the form (5), it is easy to see that (8) and (9) are sufficient to prove pbq. For instance,

Lmpωxωx`1q “
ωxωx`2

?
mx`1mx`2

´
ωx`1ωx´1
?

mx mx´1
`
ω2

x`1´ω
2
x

?
mx mx`1

´ 4γωxωx`1`λpωx`2´ωx`1qωx `λpωx´1´ωxqωx`1.

The integrability and regularity conditions are straightforward.

PROPOSITION 2.2 (Dirichlet bound). Let ϕ be a cylinder function in C0, written by definition as

ϕ “
ÿ

xPΛ

!

∇xpFxq `∇x ,x`1pGxq

)

,

for some Λ Ă Z and some functions Fx and Gx satisfying the conditions of Definition 2.3. Let us consider
h P C with support in Λ`. Denote by `ϕ the integer `ϕ :“ `´sϕ´1 so that the supports of ϕ and its gradients
∇x ,x`1ϕ are included in Λ` for every x P Λϕ.

Then, there exists a positive constant Cpϕ,γq which depends only on ϕ and γ such that
ˇ

ˇ

ˇ

ˇ

E‹β

„

ÿ

|x|ď`ϕ

τxϕ, h
ˇ

ˇ

ˇ

ˇ

ď Cpϕ,γq
`

D`pP‹β ; hq
˘1{2

. (10)



2 THE HARMONIC CHAIN PERTURBED BY STOCHASTIC NOISES 11

Proof. Let us assume first that ϕ “∇0pF0q, so that sϕ “ 1. Then we have
ˇ

ˇ

ˇ

ˇ

E‹β

„

ÿ

|x|ď`ϕ

τxϕ, h

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

|x|ď`ϕ

E‹β
“

τxF0,∇xh
‰

ˇ

ˇ

ˇ

ˇ

ď
ÿ

|x|ď`ϕ

E‹β
“

pτxF0q
2
‰1{2 E‹β

“`

∇xh
˘2‰1{2

ď

ˆ

ÿ

|x|ď`ϕ

E‹β
“

pτxF0q
2
‰

˙1{2
´2
γ
D`pP‹β ; hq

¯1{2

ď
a

2γ´1 |2`ϕ ` 1|1{2 E‹β
“

F2
0

‰1{2 `D`pP‹β ; hq
˘1{2

.

Above we used the Cauchy-Schwarz inequality twice, and the fact coming from (7) that
ÿ

|x|ď`ϕ

E‹β
“`

∇xh
˘2‰
ď

2
γ
D`pP‹β ; hq.

In the same way, if ϕ “
ř

yPΛ∇ypFyq, we have
ˇ

ˇ

ˇ

ˇ

E‹β

„

ÿ

|x|ď`ϕ

τxϕ, h
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

|x|ď`ϕ

ÿ

yPΛ

E‹β
“

τxFy ,∇y`xh
‰

ˇ

ˇ

ˇ

ˇ

ď
ÿ

|x|ď`ϕ

ÿ

yPΛ

E‹β
“

pτxFyq
2
‰1{2 E‹β

“`

∇x`yh
˘2‰1{2

ď
a

2γ´1p2sϕ ` 1q|2`ϕ ` 1|1{2
´

sup
yPΛ
E‹β

“

F2
y

‰

¯1{2
`

D`pP‹β ; hq
˘1{2

.

Therefore, the following constant

Cpϕ,γq :“
a

2γ´1p2sϕ ` 1q|2`ϕ ` 1|1{2
"

´

sup
xPΛ
E‹β

“

F2
x

‰

¯1{2
`

´

sup
xPΛ
E‹β

“

G2
x

‰

¯1{2
*

satisfies (10). The general case easily follows.

The main focus of this paper will be on the following quantities: for any ϕ P C let us define

E‹β
“

ϕ, p´Sq´1ϕ
‰

“ sup
hPC

!

2E‹β
“

ϕ, h
‰

´Dsh
pP‹β ; hq

)

P r0,`8s. (11)

By polarization, this definition can be extended to give a meaning to E‹
β

“

ϕ, p´Sq´1ψ
‰

, for any ϕ,ψ P C.
As a consequence of the previous results, these quantities are well defined for functions in C0:

COROLLARY 2.3. For every function ϕ P C0, the quantity E‹
β
rϕ, p´Sq´1ϕs is finite.

Proof. This is a consequence of (10) and of the variational formula (11):

E‹β
“

ϕ, p´Sq´1ϕ
‰

“ sup
hPC

!

2E‹β
“

ϕ, h
‰

´Dsh
pP‹β ; hq

)

ď sup
hPC

!

Cpϕ,γq
`

Dsh
pP‹β ; hq

˘1{2
´Dsh

pP‹β ; hq
)

“
C2pϕ,γq

4
ă8.

Finally, if we use the decomposition of every function in L2pµβq over the basis of Hermite polynomials,
we can prove the following result for functions in Q0 (the details for the proof are given in Appendix A,
Proposition A.3.):

PROPOSITION 2.4 (Variance of quadratic functions). If ϕ PQ0, then

E‹β
“

ϕ, p´SΛϕq
´1ϕ

‰

“ sup
gPQ

sg“sϕ

!

2E‹β
“

ϕ, g
‰

´DsϕpP
‹
β ; gq

)

.
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2.5 Semi inner products and diffusion coefficient

For cylinder functions g, h P C, let us define:

! g, h"β ,‹:“
ÿ

xPZ
E‹β rg τxhs, and ! g "β ,‹‹:“

ÿ

xPZ
x E‹β

“

gω2
x

‰

. (12)

Both quantities are well defined because g and h belong to C and therefore all but a finite number of
terms on each sum vanish.

REMARK 2.1. Note that ! ¨, ¨ "β ,‹ is a semi inner product, since the following equality holds:

! g, h"β ,‹“ lim
ΛÒZ

1
|Λ|
E‹β

„

ÿ

xPΛ

τx g,
ÿ

xPΛ

τxh


.

Since ! g ´ τx g, h "β ,‹“ 0 for all x P Z, this inner product is not definite. In particular we have
! jS0,1, h"β ,‹“ 0 for any h P C.

In the next proposition we give explicit formulas for elements of C0.

PROPOSITION 2.5. If ϕ P C0 with

ϕ “
ÿ

xPΛ

!

∇xpFxq `∇x ,x`1pGxq

)

,

then

! ϕ "β ,‹‹ “ E‹β

„

pω2
0´ω

2
1q

ÿ

xPΛ

τ´xGx



,

! ϕ, g "β ,‹ “ E‹β

„

∇0pΓgq
ÿ

xPΛ

τ´xFx `∇0,1pΓgq
ÿ

xPΛ

τ´xGx



for all g P C.

Proof. The proof is straightforward.

We are now able to give the definition of the diffusion coefficient, which is going to be rigorously
derived from the non-gradient approach detailed in the next sections.

DEFINITION 2.4. We define the diffusion coefficient Dpβq for β ą 0 as

Dpβq :“ λ`
1

χpβq
inf
f PQ

sup
gPQ

!

! f ,´S f "β ,‹ `2! jA0,1´Am f , g "β ,‹ ´! g,´S g "β ,‹

)

. (13)

The first term in the sum (λ) is only due to the exchange noise, whereas the second one comes from
the hamiltonian part of the dynamics. Formally, this formula could be read as

Dpβq “ λ`
1

χpβq
! jA0,1, p´Lmq´1 jA0,1 "β ,‹, (14)

but the last term is not well defined because jA0,1 is not in the range of Lm. More rigorously, we should
define

Dpβq :“ λ`
1

χpβq
limsup

zÑ0
! jA0,1, pz´Lmq´1 jA0,1 "β ,‹ . (15)

The last expression, called Green-Kubo formula, is now well defined, and the problem is reduced to prove
convergence as z Ñ 0. In Section 7, we prove that (15) indeed converges (the proof being inspired by
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[3]), and we also show that the diffusion coefficient can be equivalently defined in the two ways. Note
that, assuming the convergence in (15), one can easily see that Dpβq does not depend on β . Let L2

β ,‹ be
the Hilbert space generated by the closure of tg P C ; ! g, g "β ,‹ă8u w.r.t. the inner product ! ¨ "β ,‹.
Consider hz :“ hzpm,ω;βq the solution to the resolvent equation in L2

β ,‹ which reads as

pz´Lmqhz “ jA0,1.

Observe that ifω is distributed according to µβ then β1{2ω is distributed according to µ1. Besides, jA0,1 is
a homogeneous polynomial of degree two inω, which implies that hz is also a homogeneous polynomial
of degree two (by the fact that Lm preserves every class of homogeneous polynomials). It follows that

! jA0,1, pz´Lmq´1 jA0,1 "β ,‹ “! hz , jA0,1 "β ,‹“
1
β2
! hz , jA0,1 "1,‹,

so that (15) in turns shows that D does not depend on β , since by definition χpβq “ 2β´2.

3 Macroscopic fluctuations of energy

In this section we state our main result on the fluctuations of the empirical energy around equilibrium.
We show that the limit fluctuation process is governed by a generalized Ornstein-Uhlenbeck process,
whose covariances are given in terms of the diffusion coefficient given in Definition 2.4. For that purpose,
we adapt the non-gradient method introduced by Varadhan. In particular, we rigorously establish the
variational formula that appears in Definition 2.4. The non-gradient approach is detailed and split in
several steps, in Sections 4, 5 and 6.

3.1 Energy fluctuation field

Recall that we denote by eβ the thermodynamical energy associated to β ą 0, namely eβ “ β
´1. We

define the energy empirical distribution πN
t,m on the continuous torus T“ R{Z as

πN
t,mpduq “

1
N

ÿ

xPTN

ω2
xptqδx{Npduq, t P r0,Ts, u P T,

where δu stands for the Dirac measure at point u, and where tωptqutě0 is the Markov process generated
by N2Lm

N . If the initial state of the dynamics is the equilibrium Gibbs measure µN
β

, then, for any fixed

t ě 0, and any disorder m P ΩD, the measure πN
t,m weakly converges towards the measure teβduu on T,

which is deterministic and with constant density w.r.t. the Lebesgue measure on T. Here we investigate
the fluctuations of the empirical measure πN

t,m with respect to this limit.

DEFINITION 3.1 (Energy fluctuation field). We denote by YN
t,m the empirical energy fluctuation field asso-

ciated with the Markov process tωptqutě0 generated by N2Lm
N and starting from P‹

β
“ Pb µN

β
, defined by

its action over test functions H P C2pTq,

YN
t,mpHq “

1
?

N

ÿ

xPTN

H
´ x

N

¯

`

ω2
xptq ´ eβ

˘

.

We are going to prove that the annealed distribution of YN
t,m converges in distribution towards the solu-

tion to the linear SPDE:
BtY “ DB2

yY `
b

2Dχpβq ByW, (16)
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where W is a standard normalized space-time white noise, and D is the diffusion coefficient defined
in Definition 2.4. More precisely, the solution to (16) is the stationary generalized Ornstein-Uhlenbeck
process with zero mean and covariances given by

EY rYtpHqY0pGqs “
χpβq
?

4πtD

ż

R2
HpuqGpvqexp

ˆ

´
pu´ vq2

4tD

˙

du dv,

for all t ě 0 and test functions H, G P C2pTq. Here and after, H (resp. G) is the periodic extension to
the real line of H (resp. G). Let us fix a time horizon T ą 0. The probability measure on the Skorokhod
space Dpr0,Ts,ΩNq induced by the Markov process tωptqutě0 generated by N2Lm

N and starting from
P‹
β
“ PbµN

β
is denoted by P‹

µN
β

. Expectation with respect to P‹
µN
β

is denoted by E‹
µN
β

.

Consider for k ą 5{2 the Sobolev space H´k of distributions Y on T with finite norm

}Y}2
´k “

ÿ

ně1

pπnq´2k
ˇ

ˇYpenq
ˇ

ˇ

2
,

where en is the function x ÞÑ
?

2 sinpπnxq. We denote by YN the annealed probability measure on the
space Dpr0, Ts,H´kq of continuous trajectories on the Sobolev space, induced by the Markov process
tωptqutě0 and the mapping YN : pm,ωq ÞÑ tYN

t,mu0ďtďT. In other words, we define

YNpY P ¨q “ P‹
µN
β

˝ pYNq´1p ¨ q.

Finally, we let Y be the probability measure on the space Cpr0,Ts,H´kq corresponding to the generalized
Ornstein-Uhlenbeck process Yt solution to (16). The main result of this section is the following.

THEOREM 3.1. Fix k ą 5{2 and T ą 0. The sequence tYNuNě1 weakly converges in Dpr0,Ts,H´kq to the
probability measure Y.

3.2 Strategy of the proof

We follow the lines of [23, Section 3]. The proof of Theorem 3.1 is divided into three steps. First,
we need to show that the sequence tYNuNě1 is tight. This point follows a standard argument, given for
instance in [16, Section 11], and recalled in Appendix C for the sake of completeness. Then, we prove
that any limit point Y‹ of tYNuNě1 is concentrated on trajectories whose marginals at time t have, for
any t P r0, Ts, the distribution of a centered Gaussian field with covariances given by

Y‹
“

YtpHqYtpGqs “ χpβq
ż

T
HpuqGpuqdu,

where H,G P C2pTq are test functions. Since µN
β

is stationary for the process ω, this statement comes
from the central limit theorem for independent variables. Finally, we prove the main point in the next
subsections: all limit points Y‹ of the sequence tYNuNě1 solve the martingale problems (17) and (18)
given below, namely, for any function H P C2pTq,

MtpHq :“ YtpHq ´Y0pHq ´
ż t

0
DYspH

2qds, (17)

and

NtpHq :“ pMtpHqq
2
´ 2tχpβqD

ż

T
H1puq2du (18)

are L1pY‹q-martingales.
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3.3 Martingale decompositions

In what follows, in order to simplify notation we write f pm, sq :“ f pm,ωpsqq for any f which is
defined on ΩDˆΩN. Let us fix H P C2pTq and t P r0, Ts. Itô calculus, and a discrete integration by parts,
permits to decompose YN

t,mpHq as

YN
t,mpHq “ YN

0,mpHq `
ż t

0

?
N

ÿ

xPTN

∇NH
´ x

N

¯

jx ,x`1pm, sqds`MN
t,mpHq (19)

where MN
t,m is the martingale defined as

MN
t,mpHq “

ż t

0

1

N
?

N

ÿ

xPTN

∇NH
´ x

N

¯

`

ω2
x ´ω

2
x`1

˘

psqd
“

Nx ,x`1pλN2sq ´λN2s
‰

.

Here and after, tNx ,x`1ptquxPZ,tě0 and tNxptquxPZ,tě0 are independent Poisson processes of intensity 1,
and ∇N stands for the discrete gradient:

∇NH
´ x

N

¯

“ N

„

H
´ x ` 1

N

¯

´H
´ x

N

¯



.

In what follows, the discrete Laplacian ∆N is defined in a similar way:

∆NH
´ x

N

¯

“ N2
„

H
´ x ` 1

N

¯

`H
´ x ´ 1

N

¯

´ 2H
´ x

N

¯



.

To close the equation, we are going to replace the term involving the microscopic currents in (19) with
a term involving YN

t,m. In other words, the dominant contribution in

ż t

0

?
N

ÿ

xPTN

∇NH
´ x

N

¯

jx ,x`1pm, sqds

is its projection over the conservation field YN
t,m (recall that the total energy is the unique conserved

quantity of the system). The non-gradient approach consists in using the fluctuation-dissipation approx-
imation of the current ´ jx ,x`1 as D

`

ω2
x`1 ´ ω

2
x

˘

` Lmpτx f q. This replacement is made rigorous in
Theorem 5.9 below.

After adding and subtracting D
`

ω2
x`1 ´ω

2
x

˘

` Lmpτx f q in (19) above, we can rewrite it, for any
f PQ, as follows:

YN
t,mpHq “ YN

0,mpHq `
ż t

0
DYN

s,mp∆NHqds` I
1,N
t,m, f pHq ` I

2,N
t,m, f pHq `M

1,N
t,m, f pHq `M

2,N
t,m, f pHq, (20)
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where

I
1,N
t,m, f pHq “

ż t

0

?
N

ÿ

xPTN

∇NH
´ x

N

¯”

jx ,x`1pm, sq `D
`

ω2
x`1´ω

2
x

˘

psq `Lmpτx f qpm, sq
ı

ds,

I
2,N
t,m, f pHq “ ´

ż t

0

?
N

ÿ

xPTN

∇NH
´ x

N

¯

Lmpτx f qpm, sqds,

M
1,N
t,m, f pHq “ ´

ż t

0

1

N
?

N

ÿ

xPTN

∇NH
´ x

N

¯

#

“

∇x ,x`1pω
2
x ´ Γ f q

‰

psqd
“

Nx ,x`1pλN2sq ´λN2s
‰

´∇xpΓ f qpsqd
“

NxpγN2sq ´ γN2s
‰

+

,

M
2,N
t,m, f pHq “ ´

ż t

0

1

N
?

N

ÿ

xPTN

∇NH
´ x

N

¯

#

∇x ,x`1pΓ f qpsqd
“

Nx ,x`1pλN2sq ´λN2s
‰

`∇xpΓ f qpsqd
“

NxpγN2sq ´ γN2s
‰

+

.

The proof is based on the following two results.

LEMMA 3.2. For every function H P C2pTq, and every function f PQ,

lim
NÑ8
E‹
µN
β

„

sup
0ďtďT

´

I
2,N
t,m, f pHq `M

2,N
t,m, f pHq

¯2


“ 0.

THEOREM 3.3 (Boltzmann-Gibbs principle). There exists a sequence of functions t fkukPN PQ such that

(i) for every function H P C2pTq,

lim
kÑ8

lim
NÑ8
E‹
µN
β

„

sup
0ďtďT

´

I
1,N
t,m, fk

pHq
¯2


“ 0, (21)

(ii) and moreover

lim
kÑ8
E‹β

„

λ
´

∇0,1pω
2
0´ Γ fk

q

¯2
` γ

´

∇0pΓ fk
q

¯2


“ 2Dχpβq. (22)

REMARK 3.1. Note that the expectation at the left hand side of (22) also rewrites as

2λχpβq `E‹β
”

λ
`

∇0,1pΓ fk
q
˘2
` γ

`

∇0pΓ fk

˘2
ı

,

since for any f P C, one can check that E‹
β

“

pω2
0´ω

2
1q∇0,1Γ f

‰

“ 0.

Using analogous ingredients as in Lemma 3.2 and Theorem 3.3, it is then straightforward to prove
that the martingale M

1,N
t,m, fk

converges in L2pP‹
β
q, as N Ñ 8 then k Ñ 8, to a martingale MtpHq of

quadratic variation

2tDχpβq
ż

T
H1puq2 du,

and the limit YtpHq of YN
t,mpHq satisfies the equation

YtpHq “ Y0pHq `
ż t

0
YspDH2qds`MtpHq.

therefore any limit point Y‹ of the sequence tYNuNě1 is concentrated on trajectories Y solving the
martingale problems (17) and (18), which uniquely characterized the generalized Ornstein-Uhlenbeck
process Yt . The proof of Lemma 3.2 is the content of the next subsection. The proof of Theorem 3.3 is
more challenging, and Sections 4, 5 and 6 are devoted to it.
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3.4 Proof of Lemma 3.2

In this paragraph we give a proof of Lemma 3.2. We define for any f PQ

XN
t,m, f pHq “ ´

1

N
?

N

ÿ

xPTN

∇NH
´ x

N

¯

τx f pm, tq

First, by rewriting (19) with XN
t,m, f pHq instead of YN

t,mpHq, one straightforwardly obtains

I
2,N
t,m, f pHq `M

2,N
t,m, f pHq “ XN

t,m, f pHq ´ XN
0,m, f pHq

`
1

N
?

N

ż t

0

ÿ

xPTN

∇x ,x`1

ˆ

ÿ

zPTN

∇NH
´ z

N

¯

τz f ´∇NH
´ x

N

¯

Γ f

˙

pm, sqd
“

Nx ,x`1pλN2sq ´λN2s
‰

`
1

N
?

N

ż t

0

ÿ

xPTN

∇x

ˆ

ÿ

zPTN

∇NH
´ z

N

¯

τz f ´∇NH
´ x

N

¯

Γ f

˙

pm, sqd
“

NxpγN2sq ´ γN2s
‰

.

Therefore, using the convexity inequality pa` b` cq2 ď 3pa2` b2` c2q, we obtain

´

I
2,N
t,m, f pHq `M

2,N
t,m, f pHq

¯2
ď 3

´

XN
t,m, f pHq ´ XN

0,m, f pHq
¯2

` 3

ˆ

1

N
?

N

ż t

0

ÿ

xPTN

∇x ,x`1

ˆ

ÿ

zPTN

∇NH
´ z

N

¯

τz f ´∇NH
´ x

N

¯

Γ f

˙

pm, sqd
“

Nx ,x`1pλN2sq ´λN2s
‰

˙2

(23)

` 3

ˆ

1

N
?

N

ż t

0

ÿ

xPTN

∇x

ˆ

ÿ

zPTN

∇NH
´ z

N

¯

τz f ´∇NH
´ x

N

¯

Γ f

˙

pm, sqd
“

NxpγN2sq ´ γN2s
‰

˙2

. (24)

On the one hand, for any t P r0,Ts

E‹β
”

`

XN
t,m, f pHq

˘2
ı

“
1

N3

ÿ

x ,yPTN

∇NH
´ x

N

¯

∇NH
´ y

N

¯

E‹β
“

τx f ,τy f
‰

.

This last quantity is of order 1{N2, because f is a local function with mean zero, and H is smooth. On
the other hand, let us define,

Yxpm,ωq :“
ÿ

zPTN

∇NH
´ z

N

¯

τz f ´∇NH
´ x

N

¯

ÿ

zPZ
τz f ,

which is ill defined, but for which

∇x ,x`1Yxpm,ωq :“
ÿ

|z´x|ď` f`1

”

∇NH
´ z

N

¯

´∇NH
´ x

N

¯ı

τz f

is not. Moreover, the L2pP‹
β
q–norm of ∇x ,x`1Yx is of order Cp f q{N because H is assumed to be of class

C2: this implies that the expectation of (23) w.r.t. E‹
β

is

3λ2 tN2

N3

ÿ

xPTN

E‹β
”

`

∇x ,x`1pYxq
˘2
ı

“OpN´2q.

The same holds for (24).
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4 CLT variances at equilibrium

In this section we are going to identify the diffusion coefficient D that appears in (20). Roughly
speaking, D can be viewed as the asymptotic component of the energy current jx ,x`1 in the direction of
the gradient ´pω2

x`1´ω
2
xq, which makes the expression below vanish for any fixed t ě 0

inf
f PQ

limsup
NÑ8

E‹
µN
β

„
ˇ

ˇ

ˇ

ˇ

ż t

0

ÿ

xPTN

“

jx ,x`1`Dpω2
x`1´ω

2
xq `Lmpτx f q

‰

ds

ˇ

ˇ

ˇ

ˇ



, for any β ą 0.

Let us start by giving some known tools that will help understand the forthcoming results, at least at an
informal level.

4.1 An insight through additive functionals of Markov processes

Consider a continuous time Markov process tYsusě0 on a complete and separable metric space E,
and admitting an invariant measure π. We denote by x¨, ¨yπ the inner product in L2pπq and by L the
infinitesimal generator of the process. The adjoint ofL in L2pπq is denoted byL‹. Fix a function V : EÑ R
in L2pπq such that xVyπ “ 0. Theorem 2.7 in [18] gives conditions on V which guarantee a central limit
theorem for

1
?

t

ż t

0
VpYsqds

and shows that the limiting variance equals

σ2pV,πq “ 2 lim
zÑ0
zą0

@

V, pz´Lq´1V
D

π
.

Let the generator L be decomposed as L “ S ` A, where S “ pL ` L‹q{2 and A “ pL ´ L‹q{2 are
respectively the symmetric and antisymmetric parts of L. Let H1 be the completion of the quotient of
L2pπq with respect to constant functions, for the semi-norm } ¨ }1 defined as:

} f }21 :“
@

f , p´Lq f
D

π
“
@

f , p´Sq f
D

π
.

Let H´1 be the dual space of H1 with respect to L2pπq, in other words, the Hilbert space endowed with
the norm } ¨ }´1 defined by

} f }2
´1 :“ sup

g

 

2
@

f , g
D

π
´}g}21

(

,

where the supremum is carried over some suitable set of functions g. Formally, } f }´1 can also be thought
as

@

f , p´Sq´1 f
D

π
.

Note the difference with the variance σ2pV,πq which formally reads

2
@

V, p´Lq´1V
D

π
“ 2

@

V,
“

p´Lq´1
‰

sV
D

π
.

Hereafter, Bs represents the symmetric part of the operator B. We can write, at least formally, that

 “

p´Lq´1
‰

s

(´1
“´S `A‹p´Sq´1Aě´S,

where A‹ stands for the adjoint of A. We have therefore that
“

p´Lq´1
‰

s ď p´Sq
´1. The following result

is a rigorous estimate of the variance in terms of the H´1 norm, which is proved in [18, Lemma 2.4].
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LEMMA 4.1. Given T ą 0 and a mean zero function V in L2pπq XH´1,

Eπ

«

sup
0ďtďT

ˆ
ż t

0
Vpsqds

˙2
ff

ď 24T}V}2
´1. (25)

In our case, the fact that the symmetric part of the generator does not depend on the disorder implies
that (25) still holds if we take the expectation with respect to the disorder P, and thus replace π with
Pbπ. If we compare the previous left hand side to the Boltzmann-Gibbs principle (22), the next step
should be to take V proportional to

ÿ

xPTN

“

jx ,x`1`Dpω2
x`1´ω

2
xq `Lmpτx f q

‰

(26)

and then take the limit as N goes to infinity. In the right hand side of (25) we will obtain a variance that
depends on N, and the main task will be to show that this variance converges: this is studied in more
details in what follows. Precisely, we prove that the limit of the variance results in a semi-norm, which
is denoted by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
and defined in (27) below. More explicitly, we are going to see that (27) involves a

variational formula, which formally reads

ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
“! ϕ, p´Sq´1ϕ "β ,‹ `

1
λχpβq

! ϕ "2
β ,‹‹ .

The final step consists in minimizing this semi-norm on a well-chosen subspace in order to get the
Boltzmann-Gibbs principle, through orthogonal projections in Hilbert spaces. One significant difficulty
is that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
only depends on the symmetric part of the generator S, and the latter is really degenerate,

since it does not have a spectral gap.
In Subsection 4.2, we relate the previous limiting variance (which is obtained by taking the limit as

N goes to infinity) to the suitable semi-norm. Subsection 4.3 is devoted to proving the Boltzmann-Gibbs
principle (using Lemma 4.1). Note that (26) is a sum of local functions in Q0, from Proposition 2.1
(recall that f P Q). Therefore, all our results will be restricted to that subspace. Then, in Section 5 we
investigate the Hilbert space generated by the semi-norm, and prove decompositions into direct sums.
Finally, Section 6 focuses on the diffusion coefficient and its different expressions. These three main
steps are quite standard, and many of the arguments can be found in [23]. For that reason, we shall be
more brief in the exposition, and refer the reader to [23] for more details.

4.2 Limiting variance and semi-norm

We now assume β “ 1. All statements are valid for any β ą 0, and the general argument can be easily
written. In the following, we deliberately keep the notation χp1q, even if the latter could be replaced
with its exact value χp1q “ 2. We are going to obtain a variational formula for the variance

1
2`
E‹1

„

`

´SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ,
ÿ

|x|ď`ϕ

τxϕ



where ϕ PQ0 and `ϕ “ `´ sϕ ´ 1. We first introduce a semi-norm on Q0:
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DEFINITION 4.1. For any cylinder function ϕ in Q0, let us define

ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 :“ sup

gPQ

"

2! ϕ, g "1,‹ ´
γ

2
E‹1

”

`

∇0Γg
˘2
ı

´
λ

2
E‹1

”

`

∇0,1Γg
˘2
ı

*

`
1

λχp1q
! ϕ "2

1,‹‹ (27)

“ sup
gPQ
aPR

!

2! ϕ, g "1,‹ `2a ! ϕ "1,‹‹ ´
γ

2
E‹1

”

`

∇0Γg
˘2
ı

´
λ

2
E‹1

”

`

apω2
0´ω

2
1q `∇0,1Γg

˘2
ı)

,

(28)

where ! ¨ "1,‹ and ! ¨ "1,‹‹ were introduced in (12).

REMARK 4.1. The second identity in (28) follows from an explicit computation of the supremum in
a P R, which can be obtained by standard arguments, using the fact that E‹1

“

pω2
0´ω

2
1q∇0,1Γg

‰

“ 0 for
any g P C.

Note that, from Proposition 2.5, one can easily bound
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 for any ϕ PQ0 as follows: if

ϕ “
ÿ

xPΛ

!

∇xpFxq `∇x ,x`1pGxq

)

,

then
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 ď

2
γ
E‹1

„

´

ÿ

xPΛ

τ´xFx

¯2


`
3
λ
E‹1

„

´

ÿ

xPΛ

τ´xGx

¯2


ă8.

We are now in position to state the main result of this subsection.

THEOREM 4.2. Consider a quadratic function ϕ PQ0. Then

lim
`Ñ8

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ,
ÿ

|x|ď`ϕ

τxϕ



“
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1.

Here, `ϕ stands for `´ sϕ ´ 1 so that the support of τxϕ is included in Λ` for every x P Λ`ϕ .

This theorem is the key of the standard non-gradient method. As usual, the proof is done in two
steps that we separate as two different lemmas for the sake of clarity. First, we bound the variance of a
cylinder function ϕ P Q0, with respect to P‹1, by the semi-norm ~ϕ~2

1 (Lemma 4.3). In the second step,
a lower bound for the variance can be easily deduced from the variational formula which expresses the
variance as a supremum (11).

LEMMA 4.3. Under the assumptions of Theorem 4.2,

limsup
`Ñ8

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ,
ÿ

|x|ď`ϕ

τxϕ



ď
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1.

In the proof of this lemma, one needs to know the weak limits of some particular sequences in Q0. In
the typical approach, these weak limits are viewed as germs of closed forms, but for the harmonic chain,
this way of thinking is not necessary: this is one of the main technical novelties in this work. The rest of
this section is devoted to proving Lemma 4.3.
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Let us start by following the proof given in [23, Lemma 4.3] and we assume for the sake of clarity that
ϕ “ ∇0pFq `∇0,1pGq, for two quadratic cylinder functions F, G (the general case can then be deduced
quite easily). We write the variational formula

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ,
ÿ

|x|ď`ϕ

τxϕ



“ sup
hPC

"

2E‹1

„

ϕ,
1
2`

ÿ

|x|ď`ϕ

τxh


´
1
2`

D`pP‹1; hq
*

“ sup
hPC

"

2E‹1

„

F∇0

ˆ

1
2`

ÿ

|x|ď`ϕ

τxh
˙

`G∇0,1

ˆ

1
2`

ÿ

|x|ď`ϕ

τxh
˙

´
1
2`

D`pP‹1; hq
*

.

Since ϕ is quadratic, we can restrict the supremum in the class of quadratic functions h with support
contained in Λ` (the proof of that statement is detailed in Proposition A.3). We can also restrict the
supremum to functions h such that D`pP‹1; hq ď C`, as a standard consequence of Proposition 2.2 (namely,
there is some constant Cpϕq such that the right hand side is non-positive when D`pP‹1; hq ą Cpϕq`). Next,
we want to replace the sums over Λ`ϕ with the same sums over Λ` (recall that `ϕ “ `´ sϕ´1ď `). For
that purpose, we denote

ζ`0phq “∇0

ˆ

1
2`

ÿ̀

x“´`

τxh
˙

, ζ`1phq “∇0,1

ˆ

1
2`

ÿ̀

x“´``1

τxh
˙

. (29)

First of all, from the Cauchy-Schwarz inequality, we have

E‹1

„

γ

2

´

ζ`0phq
¯2
`
λ

2

´

ζ`1phq
¯2


ď
1
2`

D`pP‹1; hq.

Then, from elementary computations (similar to the proof of Proposition 2.2), we can write
ˇ

ˇ

ˇ

ˇ

E‹1

„

ϕ,
1
2`

ÿ

`ϕďxď`

τxh

ˇ

ˇ

ˇ

ˇ

ď
1
2`

Cpϕ,γq
`

D`pP‹1; hq
˘1{2

,

where Cpϕ,γq is a constant which depends only on ϕ and γ. These last two inequalities give the upper
bound

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ,
ÿ

|x|ď`ϕ

τxϕ



ď sup
hPQ

D`pP‹1 ;hqďC`

"

2E‹1
”

Fζ`0phq `Gζ`1phq
ı

´E‹1

„

γ

2

´

ζ`0phq
¯2
`
λ

2

´

ζ`1phq
¯2
*

`
C
?
`

, (30)

from some constant C ą 0. From now on, we denote generically by C a positive constant that does not
depend on `, but may depend on ϕ (and γ), and may change from line to line. The conclusion is now
based on the following lemma:

LEMMA 4.4. Assume that h PQ with support in Λ`. From Definition 2.2, it reads as

hpm,ωq “
ÿ̀

i, j“´`
i‰ j

ψi, jpmqωiω j `

`´1
ÿ

i“´`

ψi,ipmqpω
2
i`1´ω

2
i q.

Then there exists a`pmq and R`pm,ωq such that,

ζ`0phq “∇0

`

Γh{p2`q
˘

(31)

ζ`1phq “∇0,1

`

Γh{p2`q
˘

` a`pmqpω
2
0´ω

2
1q `R`pm,ωq. (32)
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Moreover, if D`pP‹1; hq ď C`, then

E‹1
”

`

R`pm,ωq
˘2
ı

ď
C
γ`

. (33)

Proof of Lemma 4.4. The proof of this lemma is rather straightforward, we merely sketch it. First, given
the shape of the function h, elementary computations yield that (31) and (32) hold with

a`pmq “
1
2`

`

ψ`´1,`´1pτ´`mq `ψ´`,´`pτ``1mq
˘

,

R`pm,ωq “
1
`

ˆ

´

`´1
ÿ

j“´`

ψ`, jpτ´`mqω j´``
ÿ̀

j“´``1

ψ´`, jpτ``1mqω j```1

˙

pω1´ω0q.

Then, we straightforwardly obtain, by translation invariance of P‹1,

E‹1
”

`

R`pm,ωq
˘2
ı

ď
C1

`2

ˆ

E‹1

„ `´1
ÿ

j“´`

`

ψ`, jpmq
˘2


`E‹1

„

ÿ̀

j“´``1

`

ψ´`, jpmq
˘2
˙

,

where C1 “ 4E‹1
“

ω2
´1pω1 ´ω0q

2
‰

“ 8E‹1
“

ω2
´1ω

2
0

‰

“ 8. Furthermore, since both parts of the Dirichlet
form given in (7) are non-negative, in particular, we have

D`pP‹1; hq ě
γ

2

ÿ

xPΛ`

E‹1
”

`

hpm,ωxq ´ hpm,ωq
˘2
ı

ě
γ

2
E‹1

”

`

hpm,ω`q ´ hpm,ωq
˘2
ı

`
γ

2
E‹1

”

`

hpm,ω´`q ´ hpm,ωq
˘2
ı

“
γ

2
E‹1

„

16ω2
`

ˆ `´1
ÿ

j“´`

ψ`, jpmqω j

˙2

`
γ

2
E‹1

„

16ω2
´`

ˆ

ÿ̀

j“´``1

ψ´`, jpmqω j

˙2

“ 8γE‹1

„ `´1
ÿ

j“´`

`

ψ`, jpmq
˘2


` 8γE‹1

„

ÿ̀

j“´``1

`

ψ´`, jpmq
˘2


.

The previous two bounds finally yield

E‹1
”

`

R`pm,ωq
˘2
ı

ď
1
γ`2

D`pP‹1; hq,

which proves (33).

Lemma 4.4 above permits to bound the limit as `Ñ8 of (30) by

sup
f PQ

a:ΩDÑR

"

2E‹1
”

F∇0Γ f `G
`

apmqpω2
0´ω

2
1q `∇0,1Γ f

˘

ı

´E‹1

„

γ

2

`

∇0Γ f
˘2
`
λ

2

`

apmqpω2
0´ω

2
1q `∇0,1Γ f

˘2
*

“: sup
f PQ

a:ΩDÑR

Hpϕ, a, f q, (34)

where we denote by Hpϕ, a, f q the quantity inside brackets. To conclude we want to restrict the supre-
mum on real numbers a which do not depend on the disorder. This is done in a similar way as in [11,
Lemma 7.7]. To that aim, for any positive ε, fix aεpmq such that

sup
f PQ

Hpϕ, aε, f q ě sup
f PQ

a:ΩDÑR

Hpϕ, a, f q ´ ε, (35)
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and shorten raεpmq :“ aεpmq ´Eraεs. Let us define, for any x P Z, the function bx P L2pPq given by

bxpmq “

$

’

’

’

’

&

’

’

’

’

%

x´1
ÿ

k“0

τkraεpmq if x ě 1,

´1
ÿ

k“x

´τkraεpmq if x ď´1.

and b0pmq “ 0,

which is defined in such a way that for any x P Z, bx`1pmq ´ bxpmq “ τxraεpmq. For any n P N, let us
introduce the quadratic function

gnpm,ωq “ ´
ÿ

xPΛn

bxpmqω
2
x .

One can easily check that, for any z P Z such that tz, z` 1u Ă Λn,

∇z,z`1pgnq “ τzraεpmqpω
2
z`1´ω

2
z q, and ∇0pgnq “ 0.

Therefore, letting rfn :“ f ` gn{p2nq which still belongs to Q, we get

∇0Γ f “∇0Γrfn

∇0,1Γ f ` aεpmqpω
2
0´ω

2
1q “∇0,1Γrfn

`Eraεspω2
0´ω

2
1q `Rnpm,ωq,

where
Rnpm,ωq “ raεpmqpω

2
0´ω

2
1q ´

1
2n
∇0,1Γgn

.

We are now going to estimate the L2pP‹1q-norm of Rn, as follows: basic computations show that

1
2n
∇0,1Γgn

“ raεpmqpω
2
0´ω

2
1q `

1
2n
τ´n

´

bnpmqpω
2
n´ω

2
n`1q

¯

`
1

2n
τn`1

´

b´n´1pmqpω
2
´n´1´ω

2
´nq

¯

.

Hence, from the Cauchy-Schwarz inequality and translation invariance of P, it is enough to show that

E
“

b2
n

‰

n2
“

1
n2
E
„ˆ n´1

ÿ

k“0

τkraεpmq
˙2

ÝÝÑ
nÑ8

0, and
E
“

b2
´n´1

‰

n2
ÝÝÑ
nÑ8

0. (36)

These convergences are standard consequences of the translation invariance of P: more precisely, let us
fix a positive integer p and introduce for any x P Z the conditional expectation

rapε,pqx “ E
”

τxraεpmq
ˇ

ˇ my ; y P Λppxq
ı

.

From our assumptions, note that rapε,pqx “ τxra
pε,pq
0 and E

“

rapε,pqx
‰

“ 0. As a result,

1
n2
E
„ˆ n´1

ÿ

k“0

τkraεpmq
˙2

ď
2
n2
E
„ˆ n´1

ÿ

k“0

!

τkraεpmq ´ rapε,pqk

)

˙2

`
2
n2
E
„ˆ n´1

ÿ

k“0

rapε,pqk

˙2

ď 2E
„

!

raεpmq ´ rapε,pq0

)2


`
Cpε, pq

n
.

The last inequality comes from the fact that
ř

rapε,pqk is a sum of identically distributed variables (because
of the translation invariance of P), for which we have a good control of the variance. Letting now, in the
bound above, nÑ8, and then pÑ8, we obtain that (36) holds, thus (35) rewrites

sup
f PQ

Hpϕ,Eraεs, f q ě sup
f PQ

a:ΩDÑR

Hpϕ, a, f q ´ ε.



4 CLT VARIANCES AT EQUILIBRIUM 24

Since this holds for any ε ą 0, we finally obtain as wanted that

sup
f PQ
aPR

Hpϕ, a, f q “ sup
f PQ

a:ΩDÑR

Hpϕ, a, f q,

and therefore

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ,
ÿ

|x|ď`ϕ

τxϕ



ď sup
gPQ
aPR

"

2E‹1
”

F∇0Γg `G
`

apω2
0´ω

2
1q `∇0,1Γg

˘

ı

´
γ

2
E‹1

”

p∇0Γgq
2
ı

´
λ

2
E‹1

”

`

apω2
0´ω

2
1q `∇0,1Γg

˘2
ı

*

.

Lemma 4.3 follows, after recalling (28).

We now turn to the upper bound.

LEMMA 4.5. Under the assumptions of Theorem 4.2,

limsup
`Ñ8

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ,
ÿ

|x|ď`ϕ

τxϕ



ě
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1.

Proof. We define, for f PQ, define ` f “ `´ s f ´ 1 and

J` :“
ÿ

y,y`1PΛ`

τy jS0,1, H f
`
“

ÿ

|y|ď` f

Spτy f q.

The following limits hold:

lim
`Ñ8

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ, J`



“ ´! ϕ "1,‹‹ , (37)

lim
`Ñ8

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ, H f
`



“ ´! ϕ, f "1,‹ ,

lim
`Ñ8

p2`q´1E‹1

„

`

´ SΛ`
˘´1

´

aJ``H f
`

¯

,
´

aJ``H f
`

¯



“

λ

2
E‹1

”

`

apω2
0´ω

2
1q `∇0,1Γ f

˘2
ı

`
γ

2
E‹1

”

`

∇0Γ f
˘2
ı

.

We only prove (37), the other relations can be obtained in a similar way. As previously, we assume for
the sake of simplicity that ϕ “∇0pFq `∇0,1pGq. One can easily check the elementary identity

SΛ`

ˆ

ÿ

xPΛ`

xω2
x

˙

“ J`pωq. (38)

Therefore,

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ, J`



“´p2`q´1
ÿ

yPΛ`

ÿ

|x|ď`ϕ

y E‹1
“

ϕω2
y´x

‰

“´p2`q´1
ÿ

yPΛ`

ÿ

|x|ď`ϕ

y E‹1
“

G∇0,1pω
2
y´xq

‰

“´p2`q´1
ÿ

|x|ď`ϕ

x E‹1
“

G∇0,1pω
2
0q
‰

` px ` 1qE‹1
“

G∇0,1pω
2
1q
‰

“´p2`q´1p2`ϕ ` 1q E‹1
“

Gpω2
0´ω

2
1q
‰

ÝÝÑ
`Ñ8

´! ϕ "1,‹‹ .
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The last limit comes from Proposition 2.5 and the fact that `ϕ “ ` ´ sϕ ´ 1. We also have used the
translation invariance of P‹1. Then, we use the variational formula (11), chosing

h“ pSΛ`q
´1paJ``H f

`
q “ a

ÿ

yPΛ`

yω2
y `

ÿ

|y|ď` f

τy f ,

we obtain:

lim inf
`Ñ8

p2`q´1E‹1

„

`

´ SΛ`
˘´1 ÿ

|x|ď`ϕ

τxϕ,
ÿ

|x|ď`ϕ

τxϕ



ě lim inf
`Ñ8

p2`q´1
"

2E‹1

„

ÿ

|x|ď`ϕ

τxϕ, a
ÿ

yPΛ`

yω2
y `

ÿ

|y|ď` f

τy f


`E‹1
”

a
ÿ

yPΛ`

yω2
y `

ÿ

|y|ď` f

τy f , aJ``H f
`

ı

*

“ 2a ! ϕ "1,‹‹ `2! ϕ, f "1,‹ ´
λ

2
E‹1

”

`

apω2
0´ω

2
1q `∇0,1Γ f

˘2
ı

´
γ

2
E‹1

”

`

∇0Γ f
˘2
ı

.

The result follows after taking the supremum on f PQ and a P R, and recalling (28).

4.3 Proof of Theorem 3.3

In this paragraph, we start the proof of Theorem 3.3 by using the result given in Theorem 4.2. First,
we show how to relate (21) to such variances, as was rapidly sketched in Section 4.1. Recall that we
have assumed for convenience β “ 1, but the same argument remains in force for any β ą 0.

PROPOSITION 4.6. Let ψ P C0, with sψ ď N. Then

E‹
µN

1

«

sup
0ďtďT

"
ż t

0
ψpsqds

*2
ff

ď
24T
N2
E‹1

“

ψ, p´SNq
´1ψ

‰

. (39)

This result is proved for example in [18, Section 2, Lemma 2.4], when there is no disorder. The
average w.r.t. the disorder can be added (as in the estimate (39)) without any trouble, since SN does not
depend on m. We are going to use this bound for functions of type

ř

x Gpx{Nqτxϕ, where ϕ belongs to
Q0. The main result of this subsection is the following.

THEOREM 4.7. Let ϕ PQ0, and G P C2pTq. Then,

limsup
NÑ8

E‹
µN

1

«

sup
0ďtďT

"

?
N
ż t

0

ÿ

xPTN

G
´ x

N

¯

τxϕpm, sqds
*2

ff

ď CT
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1

ż

T
G2puqdu. (40)

Proof. From Proposition 4.6, the left hand side of (40) is bounded by

24TE‹1

„

?
N

ÿ

xPTN

G
´ x

N

¯

τxϕ, p´N2SNq
´1
ˆ

?
N

ÿ

xPTN

G
´ x

N

¯

τxϕ

˙

,

which can be written with the variational formula as

24T sup
f PC

"

?
N

ÿ

xPTN

G
´ x

N

¯

E‹1
“

f τxϕ
‰

´N2DNpP‹1; f q
*

.

Since ϕ PQ0, from Proposition A.3 we can restrict the supremum over f PQ. Proposition 2.2 gives

E‹1
“

f τxϕ
‰

ď Cpϕ,γqE‹1
”

τ´x f , p´SΛϕqpτ´x f q
ı1{2
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and by Cauchy-Schwarz inequality,

?
N

ÿ

xPTN

G
´ x

N

¯

E‹1
“

f τxϕ
‰

ď

ˆ

1
N

ÿ

xPTN

G
´ x

N

¯2
˙1{2

N Cpϕ,γqE‹1
“

f , p´SNq f
‰1{2

.

The supremum on f can be explicitly computed, and gives the final bound

E‹
µN

1

„

sup
0ďtďT

"

?
N
ż t

0

ÿ

xPTN

G
´ x

N

¯

τxϕpm, sqds
*2 

ď C1pϕ,γqT

ˆ

1
N

ÿ

xPTN

G
´ x

N

¯2
˙

. (41)

We are now going to show that, after sending N to infinity, the constant on the right hand side is propor-
tional to

ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1. For that purpose, we average on microscopic boxes: for `! N, we denote

ϕ` “
1

2`ϕ ` 1

ÿ

|y|ď`ϕ

τyϕ,

where as before `ϕ “ `´ sϕ ´ 1. We want to substitute

?
N

ÿ

xPTN

G
´ x

N

¯

τxϕ

with
?

N
ÿ

xPTN

G
´ x

N

¯

τxϕ`.

The error term that appears is estimated by

E‹
µN

1

„

sup
0ďtďT

"

?
N
ż t

0

ÿ

x ,yPTN
|x´y|ď`ϕ

1
2`ϕ ` 1

´

G
´ x

N

¯

´G
´ y

N

¯¯

τxϕpm, sqds
*2 

.

Since G`pxq :“ Gpx{Nq ´ p2`ϕ ` 1q´1ř
|y´x|ď`ϕ Gpy{Nq is of order `{N, we obtain from (41) that the

expression above is bounded by Cp`q{N2, and therefore vanishes as N Ñ 8. We are now reduced to
estimate

E‹
µN

1

„

sup
0ďtďT

"

?
N
ż t

0

ÿ

xPTN

G
´ x

N

¯

τxϕ`pm, sqds
*2 

. (42)

Using once again (39) and the variational formula for its right hand side, one obtains straightforwardly,
using the translation invariance of P‹1, that (42) is bounded by

CT sup
gPQ

"

?
N

ÿ

xPTN

G
´ x

N

¯

E‹1
“

g τxϕ`
‰

´N2E‹1
“

g, p´SNq g
‰

*

ď CT sup
gPQ

"

?
N

ÿ

xPTN

G
´ x

N

¯

E‹1
“

τ´x gϕ`
‰

´
N2

2`` 1

ÿ

xPTN

E‹1
”

g,
`

´ SΛ`pxq
˘

g
ı

*

ď
CTp2`` 1q

N

ÿ

xPTN

G2
´ x

N

¯

sup
f PQ

!

E‹1
“

f ϕ`
‰

´E‹1
“

f ,
`

´SΛ`
˘

f
‰

)

ď
CTp2`` 1q

N

ÿ

xPTN

G2
´ x

N

¯

sup
f PQ`

!

E‹1
“

f ϕ`
‰

´E‹1
“

f ,
`

´SΛ`
˘

f
‰

)

,

where in the last inequality we denote by Q` the set of functions in Q depending only on the sites in
Λ`´1. To obtain the second bound, we split the supremum over x , and let f :“ p2`` 1qτ´x g{Gpx{Nq,
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and to obtain the third bound, we used the convexity of the Dirichlet form to replace f by its conditional
expectation w.r.t. sites in Λ`´1. Since ϕ P Q0, from Corollary 2.3, one straightforwardly obtains, using
the polarization identity related to (7) and the elementary inequality ab ď 1

4 a2` b2, that

E‹1
“

f ϕ`
‰

“ E‹1
“

f p´SΛ`qp´SΛ`q
´1ϕ`

‰

“
γ

2

ÿ̀

x“´`

E‹1
“

∇x f ,∇x
`

p´SΛ`q
´1ϕ`

˘‰

`
λ

2

`´1
ÿ

x“´`

E‹1
“

∇x ,x`1 f ,∇x ,x`1

`

p´SΛ`q
´1ϕ`

˘‰

ď
1
4
E‹1

“

ϕ`, p´SΛ`q
´1ϕ`

‰

`E‹1
“

f p´SΛ`q f
‰

.

We can now plug this bound in the previous estimate, let `Ñ8 after N Ñ8 and use Theorem 4.2 to
finally obtain as wanted

limsup
NÑ8

E‹
µN

1

«

sup
0ďtďT

"

?
N
ż t

0

ÿ

xPTN

G
´ x

N

¯

τxϕpm, sqds
*2

ff

ď CT
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1

ż

T
G2puqdu. (43)

We apply Theorem 4.7 to I
1,N
t,m, f pHq, and we get

limsup
NÑ8

E‹
µN

1

„

sup
0ďtďT

´

I
1,N
t,m, f pHq

¯2


ď CT
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ j0,1`Dpω2
1´ω

2
0q `Lm f

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1

ż

T
H1puq2du.

To conclude the proof of Theorem 3.3, we show in Section 5 that there exists a sequence of local functions
t fku PQ such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ j0,1`Dpω2
1´ω

2
0q `Lm fk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ÝÝÑkÑ8
0,

and Section 6 is devoted to prove the second statement of Theorem 3.3.

5 Hilbert space and projections

We now focus on the semi-norm
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 that was introduced in the previous section, see (27). We can
easily define from

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 a semi inner product on C0 through polarization, which is denoted by ! ¨, ¨ "1.
Let N be the kernel of the semi-norm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 on C0. Then, the completion of Q0|N denoted by H1 is a
Hilbert space. Let us explain how Varadhan’s non-gradient approach is modified. Usually, the Hilbert
space on which orthogonal projections are performed is the completion of C0|N , in other words it involves
all local functions. Then, the standard procedure aims at proving that each element of that Hilbert space
can be approximated by a sequence of functions in the range of the generator plus an additional term
which is proportional to the current. Since for our model, all functions of interest are in Q, and since
the decomposition of germs of closed form is explicit in the set Q (recall (31) and (32)), the crucial step
to obtain this decomposition is to control the antisymmetric part of the generator by the symmetric one
for quadratic functions.

In Subsection 5.1, we show that H1 is the completion of SQ|N`t jS0,1u. In other words, all elements of
H1 can be approximated by a jS0,1`S g for some a P R and g PQ. This is quite natural since the symmetric
part of the generator preserves the degree of polynomial functions. Moreover, the two subspaces t jS0,1u

and SQ|N are orthogonal, and we denote their sum by

SQ|N ‘K t jS0,1u.
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Nevertheless, this decomposition is not satisfactory, because we want the fluctuating term to be on the
form Lmp fkq, and not Sp fkq. In order to make this replacement, we need to prove the weak sector
condition, that gives a control of

ˇ

ˇ

ˇ

ˇ

ˇ

ˇAmg
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 by
ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1, when g is a quadratic function. The argument is
explained is Subsection 5.2 and 5.3, and the weak sector condition is proved in Appendix B. The only
trouble is that this new decomposition is no longer orthogonal, so that we can not directly express the
diffusion coefficient as a variational formula, like (49). This problem is solved in Section 6.

5.1 Decomposition according to the symmetric part

We begin this subsection with a table of calculus, very useful in the sequel. Recall that ! ¨, ¨ "1

is obtained by polarization from the norm
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 defined in Definition 4.1, and also that ! ¨ "1,‹ and
! ¨ "1,‹‹ have been defined in (12).

PROPOSITION 5.1. For any ϕ PQ0 and g PQ (which implies S g PQ0 from Proposition 2.1),

! ϕ,S g "1 “´! ϕ, g "1,‹

! ϕ, jS0,1 "1 “´! ϕ "1,‹‹

! jS0,1,S g "1 “ 0

and then
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“´! jS0,1 "1,‹‹ “ λχp1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 “

λ

2
E‹1

“

p∇0,1Γgq
2
‰

`
γ

2
E‹1

“

p∇0Γgq
2
‰

Proof. These identities are direct consequences of Theorem 4.2. The second one uses (38). The third
one uses Remark 2.1.

COROLLARY 5.2. For all a P R and g PQ,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇa jS0,1` S g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“ a2λχp1q `

λ

2
E‹1

“

p∇0,1Γgq
2
‰

`
γ

2
E‹1

“

p∇0Γgq
2
‰

.

In particular, the variational formula for
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1, ϕ PQ0, writes

ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 “

1
λχp1q

! ϕ, jS0,1 "
2
1 ` sup

gPQ

!

2! ϕ, p´Sqg "1 ´
ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1

)

. (44)

PROPOSITION 5.3. We denote by SQ the space tS g ; g PQu. Then,

H1 “ SQ|N ‘K t jS0,1u.

Proof. We divide the proof into two steps.

(a) The space is well generated – The inclusion SQ|N ` t jS0,1u Ă H1 is obvious (and follows from
Proposition 2.1). Moreover, from the variational formula (44) we know that: if h P H1 satisfies !
h, jS0,1 "1“ 0 and ! h,S g "1“ 0 for all g PQ, then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇh
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 “ 0.

(b) The sum is orthogonal – This follows directly from the previous proposition and from the fact
that: ! jS0,1,S g "1“ 0 for all g PQ.
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5.2 Replacement of S with L
In this subsection, we prove identities which mix the antisymmetric and the symmetric part of the

generator, which will be used to get the weak sector condition (Proposition 5.7).

LEMMA 5.4. For all g, h PQ,
! S g,Amh"1“´!Amg,Sh"1 .

Proof. This easily follows from the first identity of Proposition 5.1 and from the invariance by translation
of the measure P‹1:

! S g,Amh"1 “´! g,Amh"1,‹“´
ÿ

xPZ
E‹1

“

τx g,Amh
‰

“
ÿ

xPZ
E‹1

“

Ampτx gq, h
‰

“
ÿ

xPZ
E‹1

“

τxpAmgq, h
‰

“
ÿ

xPZ
E‹1

“

Amg,τ´xh
‰

“
ÿ

xPZ
E‹1

“

Amg,τxh
‰

“´!Amg,Sh"1 .

LEMMA 5.5. For all g PQ,
! S g, jA0,1 "1“´!Amg, jS0,1 "1 .

Proof. From Proposition 5.1,

! S g, jA0,1 "1 “´! g, jA0,1 "1,‹“´
ÿ

xPZ
E‹1

“

τx g, jA0,1

‰

“´
ÿ

xPZ
E‹1

“

g, jAx ,x`1

‰

“´
ÿ

xPZ
xE‹1

“

g, jAx´1,x ´ jAx ,x`1

‰

“´
ÿ

xPZ
xE‹1

“

g,Ampω2
xq
‰

“
ÿ

xPZ
xE‹1

“

Amg,ω2
x

‰

“!Amg "1,‹‹“´!Amg, jS0,1 "1 .

These two lemmas together with the second identity of Proposition 5.1 (and the fact that! jA0,1 "1,‹‹“

0) imply the following:

COROLLARY 5.6. For all a P R, g PQ,

! a jS0,1` S g, a jA0,1`Amg "1“ 0.

We now state the main result of this subsection.

PROPOSITION 5.7 (Weak sector condition). (i) There exist two constants C0 :“ Cpγ,λq and C1 :“ Cpγ,λq
such that the following inequalities hold for all f , g PQ:

|!Am f ,S g "1| ď C0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1. (45)

|!Am f ,S g "1| ď C1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1`

1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1. (46)

(ii) There exists a positive constant C such that, for all g PQ,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇAmg
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ď C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1.

Proof. The proof is technical because made of explicit computations for quadratic functions. For that
reason, we report it to Appendix B.
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5.3 Decomposition of the Hilbert space

We deduce from the previous two subsections the expected decomposition of H1.

PROPOSITION 5.8. We denote by LmQ the space tLmg ; g PQu. Then,

H1 “ LmQ|N ‘t jS0,1u.

Proof. We first prove that H1 can be written as the sum of the two subspaces. Then, we show that the
sum is direct.

(a) The space is well generated – The inclusion LmQ|N `t jS0,1u ĂH1 follows from Proposition 2.1.
To prove the converse inclusion, let h P H1 so that ! h, jS0,1 "1“ 0 and ! h,Lmg "1“ 0 for all g P Q.
From Proposition 5.3, h can be written as

h“ lim
kÑ8

S gk

for some sequence tgku PQ. More precisely, since ! S gk,Amgk "1“ 0 by Lemma 5.4,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇh
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 “ lim

kÑ8
! S gk,S gk "1“ lim

kÑ8
! S gk,Lmgk "1 .

Moreover, we also have by assumption that ! h,Lmgk "1“ 0 for all k, and from Proposition 5.7,

sup
kPN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇLmgk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ď pC` 1q sup
kPN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS gk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 “: Ch

is finite. Therefore,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇh
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 “ lim

kÑ8
! S gk,Lmgk "1“ lim

kÑ8
! S gk ´ h,Lmgk "1ď lim

kÑ8
Ch

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS gk ´ h
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 “ 0.

(b) The sum is direct – Let tgku PQ be a sequence such that, for some a P R,

lim
kÑ8

Lmgk “ a jS0,1 in H1,

By a similar argument,

limsup
kÑ8

! S gk,S gk "1“ limsup
kÑ8

! Lmgk,S gk "1“ limsup
kÑ8

! Lmgk ´ a jS0,1,S gk "1“ 0,

where the last equality comes from the fact that ! jS0,1,S gk "1“ 0 for all k. On the other hand, by
Proposition 5.7,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇLmgk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ď pC` 1q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇS gk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 Ñ 0. Then, a “ 0. This concludes the proof.

Recall that jS0,1pm,ωq “ λpω2
0´ω

2
1q. We have obtained the following result.

THEOREM 5.9. For every g PQ0, there exists a unique constant a P R, such that

g ` apω2
1´ω

2
0q P LmQ in H1. (47)

In particular, this theorem states that there exists a unique number rD, and a sequence of cylinder
functions t fku PQ such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ j0,1`
rDpω2

1´ω
2
0q `Lm fk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ÝÝÑkÑ8
0. (48)

For any quadratic function f PQ,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
“ β´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1, therefore in particular, this convergence also holds

with the same constant rD and the same sequence fk if we replace the semi-norm
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 with
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
for any

β ą 0 (as a consequence of a standard change of variables argument). This concludes the first statement
of Theorem 3.3. We prove the second statement (22) in Proposition 6.5, Section 6.
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6 On the diffusion coefficient

The main goal of this section is to express the diffusion coefficient by various variational formulas.
We also prove the second statement of Theorem 3.3. First, recall the we defined the coefficient D in
Definition 2.4 as

D“ λ`
1
χp1q

inf
f PQ

sup
gPQ

!

! f ,´S f "1,‹ `2! jA0,1´Am f , g "1,‹ ´! g,´S g "1,‹

)

. (49)

From Theorem 5.9, there exists a unique rD P R such that

j0,1`
rDpω2

1´ω
2
0q P LmQ in H1.

We are going to obtain variational formulas for rD, and prove that rD “ D, by following the argument
in [23]. We first rewrite the decomposition of the Hilbert space given in Proposition 5.8, by replacing
jS0,1 with j0,1. This new statement is based on Corollary 5.6, which gives an orthogonality relation. The
second step is to find an other orthogonal decomposition (see (50) below), which will enable us to prove
the variational formula (49) for D. Hereafter, we denote Lm,‹ :“ S ´Am and j‹0,1 :“ jS0,1´ jA0,1.

LEMMA 6.1. The following decompositions hold

H1 “ LmQ|N ‘t j0,1u “ Lm,‹Q|N ‘t j‹0,1u.

Proof. We only sketch the proof of the first decomposition, since it is done in [23]. Let us recall from
Proposition 5.8 that LmQ has a complementary subspace in H1 which is one-dimensional. Therefore, it is
sufficient to prove that H1 is generated by LmQ and the total current. Let h PH1 such that! h, j0,1 "1“ 0
and ! h,Lmg "1“ 0 for all g PQ. By Proposition 5.3, h can be written as

h“ lim
kÑ8

S gk ` a jS0,1

for some sequence tgku PQ, and a P R, and from Corollary 5.6,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇh
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 “ lim

kÑ8
! a jS0,1` S gk, a j0,1`Lmgk "1 .

Moreover, from Proposition 5.7 and the standard inequality
ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ`ψ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 ď 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇϕ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1` 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇψ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1, we have

sup
kPN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇa j0,1`Lmgk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 ď 2a2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ j0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1` 2pC` 1q sup

kPN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS gk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 “: Ch

is finite. Therefore,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇh
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 “ lim

kÑ8
! a jS0,1` S gk ´ h, a j0,1`Lmgk "1

ď Ch limsup
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇa jS0,1` S gk ´ h
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
“ 0.

The same arguments apply to the second decomposition.

We define bounded linear operators T, T‹ : H1 ÑH1 as

Tpa j0,1`Lm f q :“ a jS0,1` S f ,

T‹pa j‹0,1`Lm,‹ f q :“ a jS0,1` S f .
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From the following identity (which is a direct consequence of Corollary 5.6)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇa j0,1`Lm f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇa j‹0,1`Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“
ˇ

ˇ

ˇ

ˇ

ˇ

ˇa jS0,1` S f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇa jA0,1`Am f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
,

we can easily see that T‹ is the adjoint operator of T and we also have the relations

! T jS0,1, j‹0,1 "1 “! T‹ jS0,1, j0,1 "1“ λχp1q

! T jS0,1,Lm,‹ f "1 “! T‹ jS0,1,Lm f "1“ 0, for all f PQ.

In particular,
H1 “ Lm,‹Q|N ‘K

 

T jS0,1

(

(50)

and there exists a unique number Q such that

j‹0,1´QT jS0,1 P Lm,‹Q in H1.

We are going to show that rD“ λQ.

LEMMA 6.2.

Q “
λχp1q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇT jS0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

“
1

λχp1q
inf
f PQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ j‹0,1´Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
. (51)

Proof. The first identity follows from the fact that

! T jS0,1, j‹0,1´QT jS0,1 "1“ λχp1q ´Q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇT jS0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“ 0.

The second identity is straightforwardly obtained from the first identity, together with

inf
f PQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ j‹0,1´QT jS0,1´Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“ 0, (52)

which holds by construction of Q.

Thanks to Corollary 5.6, for any g PQ, Tg and g ´Tg are orthogonal, and therefore ! Tg, g "1“!

Tg, Tg "1 for all g PH1. In particular, jS0,1´ T jS0,1 is orthogonal to T jS0,1, thus

jS0,1´ T jS0,1 P Lm,‹Q.

We can then obtain the following variational formula for
ˇ

ˇ

ˇ

ˇ

ˇ

ˇT jS0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
.

PROPOSITION 6.3.
ˇ

ˇ

ˇ

ˇ

ˇ

ˇT jS0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“ inf

f PQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1´Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
. (53)

Proof. With a similar argument (as in the proof of the previous proposition), we have

inf
f PQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1´ T jS0,1´Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
“ 0,

and
inf
f PQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1´ T jS0,1´Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“ inf

f PQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1´Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
´
ˇ

ˇ

ˇ

ˇ

ˇ

ˇT jS0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
,

where we used the fact that jS0,1 ´ T jS0,1 and Lm,‹ f are both orthogonal to T jS0,1, which concludes the
proof.
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We are now ready to derive variational formulas for rD:

THEOREM 6.4.
rD“

1
χp1q

inf
f PQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ j‹0,1´Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“

χp1q

4 inf f PQ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1´Lm,‹ f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

. (54)

Proof. By construction, j0,1´ p
rD{λq jS0,1 P LmQ and therefore

! j0,1´
rD
λ

jS0,1, T‹ jS0,1 "1“ λχp1q ´
rD
λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇT jS0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“ 0. (55)

As a result, we obtain as wanted that, rD “ λQ, and the variational formula for rD can be deduced from
the one for Q.

REMARK 6.1. We can rewrite the variational formula (54) for rD as:

rD“
1
χp1q

inf
f PQ

!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jA0,1´Am f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

)

“ λ`
1
χp1q

inf
f PQ

!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jA0,1´Am f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

)

(56)

“ λ`
1
χp1q

inf
f PQ

sup
gPQ

!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1´ 2! jA0,1´Am f ,S g "1 ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1

)

“ λ`
1
χp1q

inf
f PQ

sup
gPQ

!

! f ,´S f "1,‹ `2! jA0,1´Am f , g "1,‹ ´! g,´S g "1,‹

)

(57)

“ D, (58)

by definition of the diffusion coefficient, see (49). To establish the third identity, we used (44) to restrict
the infimum in (56), to functions f satisfying ! jA0,1´Am f , jS0,1 "1“ 0.

We are now in position to prove the remaining statement of Theorem 3.3:

PROPOSITION 6.5. For any sequence t fku PQ such that

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ j0,1`Dpω2
1´ω

2
0q `Lm fk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 “ 0

we have

lim
kÑ8
E‹1

”

λ
´

∇0,1pω
2
0´ Γ fk

q

¯2
` γ

´

∇0pΓ fk
q

¯2ı

“ 2Dχp1q.

Proof. By assumption,
lim

kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇT
`

j0,1`Dpω2
1´ω

2
0q `Lm fk

˘ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 “ 0

and therefore
lim

kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1` S fk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“ D2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇTpω2
1´ω

2
0q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1.

Then, the result follows from

D“ λQ “
χp1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇTpω2
1´ω

2
0q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
1

and Corollary 5.2, which yields

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jS0,1` S fk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1
“
λ

2
E‹1

”´

ω2
1´ω

2
0´∇0,1pΓ fk

q

¯2ı

`
γ

2
E‹1

”´

∇0pΓ fk
q

¯2ı

. (59)
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7 Green-Kubo formulas

In this section, we first prove the convergence of the infinite volume Green-Kubo formula, then we
rigorously show that it is equivalent to the diffusion coefficient given by Varadhan’s approach. For the
sake of clarity, in the following we simplify notations, and we denote ! ¨ "1,‹ by ! ¨ "‹.

7.1 Convergence of Green-Kubo formula

Linear response theory predicts that the diffusion coefficient is given by the Green-Kubo formula. In
[3, Section 3] its homogenized infinite volume version is given by:

κpzq “ λ`
1
2

ż `8

0
dt e´zt

ÿ

xPZ
E‹
µN

1

”

jA0,1pm, tq,τx jA0,1pm, 0q
ı

. (60)

That formula can be guessed from the better-known finite volume Green-Kubo formula thanks to the
ergodicity property of the disorder measure P. We denote by Lpzq the second term of the right hand side
of (60), that is

Lpzq :“
1
2

ż `8

0
dte´zt

ÿ

xPZ
E‹
µN

1

”

jA0,1pm, tq,τx jA0,1pm, 0q
ı

.

We also denote by L2
‹

the Hilbert space generated by the elements of C (recall Definition 2.1) and the
inner product ! ¨ "‹. We define hz :“ hzpm,ωq as the solution to the resolvent equation in L2

‹

pz´Lmqhz “ jA0,1. (61)

Hille-Yosida Theorem (see Proposition 2.1 in [10] for instance) implies that the Laplace transform Lpzq
is well defined, is smooth on p0,`8q, and such that

κpzq “ λ` Lpzq “ λ`
1
2
! jA0,1, hz "‹ . (62)

Since the generator Lm conserves the degree of homogeneous polynomial functions, the solution to the
resolvent equation is on the form

hzpm,ωq “
ÿ

xPZ
ϕzpm, x , xqpω2

x`1´ω
2
xq `

ÿ

x ,yPZ
x‰y

ϕzpm, x , yqωxωy ,

where, for all m P ΩD, the function ϕzpm, ¨, ¨q : Z2 Ñ R is square-summable and symmetric. In the
Hilbert space L2

‹
, there exist equations involving the symmetric part S that can be explicitly solved:

LEMMA 7.1. There exists f P L2
‹

such that S f “ jA0,1 in L2
‹
.

Proof. We look at the solutions f to S f “ jA0,1 on the form

f pm,ωq “
ÿ

xPZ
kě1

ϕkpm, xqωxωx`k,

such that, for all m P ΩD,
ÿ

xPZ
kě1

|ϕkpm, xq|2 ă`8. (63)
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To simplify notations, let us erase the dependence of m for a while, and keep it in mind. Then, the
sequence tϕkpxq; x P Z, k ě 1u has to be solution to
$

’

&

’

%

´λ
`

ϕk`1pxq `ϕk`1px ´ 1q
˘

` 4pλ` γqϕkpxq ´λ
`

ϕk´1pxq `ϕk´1px ´ 1q
˘

“ 0, for k ě 2, x P Z,

pλ` 2γqϕ1pxq ´λ
`

ϕ2pxq `ϕ2px ´ 1q
˘

“
δ0pxq
?

m0m1
, for x P Z.

(64)
We introduce the Fourier transform pϕk defined on T as follows:

pϕkpξq :“
ÿ

xPZ
ϕkpxqe

2iπxξ, ξ P T.

From (63), this is well defined, and the inverse Fourier transform together with the Plancherel-Parseval
relation imply:

$

’

’

’

&

’

’

’

%

ϕkpxq “
ż

T
pϕkpξqe

´2iπxξdξ
ÿ

xPZ
kě1

|ϕkpxq|
2 “

ÿ

kě1

ż

T
| pϕkpξq|

2dξ.

The system of equations (64) rewrites as
$

’

&

’

%

´λ
`

e2iπξ` 1
˘

pϕk`1pξq ` 4pλ` γq pϕkpξq ´λ
`

e´2iπξ` 1
˘

pϕk´1pξq “ 0, for k ě 2,ξ P T,

pλ` 2γq pϕ1pξq ´λ
`

e2iπξ` 1
˘

pϕ2pξq “
1

?
m0m1

, for ξ P T.
(65)

Therefore, for any ξ P T fixed, ξ ‰ 1{2, the sequence t pϕkpξqukě1 is solution to the second order linear
recurrence relation:

pϕk`1pξq ´
2αe´iπξ

cospπξq
pϕkpξq ` e´2iπξ

pϕk´1pξq “ 0, for k ě 2, (66)

where α :“ pλ` γq{λ, with the two conditions:
$

’

&

’

%

pλ` 2γq pϕ1pξq ´λ
`

e2iπξ` 1
˘

pϕ2pξq “ θpmq, for ξ P T,
ÿ

kě1

ż

T
| pϕkpξq|

2dξă`8,

where θpmq :“ 1{
?

m0m1. This system is explicitely solvable, and one can easily check that the following
function is solution:

pϕkpξq “
θpmq

γrpξq `λ
`

1` e´2iπξ
˘

`

rpξq
˘k´1

,

where

rpξq :“
αe´iπξ

cospπξq

ˆ

1´
b

1´α´2 cos2pπξq

˙

.

Note that rp¨q is continuous on T (from a direct Taylor expansion), and ϕkpxq can then be written as the
inverse Fourier transform of pϕkpξq.

We are now able to prove the existence of the Green-Kubo formula:

THEOREM 7.2. The following limit
D :“ lim

zÑ0
zą0

κpzq (67)

exists, and is finite.
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Proof. We investigate the existence of the limit

lim
zÑ0
zą0

! jA0,1, pz´Lmq´1 jA0,1 "‹“ 2 lim
zÑ0
zą0

Lpzq. (68)

With the notations above, we have to prove that ! hz , jA0,1 "‹ converges as z goes to 0, and that the limit

is finite and non-negative. Then, from (62) it will follow that D ě λ ą 0 and D is positive. We denote
by } ¨ }1‹ the semi-norm corresponding to the symmetric part of the generator:

} f }21‹ “! f , p´Sq f "‹

and H1‹ is the Hilbert space obtained by the completion of C w.r.t. that semi-norm. The corresponding
dual norm is defined as

} f }2
´1‹ :“ sup

gPC

 

2! f , g "‹ ´}g}
2
1‹

(

. (69)

We denote by H´1‹ the Hilbert space obtained by the completion of C w.r.t. that norm. We already know
from the previous sections that Q0 ĂH´1‹ (and we recover the result of Lemma 7.1, namely jA0,1 PH´1‹).

We are going to prove the existence of the Green-Kubo formula by using some arguments given in
[18, Section 2.6]. For the reader’s convenience, we recall here the main steps, and refer to [18] for the
technical details of the proof. First, we take the inner product ! ¨, ¨ "‹ of (61) and hz to obtain

z ! hz , hz "‹ `}hz}
2
1‹ “! hz , jA0,1 "‹ . (70)

Since jA0,1 PH´1‹, the Cauchy-Schwarz inequality for the scalar product ! ¨ "‹ gives

z ! hz , hz "‹ `}hz}
2
1‹ ď }hz}1‹ } jA0,1}´1‹

and we obtain that
}hz}1‹ ď } jA0,1}´1‹.

The family thzuzą0 is therefore bounded in H1‹, and one can extract a weakly converging subsequence
in H1‹. We continue to denote this subsequence by thzu and we denote by h0 the limit. We also have

z ! hz , hz "‹ď } jA0,1}
2
´1‹,

and then tzhzu strongly converges to 0 in L2
‹
. We now invoke the weak sector condition given in Propo-

sition 5.7: there exists C0 ą 0 such that, for any homogeneous polynomials of degree two f , g PH1‹,
ˇ

ˇ! f ,Lmg "‹
ˇ

ˇď pC0` 1q} f }1‹ }g}1‹ . (71)

Indeed, this is a consequence of (45), since
ˇ

ˇ! f ,Amg "‹
ˇ

ˇ“
ˇ

ˇ! S f ,Amg "1

ˇ

ˇď C0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 “ C0} f }1‹ }g}1‹,

and we also have from the Cauchy-Schwarz inquality,
ˇ

ˇ! f ,S g "‹
ˇ

ˇď } f }1‹ }g}1‹ .

The estimate given in (71) applied to g “ hz yields

}Lmhz}´1‹ “ sup
f PC

 

2! f ,Lmhz "‹ ´} f }21‹
(

ď pC0` 1q}hz}
2
1‹ ď pC0` 1q} jA0,1}

2
´1‹. (72)

From (61) and (72) we deduce that
sup
zą0
}zhz}´1‹ ă8.

Let us know refer to [18, Section 2.6, Lemma 2.16]: the condition (72) is sufficient to prove that
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• the sequence tp´Lmqhzu weakly converges to jA0,1 in H´1‹ ;

• the following identity holds

! h0, p´Lmqh0 "‹“! h0, p´Sqh0 "‹“! h0, jA0,1 "‹ ; (73)

• the sequence thzu strongly converges to h0 in H1‹, and the limit is unique.

We have proved the first part: the limit (68) exists. To obtain its finiteness, we are going to give an
upper bound, using the following variational formula:

! jA0,1, pz´Lmq´1 jA0,1 "‹“ sup
f PC

!

2! f , jA0,1 "‹ ´} f }21,z ´}A
m f }2

´1,z

)

,

where the two norms } ¨ }˘1,z are defined by

} f }2
˘1,z “! f , pz´ Sq˘1 f "‹ .

For the upper bound, we neglect the term coming from the antisymmetric part Am f , which gives

! jA0,1, pz´Lmq´1 jA0,1 "‹ď! jA0,1, pz´ Sq´1 jA0,1 "‹ .

In the right hand side we can also neglect the part coming from the exchange symmetric part Sexch, and
remind that Sflipp jA0,1q “ ´2 jA0,1. This gives an explicit finite upper bound. Then, we have from (73) that

lim
zÑ0

! jA0,1, pz´Lmq´1 jA0,1 "‹“! jA0,1, h0 "‹“! h0, p´Sqh0 "‹ě 0,

and the positiveness is proved.

7.2 Equivalence of the definitions

In this subsection we rigorously prove the equality between the variational formula for the diffusion
coefficient and the Green-Kubo formula.

THEOREM 7.3. For every λą 0 and γą 0,

D“ λ`
1
2

lim
zÑ0
zą0

! jA0,1, pz´Lmq´1 jA0,1 "‹

coincides with the coefficient rD“ D defined in Theorem 6.4.

Proof. From Subsection 6, we know that the diffusion coefficient can be written different ways. For
instance, since χp1q “ 2, we have

D“
2

~Tpω2
1´ω

2
0q~

2
1

.

By definition of D, there exists a sequence t fεuεą0 of functions in Q such that

gε :“ j‹0,1`Dpω2
1´ω

2
0q `Lm,‹ fε

satisfies ~gε~1 Ñ 0 as ε goes to 0. Observe that gε P Q0 Ă H´1‹ from Proposition 2.1. By substitution
in the equality above, we get

D´1 “
1

2D2
! gε ´ j‹0,1´Lm,‹ fε, T‹pgε ´ j‹0,1´Lm,‹ fεq "1
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recalling that ! Tg, Tg "1“! g, T‹g "1 for all g PH1. Therefore,

D“
1
2
! gε ´ j‹0,1´Lm,‹ fε, gε ´ jS0,1´ S fε "1

“
1
2
! j‹0,1`Lm,‹ fε, jS0,1` S fε "1 `Rε

where Rε is bounded by C~gε~
2
1, and then vanishes as ε goes to 0. Finally, from Proposition 5.1, we can

write
D“ λ`

1
2

lim
εÑ0

! fε, p´Sq fε "‹ ,

and we know that the limit above exists, which implies that
ˇ

ˇ! fε, p´Sq fε "‹
ˇ

ˇ is uniformly bounded in
ε by a constant Cą 0. The problem is now reduced to prove that

lim
εÑ0

! fε, p´Sq fε "‹“ lim
zÑ0
zą0

! jA0,1, pz´Lmq´1 jA0,1 "‹ . (74)

For every z ą 0 and ε ą 0, we have by definition above and (61),

jA0,1 “ zhz ´Lmhz (75)

j‹0,1 “ gε ´Dpω2
1´ω

2
0q ´Lm,‹ fε. (76)

First, we take the inner product ! ¨, ¨ "‹ of (76) with fε (recall that ! jS0,1, fε "‹“´! jS0,1,S fε "1“ 0),
to get

! jA0,1, fε "‹“´! fε, gε "‹ ´! fε, p´Sq fε "‹

and using (75),

´! Lmhz , fε "‹ `z ! hz , fε "‹“´! fε, gε "‹ ´! fε, p´Sq fε "‹ .

First, let z go to 0, and observe that the limit of ! Lmhz , fε "‹ exists since tLmhzu weakly converges in
H´1‹ and fε PH1‹. Let us take the limit as ε goes to 0, and write

! fε, gε "‹ ď } fε}1‹ }gε}´1‹ ď C~gε~1 ÝÝÑ
εÑ0

0.

The first equality is justified by the fact that gε belongs to Q0 ĂH´1‹, and the last inequality comes from
the definition of the semi-norm ~ ¨ ~1 given in (27). As a consequence, we have obtained

lim
εÑ0

! fε, p´Sq fε "‹“ lim
εÑ0

lim
zÑ0

! Lmhz , fε "‹ .

In the same way, take the inner product ! ¨, ¨ "‹ of (76) with hz to obtain

! jA0,1, hz "‹“´! gε, hz "‹ `! Lm,‹ fε, hz "‹ .

If we send first z to 0, then ! gε, hz "‹ converges to ! gε, h0 "‹ from the weak convergence of thzu in
H1‹ and since gε PH´1‹. As before, we write

! gε, h0 "‹ď C~gε~1 ÝÝÑ
εÑ0

0.

Therefore,

lim
zÑ0

! jA0,1, hz "‹“ lim
εÑ0

lim
zÑ0

! Lm,‹ fε, hz "‹“ lim
εÑ0

! fε, p´Sq fε "‹

and the claim is proved.
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8 The anharmonic chain perturbed by a diffusive noise

In this section we say a few words about the anharmonic chain, when the interactions between atoms
are non-linear, given by a potential V. As in [23], we assume that the function V : RÑ R` satisfies the
following properties:

(i) Vp¨q is a smooth symmetric function,

(ii) there exist δ´ and δ` such that 0ă δ´ ď V2p¨q ď δ` ă`8,

(iii) δ´{δ` ą p3{4q
1{16.

Using the same notations as in the introduction, the configuration tpx , rxu now evolves according to
$

’

’

&

’

’

%

dpx

dt
“ V1prx`1q ´ V1prxq,

drx

dt
“

px

Mx
´

px´1

Mx´1
.

(77)

We define πx :“ px{
?

Mx , and the dynamics on tπx , rxu rewrittes as:
$

’

’

’

&

’

’

’

%

dπx

dt
“

1
?

Mx

“

V1prx`1q ´ V1prxq
‰

,

drx

dt
“

πx
?

Mx
´

πx´1
a

Mx´1
.

(78)

The total energy

E :“
ÿ

xPZ

"

π2
x

2
` Vprxq

*

is conserved. The flip and exchange noises have poor ergodic properties, and can be used for harmonic
chains only. For the anharmonic case, we introduce a stronger stochastic perturbation. Now, the total
generator of the dynamics writes Lm “Am` γS, where

Am :“
ÿ

x

1
?

Mx

`

X x ´ Yx ,x`1

˘

, S :“
1
2

ÿ

x

 

X2
x ` Y2

x ,x`1

(

, (79)

where

Yx ,y “ πx
B

Bry
´ V1pryq

B

Bπx
, Xx “ Yx ,x .

For this anharmonic case, the needed ingredients can be proved directly from [23]: first, note that the
symmetric part of the generator does not depend on the disorder and is exactly the same as in [23].
Then, the proof of the spectral gap is done in Section 12 of that paper, and the sector condition can also
be proved, following Section 8. More precisely, after taking into account the disorder and its fluctuation,
the same argument of [23, Lemma 8.2, Section 8] can be applied, since it is mainly based on the fact
that both antisymmetric and symmetric parts involve the same operators Yx ,y .

9 Hydrodynamic limits

We briefly discuss the failure in the derivation of the hydrodynamic limits. Let us assume that the
initial law for the Markov process tωptqutě0 (still generated by N2Lm

N ), is not the equilibrium measure
µN
β

, but a local equilibrium measure (see (81) below), and fix the disorder m. The main goal would be
to prove that this property of local equilibrium propagates in time: in other words hydrodynamics limits
hold, with an energy profile solution to the diffusion equation with constant coefficient D.
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9.1 Statement of the hydrodynamic limits conjecture

Let us fix once more some notations. The distribution at time t of the Markov chain on TN with the
generator N2Lm

N and the initial probability measure µN is denoted by Pm
N,t . The measure induced by Pm

N,t
on D pr0,Ts,ΩNq is denoted by Pm

N . The set of probability measures on T, denoted by M1, is endowed
with the weak topology. We also introduce D pr0, Ts,M1q namely the Skorokhod space of trajectories in
M1. The measure induced by Pm

N on D pr0, Ts,M1q is denoted by Qm
N :“ Pm

N ˝
`

πN
˘´1

, where

πN :“
1
N

ÿ

xPTN

ω2
xδx{N.

Expectation with respect to Pm
N is denoted by EPm

N
.

CONJECTURE 9.1. Let T ą 0 be a time-horizon. Let tµNuN be a sequence of probability measures onΩN. Un-
der suitable conditions on the initial law µN, for almost every realization of the disorder m, the measure Qm

N
weakly converges in D pr0, Ts,M1q to the probability measure concentrated on the path tept, uqduutPr0,Ts,
where e is the unique weak solution to the system

$

&

%

Be
Bt
pt, uq “ D

B2e
Bu2

pt, uq, t ą 0, u P T

ep0, uq “ e0puq.

What we expect as for “suitable assumptions” on the initial law are the common ones in the literature
of hydrodynamic limits, when dealing with non compact spaces. The first one is natural and related on
the relative entropy:

ASSUMPTION 9.2. Let us assume that there exists a positive constant K0 such that the relative entropy
HpµN|µN

‹
q of µN with respect to some reference measure µN

‹
(for example the Gibbs state with temperature

β´1 “ 1) is bounded by K0N:
HpµN|µN

‹
q ď K0N. (80)

For instance, if µN is defined as a Gibbs local equilibrium state:

ź

xPTN

d

β0px{Nq
2π

exp

ˆ

´
β0px{Nq

2
ω2

x

˙

dωx (81)

for some continuous function β0 : TÑ R`, then (80) is satisfied. The second one is related to energy
bounds, which have already been a major concern in [29]. More precisely,

ASSUMPTION 9.3. We assume that there exists a positive constant E0 such that

limsup
NÑ8

µN
„

1
N

ÿ

xPTN

ω4
x



ď E0. (82)

In the derivation of hydrodynamic limits with the usual entropy method, we need the following two
estimates: first, there exists a positive constant C such that, for any t ą 0

EPm
N

„

1
N

ÿ

xPTN

ω2
xptq



ď C. (83)
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This can be easily established using (82) and the Cauchy-Schwarz inequality. The second control that
we need is

lim
NÑ8
EPm

N

«

ż t

0

1
N2

ÿ

xPTN

ω4
xpsqds

ff

“ 0. (84)

If µN is a convex combination of Gibbs local equilibrium states, then the same argument of [29] shows
that the law of the process remains a convex combination of Gaussian measures, and that (84) holds.

Contrary to the velocity-flip model, we do not need to assume a good control of every energy moment
if we expect the usual entropy method to work. This technical need was only due to the relative entropy
method.

With Assumptions 9.2 and 9.3 we could try to prove Conjecture 9.1 by using the entropy method,
which permits to consider general initial profiles (for example, the profile β0 can be assumed only
bounded, not smooth). The usual technical points of this well-known procedure are the one and two-
blocks estimates, as well as tightness. In this model, they are somehow easy to prove because the diffusion
coefficient is constant, and there is no need to show its regularity.

9.2 Replacement of the current by a gradient

In this subsection we recall the main steps of the usual entropy method, and explain which ones can
be proved for our system. We fix the disorder m “ tmxuxPTN

and T ą 0. For t P r0,Ts, we denote by
ZN

t,m the empirical energy field defined as

ZN
t,mpHq “

1
N

ÿ

xPTN

H
´ x

N

¯

ω2
xptq,

where H : TÑ R is a smooth function. We rewrite ZN
t,mpHq as in Section 3.3 as

ZN
t,mpHq “ ZN

0,mpHq `
ż t

0

ÿ

xPTN

∇NH
´ x

N

¯

jx ,x`1pm, sqds`MN
t,mpHq,

where MN
t,mpHq is a martingale. The strategy consists in replacing the current jx ,x`1 by the linear com-

bination given in Theorem 5.9. For that purpose, for any f PQ we rewrite

ZN
t,mpHq “ ZN

0,mpHq `
ż t

0
DZN

s,mp∆NHqds` J
1,N
t,m, f pHq ` J

2,N
t,m, f pHq `MN

t,mpHq,

where

J
1,N
t,m, f pHq “

ż t

0

ÿ

xPTN

∇NH
´ x

N

¯

„

jx ,x`1pm, sq `Dpω2
x`1´ω

2
xqpsq `Lm

N pτx f qpm, sq


ds,

J
2,N
t,m, f pHq “ ´

ż t

0

ÿ

xPTN

∇NH
´ x

N

¯

Lm
N pτx f qpm, sqds.

Theorem 9.1 would follow from the three lemmas below.

LEMMA 9.4. For every m P ΩD, for every smooth function H : TÑ R and every δ ą 0,

lim
NÑ8
Pm

N

«

sup
r0,Ts

ˇ

ˇ

ˇMN
t,mpHq

ˇ

ˇ

ˇą δ

ff

“ 0.
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LEMMA 9.5. For every m P ΩD, for every f PQ and every smooth function H : TÑ R,

lim sup
NÑ8

EPm
N

”

ˇ

ˇJ
2,N
t,m, f pHq

ˇ

ˇ

ı

“ 0.

LEMMA 9.6. There exists a sequence of functions t fkukPN PQ such that, for every smooth function H : TÑ R,

lim
kÑ8

lim
NÑ8
E
”

EPm
N

”

ˇ

ˇJ
1,N
t,m, fk

pHq
ˇ

ˇ

ıı

“ 0.

Lemma 9.4 and Lemma 9.5 can be proved, following the same standard arguments given for example
in [16, Section 7]. We need the energy moment estimate (84) in Lemma 9.4, in the computation of the
quadratic variation of the martingale. The next subsection is devoted to highlight what fails in Lemma
9.6, which should be related to the results of Sections 4, 5 and 6.

REMARK 9.1. Conditioned to proving Lemma 9.6, Theorem 9.1 would follow: recall that Qm
N is the

distribution on the path space D pr0, Ts,M1q of the process πN
t . Following the same argument as for

the generalized exclusion process in [16, Section 7.6], we can show that the sequence
 

Qm
N ,N ě 1

(

is
weakly relatively compact. It remains to prove that every limit point Qm

˚
is concentrated on absolutely

continuous paths ept, duq “ ept, uqdu whose densities are solutions to the hydrodynamic equations given
in Theorem 9.1. It could be seen from Lemma 9.6 by following the proof of [16, Theorem 7.0.1].

9.3 Failed variance estimate

In this paragraph we fix the disorder m, and we erase it whenever no confusion arises. We are going
to recall here the usual main steps of the entropy method. We rewrite J

1,N
t,m, f pHq as

J
1,N
t,m, f pHq “

ż t

0

ÿ

xPTN

G
´ x

N

¯

τxϕpm, sqds,

where
$

&

%

ϕpm, sq :“ ϕpm,ωpsqq :“ j0,1pm,ωpsqq `Dpω2
1´ω

2
0qpsq `Lm

N p f qpm,ωpsqq

G
´ x

N

¯

:“∇NH
´ x

N

¯

.

Entropy inequality – In Lemma 9.6, note that the expectation with respect to the law of the process
Pm

N is taken. There is a priori no hope to get any estimate of this expectation, apart from the well-known

entropy inequality. More precisely, let us denote by X f
Npωq the following quantity:

X f
Npωq :“

ÿ

xPTN

G
´ x

N

¯

τxϕpωq.

From the entropy inequality, we obtain

EPm
N

„ˇ

ˇ

ˇ

ˇ

ż T

0
X f

Npωqpsqds

ˇ

ˇ

ˇ

ˇ



ď
1
αN

HpPm
N |µ

N
β q `

1
αN

logEµN
β

„

exp

ˆ

αN

ˇ

ˇ

ˇ

ˇ

ż T

0
X f

Npωqpsqds

ˇ

ˇ

ˇ

ˇ

˙

,

for all α ą 0. Since the entropy is decreasing in time, we know that, for all disorder field m, HpPm
N |µ

N
β
q

is bounded. From the arbitrariness of α, we are reduced to investigate the convergence of the second
term in the previous right hand side.
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Feynman-Kac formula – Usually, the purpose is to reduce the dynamics problem to the study of the
largest eigenvalue for a small perturbation of the generator N2SN. This reduction relies on the Feynman-
Kac formula together with variational formula for the largest eigenvalue of a symmetric operator. By
Feynman-Kac formula,

EµN
β

„

exp

"

N
ż T

0
X f

Npωqpsq ds
*

ď exp

"
ż T

0
λNpsq ds

*

where λNpsq is the largest eigenvalue of the symmetric operator N2SNp¨q`NX f
Npωq. From the variational

formula for the largest eigenvalue of an operator in a Hilbert space, we also know that

λNpsq ď sup
g

!

@

NX f
Np¨q gp¨q

D

β
´N2DNpµβ ;

?
gq
)

where the supremum is taken over all measurable functions g which are densities with respect to µN
β

. In
particular,

1
N

logEµN
β

„

exp

"
ż T

0
NX f

Npωqpsq ds
*

ď

ż T

0
sup

g

"

A

X f
Npωq gpωq

E

β
´NDNpµβ ;

?
gq
*

ds.

Reduction to microscopic blocks – With the same spirit of the one-block estimate presented in
[29], it is then crucial to replace microscopic quantities with their spatial averages. Here, with the same
ideas of [16], we can replace

j0,1 by
1

2p`´ 1q ` 1

ÿ

xPΛ`´1

jx ,x`1

ω2
0 by

1
2`` 1

ÿ

xPΛ`

ω2
x

Lm
N p f qpωq by

1
2` f ` 1

ÿ

xPΛ` f

Lm
s f`1pτx f q

where ` f “ ` ´ s f ´ 1 so that Ls f`1pτy f q is FΛ`-mesurable for every y P Λ` f
. Let us introduce the

following notation

W f ,` :“
1

2`1` 1

ÿ

xPΛ`1

jx ,x`1`
D

2`` 1

ÿ

xPΛ`

pω2
x`1´ω

2
xq `

1
2` f ` 1

ÿ

xPΛ` f

Ls f`1pτx f q (85)

with `1 “ `´1. Finally, thanks to the regularity of the function G and the fact that D is constant, we are
able to reduce Lemma 9.6 to Lemma 9.7 below. We also need to perform a cut-off in order to control
high energy values, and this is valid thanks to (84).

LEMMA 9.7. For all δ ą 0,

inf
f PQ

lim sup
`Ñ8

limsup
NÑ8

sup
g

"

A

Y f
N,`pωq gpωq

E

β
´δNDNpµβ ;

?
gq
*

ď 0, (86)

where
Y f

N,`pωq :“
ÿ

xPTN

G
´ x

N

¯

τxW f ,`pωq.
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Reduction to a variance estimate – Then, the challenge is to reduce the proof of Lemma 9.7 to
the following result:

inf
f PQ

lim
`Ñ8

p2`q ˆE
„

A

`

´SΛ`
˘´1

W f ,`,W f ,`
E

β



“ 0 (87)

This convergence holds, since it is equivalent to the conclusion of Theorem 5.9, where the diffusion
coefficient D is defined through the non-gradient approach. Here is the main obstacle. If we follow the
strategy given in [16, Section 7.3], we can bound the supremum in (86) by the largest eigenvalue of
SΛ` ` bW f ,` where b is a small constant. In order to estimate this largest eigenvalue, we usually use a
perturbation method which provides a bound on the largest eigenvalue in terms of the variance of W f ,`.
This can not be proved, and suggests that the entropy inequality together with the Feynman-Kac formula
are not the good tools to prove the hydrodynamic limits for systems which do not have a spectral gap
(see the last concluded section).

We conclude this section by explaining why the perturbation theory does not work. Let us try to
prove Lemma 9.7. Since µβ is translation invariant, we may rewrite

@

Y f ,`
N p¨q gp¨q

D

β
as

ÿ

xPTN

A

G
´ x

N

¯

W f ,`pωqτ´x gpωq
E

β
.

Since the Dirichlet form is convex, the supremum in (86) is bounded from above by

δN
2`

ÿ

xPTN

sup
g

!

b
@

W f ,` g
D

β
´D`pµβ ;

?
gq
)

, (88)

where the constant b“ bpx ,`,δ, Nq satisfies

|b| :“

ˇ

ˇ

ˇ

ˇ

G
´ x

N

¯ 2`
δN

ˇ

ˇ

ˇ

ˇ

ď }G}8
2`
δN

.

Let us denote by λN,`, f this last supremum inside the sum (88), which does not depend on x . We consider
a sequence tgkukPN that approaches this supremum, such that

lim
kÑ8

@?
gk,

`

SΛ` ` bW f ,`
˘?

gk

D

β
“ λN,`, f .

The idea of the perturbation theory is to expand
?

gk around the constant value 1. We write

A

?
gk,

`

SΛ` ` bW f ,`
˘?

gk

E

β
“ b

´

@

W f ,`
D

β
` 2

@

W f ,`p
?

gk ´ 1q
D

β
`
@

W f ,lp
?

gk ´ 1q2
D

β

¯

´D`pµβ ;
?

gkq. (89)

We know that
@

W f ,`
D

β
“ 0, and we use the Cauchy-Schwarz inequality for the scalar product x¨, p´SΛ`q¨yβ

in the second term. We obtain that (89) is bounded, for every Aą 0, by

b

ˆ

b
A

@

W f ,`, p´SΛ`q
´1W f ,`

D

β
`

A
b
D`pµβ ;

?
gkq

˙

` b
@

W f ,`p
?

gk ´ 1q2
D

β
´D`pµβ ;

?
gkq.

It remains to bound the third term in the expression above. This could be done if we had the following
lemma.

LEMMA 9.8. There exists a constant C :“ Cp`, f ,β ,γ,λq such that, for every g ě 0,

@

W f ,`p
?

g ´ 1q2
D

β
ď CD`pµβ ;

?
gq. (90)
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As before, we could try to use the fact that W f ,` is a quadratic function. Even this fact is not helpful,
and we give now a counter-example to this last lemma. We denote by Hn the normalized one-variable
Hermite polynomial of degree ně 3 (see Appendix A). Let us consider

# ?
gpωq “ |Hnpω0q|

W f ,`pωq “ H2pω0q “ω
2
0´ 1.

Let us note that xH2
nyβ “ 1, and xH2yβ “ 0, so that the two test functions g and W f ,` satisfy all expected

conditions. By using the recursive relation

Hn`1pω0q “ω0Hnpω0q ´ nHn´1pω0q,

we get for the left hand side of (90),

@

H2p|Hn| ´ 1q2
D

β
“
@

ω2
0 H2

npω0q
D

β
´
@

H2
n

D

β
´ 2

@

H2|Hn|
D

β
`
@

H2

D

β

“
@

H2
n`1` 2nHn`1Hn`1` n2H2

n´1

D

β
´ 1´ 2

@

H2|Hn|
D

β

“ 1` n2´ 1´ 2
@

H2|Hn|
D

β
ě n2´ 2.

Above the last equality comes from the orthonormality of the polynomial basis, and the last inequality
is a consequence of the Cauchy-Schwarz inequality xH2|Hn|

D2
β
ď xH2

2yβxH
2
nyβ “ 1. Let us assume that

there exists a constant Cą 0 which does not depend on n such that

n2´ 2ď
@

H2p|Hn| ´ 1q2
D

β
ď CD`pµβ ; |Hn|q.

From the convexity of the Dirichlet form, we have

D`pµβ ; |Hn|q ď D`pµβ ; Hnq.

In the case where n is an even positive integer, the flip noise gives a zero contribution to the Dirichlet
form, and then, for all n even, we have

D`pµβ ;Hnq “
λ

2

A

`

Hnpω1q ´Hnpω0q
˘2
E

β
“ λxH2

nyβ ´λ
@

Hnpω0qHnpω1q
D

β
“ λ.

In the last equality, we use the fact that Hn is unitary, and that Hnpω0qHnpω1q constitutes another element
of the Hermite polynomial basis, then is orthogonal to the constant polynomial 1. Letting n go to infinity,
we obtain a contradiction to (90).

Ergodic decomposition – Another idea would be to use the ergodic decomposition. The generator
SΛ` restricted to finite boxes does not have a spectral gap, but it becomes ergodic when restricted to some
finite orbits. However, this approach fails, because the space is not compact, and we need to disintegrate
the measure µβ with respect to all energy levels in p0,`8q. This enforces us to introduce a cut-off in the
variational formula giving the largest eigenvalue. In other words, an indicator function 1t|ωx | ď E0u

will appear in front of W f ,`. Finally, we will have to deal with functions of the configurations that are not
quadratic any more, and we do not know how to prove the convergence result (87) for general functions.
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9.4 Conclusion

Even if the non-gradient method can be applied in some cases when the spectral gap does not hold,
(and then the diffusion coefficient is well defined), this does not straightforwardly imply the hydrody-
namic limits.

In order to derive the hydrodynamic theorem, we would need to bypass the entropy inequality to-
gether with the Feynman-Kac formula. The entropy inequality is however a convenient mean to trans-
form the averages w.r.t. the unknown law µN

t into equilibrium averages w.r.t. µN
β

, which are more easily
tractable. The same problem would arise in the relative entropy method.
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A Hermite polynomials and quadratic functions

In the whole section we assume β “ 1. Every result can be restated for the general case after replacing
the variable ω by β´1{2ω.

Let χ be the set of positive integer-valued functions ξ : ZÑ N, such that ξx vanish for all but a finite
number of x P Z. The length of ξ, denoted by |ξ|, is defined as

|ξ| “
ÿ

xPZ
ξx .

For ξ P χ, we define the polynomial function Hξ on Ω as

Hξpωq “
ź

xPZ
hξx
pωxq,

where thnunPN are the normalized Hermite polynomials w.r.t. the one-dimensional standard Gaussian
probability law (with density p2πq´1{2 expp´x2{2q on R). The sequence tHξuξPχ forms an orthonormal
basis of the Hilbert space L2pµ1q, where µ1 is the infinite product Gibbs measure on RZ, defined by (4)
with β “ 1. As a result, every function f P L2pµ1q can be decomposed in the form

f pωq “
ÿ

ξPχ

FpξqHξpωq.

Moreover, we can compute the scalar product x f , gy1 for f “
ř

ξ FpξqHξ and g “
ř

ξGpξqHξ as

x f , gy1 “
ÿ

ξPχ

FpξqGpξq.

DEFINITION A.1. We denote by χn Ă χ the subset sequences of length n, i.e. χn :“ tξ P χ ; |ξ| “ nu . A
function f P L2pµ1q is of degree n if its decomposition

f “
ÿ

ξPχ

FpξqHξ

satisfies: Fpξq “ 0 for all ξ R χn.

REMARK A.1. In this paper, we mainly focus on degree 2 functions, which are by Definition A.1 of the
form

ÿ

xPZ
ϕpx , xqpω2

x ´ 1q `
ÿ

x‰y

ϕpx , yqωxωy (91)

where ϕ : Z2 Ñ R is a square summable symmetric function. Note that they all have zero mean w.r.t. µ1,
and they can also be rewritten as

ÿ

xPZ
ψpx , xqpω2

x ´ω
2
x`1q `

ÿ

x‰y

ψpx , yqωxωy ,

for some square summable symmetric function ψ : Z2 Ñ R.
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A.1 Local functions

On the set of n-tuples x :“ px1, . . . , xnq of Zn, we introduce the equivalence relation x „ y if there
exists a permutation σ on t1, . . . , nu such that xσpiq “ yi for all i P t1, . . . , nu. The class of x for the
relation„ is denoted by rxs and its cardinal by cpxq. Then the set of configurations of χn can be identified
with the set of n-tuples classes for „ by the one-to-one application:

Zn{ „ Ñ χn

rxs “ rpx1, . . . , xnqs ÞÑ ξrxs

where for any y P Z, pξrxsqy “
řn

i“1 1y“x i
. We identify ξ P χn with the occupation numbers of a

configuration with n particles, and rxs corresponds to the positions of those n particles. A function
F : χn Ñ R is nothing but a symmetric function F : Zn Ñ R through the identification of ξ with rxs. We
denote (with some abuse of notations) by x¨, ¨y the scalar product on ‘L2pχnq, each χn being equipped
with the counting measure. Hence, for two functions F,G : χ Ñ R, we have

xF, Gy “
ÿ

ně0

ÿ

ξPχn

FnpξqGnpξq “
ÿ

ně0

ÿ

xPZn

1
cpxq

FnpxqGnpxq,

with Fn,Gn the restrictions of F,G to χn.

A.2 Dirichlet form

It is not hard to check the following proposition, which is a direct consequence of the fact that hn has
the same parity of the integer n.

PROPOSITION A.1. If a local function f P L2pµ1q is written on the form f “
ř

ξPχ FpξqHξ, then

S f pωq “
ÿ

ξPχ

pSFqpξqHξpωq,

where S is the operator acting on functions F : χ Ñ R as

SFpξq “ λ
ÿ

xPZ

“

Fpξx ,x`1q ´ Fpξq
‰

` γ
ÿ

xPZ

`

p´1qξx ´ 1
˘

Fpξq.

Above ξx ,y is obtained from ξ by exchanging ξx and ξy .

From this result we deduce:

COROLLARY A.2. For any f “
ř

ξPχ FpξqHξ P L2pµ1q, we have

Dpµ1; f q “
@

f ,´S f
D

1 “
ÿ

ξPχ

"

λ

2

ÿ

xPZ

`

Fpξx ,x`1q ´ Fpξq
˘2
` γ

ÿ

xPZ

`

p´1qξx ´ 1
˘

F2pξq

*

A.3 Quadratic functions

Recall Definition 2.2. In other words, we are mostly interested in quadratic functions f in L2pµ1q,
which have zero average with respect to µ1 and compact support. They correspond exactly to degree 2
functions as we already noticed in Remark A.1, but with the additional assumption that their support is
compact.

The next propositions give some useful properties:
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PROPOSITION A.3. If f P L2pµ1q is of degree 2, then the following variational formula

sup
gPL2pµ1q

 

2
@

f , g
D

1´Dpµ1; gq
(

can be restricted over degree 2 functions g.
Moreover, if the support of f is finite and included in Λ, then the supremum can be restricted to functions

with support included in Λ.

Proof. This fact follows after decomposing g as
ř

ξPχ GpξqHξ. Corollary A.2 and the orthogonality of
Hermite polynomials imply that we can restrict the supremum over functions g of degree two (91).
Moreover, if x ‰ y , then xpω2

x´1qpω2
y´1qy1 “ 0, and if x , y, z, t are all distinct, then xωxωyωzωty1 “ 0.

This implies that the support of g can be restricted to the one of f , otherwise it would only increase the
Dirichlet form.

PROPOSITION A.4. Let t fnunPN be a sequence of degree 2 functions in L2pµ1q. Suppose that t fnu weakly
converges to f in L2pµ1q. Then, f is of degree 2.

Moreover, if any fn has support included in some finite subset Λ, then the support of f is included in Λ.

Proof. For all n P N, and ξ R χ2, the scalar product
@

fn,Hξ
D

1 vanishes (by definition). From the weak
convergence, we know that

@

fn, Hξ
D

1 Ñ
@

f , Hξ
D

1,

as n goes to infinity, for all ξ P χ. This implies:
@

f ,Hξ
D

1 “ 0 for all ξ R χ2.

Note that the set denoted by Q and defined in Definition 2.2 contains cylinder quadratic functions in
L2pP‹1q. The conclusions of Propositions A.3 and A.4 can be restated for our purpose as:

COROLLARY A.5. If f PQ, then the following variational formula

sup
gPL2pP‹1q

 

2E‹1r f , gs ´DpP‹1; gq
(

can be restricted over functions g in Q. Moreover, if t fnun is a sequence of functions in Q such that t fnu

weakly converges to f in L2pP‹1q, then f belongs to Q.

B Proof of the weak sector condition

In this section we prove Proposition 5.7 that we recall here for the sake of clarity.

PROPOSITION B.1 (Weak Sector condition). (i) There exists two constants C0pγ,λq and C1pγ,λq such
that the following inequality hold for all f , g PQ:

ˇ

ˇ!Am f ,S g "β
ˇ

ˇď C0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
.

ˇ

ˇ!Am f ,S g "β
ˇ

ˇď C1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
`

1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β

.

(ii) There exists a positive constant Cpβq such that, for all g PQ,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇAmg
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
ď Cpβq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
.
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Proof. We prove (i). We assume that

gpm,ωq “
ÿ

xPZ
ψx ,0pmqpω

2
x`1´ω

2
xq `

ÿ

xPZ
kě1

ψx ,kpmqωxωx`k

f pm,ωq “
ÿ

xPZ
ϕx ,0pmqpω

2
x`1´ω

2
xq `

ÿ

xPZ
kě1

ϕx ,kpmqωxωx`k.

We denote by ∆mψ the discrete Laplacian in the variable m, that is

∆mψpmq “ 2ψpmq ´ψpτ1mq ´ψpτ´1mq,

and τx∆
m is the operator defined as

pτx∆
mqψpmq :“∆mψpτxmq.

Straightforward computations show that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
“
γ

2
E‹β

”

`

∇0Γg
˘2
ı

`
λ

2
E‹β

”

`

∇0,1Γg
˘2
ı

“
4γ
β2

ÿ

xPZ
kě1

Erψ2
x ,ks `

2λ
β2

ÿ

xPZ
E
„ˆ

ÿ

xPZ
τx

`

∆mψx ,0

˘

˙2

`
λ

β2

ÿ

kě2

E
„ˆ

ÿ

xPZ

“

τ´xpψx ,kq ´τ1´xpψx ,kq
‰

˙2

,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
ě
ˇ

ˇ

ˇ

ˇ

ˇ

ˇSflip f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
“
γ

2
E‹β

„ˆ

2
ÿ

zPZ
kě1

ϕz,kpmqω0ωk

˙2

“
2γ
β2

ÿ

kě1

E
„ˆ

ÿ

zPZ
ϕz,kpmq

˙2

. (92)

Now we deal with !Amg,S f "β . From Proposition 5.1, and by definition,

!Amg,S f "β “´
ÿ

zPZ
E‹β r f ,τzpAmgqs

“ ´
ÿ

x ,zPZ
E
”

ϕx ,0pmqxω
2
x`1´ω

2
x ,τzpAmgqyβ

ı

´
ÿ

x ,zPZ
kě1

E
“

ϕx ,kpmqxωxωx`k,τzpAmgqyβ
‰

“
2
β2

ÿ

xPZ
E
„

τxp∆
mψx ,0q

?
mx mx`1

ÿ

zPZ
τ´zpϕz,1q



`
1
β2

ÿ

xPZ
E
„ˆ

τ1ψx ,1
?

mx mx`1
´

ψx ,1
?

mx`1mx`2

˙

ÿ

zPZ
τ´zpϕz,2q



`
1
β2

ÿ

kě2

ÿ

xPZ
E
„ˆ

τ1ψx ,k
?

mx mx`1
´

ψx ,k
?

mx`kmx`k`1

˙

ÿ

zPZ
τ´zpϕz,k`1q



`
1
β2

ÿ

kě2

ÿ

xPZ
E
„ˆ

τ´1ψx ,k
?

mx mx`1
´

ψx ,k
?

mx`kmx`k´1

˙

ÿ

zPZ
τ´zpϕz,k´1q



.
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From Cauchy-Schwarz inequality, and recalling 1{
?

m0m1 ď C (P-a.s.), we obtain the following bound:

} !Amg,S f "β } ď
2C
β2
E
„ˆ

ÿ

xPZ
τxp∆

mψx ,0q

˙21{2

E
„ˆ

ÿ

zPZ
τ´zϕz,1

˙21{2

(93)

`
3C
β2
E
„ˆ

ÿ

xPZ
τ1ψx ,1´ψx ,1

˙21{2

E
„ˆ

ÿ

zPZ
τ´zϕz,2

˙21{2

(94)

`
3C
β2

ÿ

kě2

E
„ˆ

ÿ

xPZ
τ1ψx ,k ´ψx ,k

˙21{2

E
„ˆ

ÿ

zPZ
τ´zϕz,k`1

˙21{2

(95)

`
3C
β2

ÿ

kě2

E
„ˆ

ÿ

xPZ
τ´1ψx ,k ´ψx ,k

˙21{2

E
„ˆ

ÿ

zPZ
τ´zϕz,k´1

˙21{2

. (96)

Now we are going to use twice the trivial inequality
?

ab ď a{ε` εb{2 for a particular choice of ε ą 0:
in (93) we take ε “ γ{C and in (94) we take ε “ 2γ{p3Cq. This trick gives the final bound

} !Amg,S f "β } ď
2C2

γβ2
E
„ˆ

ÿ

xPZ
τx

`

∆mψx ,0

˘

˙2

`
2γ
β2

ÿ

kě1

E
„ˆ

ÿ

zPZ
ϕz,kpτ´zmq

˙2

`
9C2

γβ2

ÿ

kě2

E
„ˆ

ÿ

xPZ
τ1ψx ,k ´ψx ,k

˙2

.

Recalling (92), we obtain

} !Amg,S f "β } ď
9C2

γλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
`

1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β

.

If we use the Cauchy-Schwarz inequality, we get:

!Amg,S f "2
β ď

18C2

γλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β

.

We have proved (i) with C0 “
a

18C2{pγλq and C1 “ 9C2{pγλq. Now we turn to (ii). From Lemma 5.5
and Statement (i),

!Amg, jS0,1 "β “ ! S g, jA0,1 "β ď
ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jA0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
.

Moreover, from Statement (i), we also get, for all f PQ0,

´2!Amg,S f "β ď
ˇ

ˇ

ˇ

ˇ

ˇ

ˇS f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
`

2C
γλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β

.

As a result, the variational formula (44) for
ˇ

ˇ

ˇ

ˇ

ˇ

ˇAmg
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β

gives:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇAmg
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
ď

1
λχpβq

!Amg, jS0,1 "
2
β `

9C2

γλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β
ď

˜

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ jA0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

β

λχpβq
`

9C2

γλ

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS g
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
β

.

The result is proved.
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C Tightness

In this section we prove the tightness of the sequence tYNuNě1, by using standard arguments. First,
let us recall that the space H´k is equipped with the norm defined as

}Y}2
´k “

ÿ

ně1

pπnq´2k
ˇ

ˇYpenq
ˇ

ˇ

2
.

THEOREM C.1. The sequence tYNuNě1 is tight in Cpr0, Ts,H´kq.

Proof. The tightness of the sequence tYNu follows from two conditions (see [16], page 299):

lim
AÑ8

limsup
NÑ8

P‹
µN
β

„

sup
0ďtďT

}YN
t,m}´k ą A



“ 0 (97)

(98)

lim
δÑ0

limsup
NÑ8

P‹
µN
β

”

wpYN
m,δq ą ε

ı

“ 0, for all ε ą 0, (99)

where the modulus of continuity wpY,δq is defined by

wpY,δq “ sup
}t´s}ăδ
0ďsďtďT

}Yt ´Ys}´k.

Let us remind the decomposition of YN
t,m given in (20):

YN
t,mpHq “ YN

0,mpHq `
ż t

0
DYs,mp∆NHqds`M

1,N
t,m, fk

pHq ` ZN
t,m, fk

pHq,

where M
1,N
t,m, fk

pHq is the martingale defined in Subsection 3.3, and ZN
t,m, fk

pHq is defined as the sum of the
remaining terms in the decomposition. On the first hand,

E‹
µN
β

„

sup
0ďtďT

´

ZN
t,m, fk

pHq
¯2


can be estimated by the proof of Lemma 3.2 and Theorem 3.3. On the other hand,

E‹
µN
β

„

´

M
1,N
t,m, fk

pHq
¯2


can be computed explicitly.
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