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Abstract

We investigate the macroscopic energy diffusion of a disordered harmonic chain of oscillators, whose
hamiltonian dynamics is perturbed by a degenerate conservative noise. After rescaling space and time
diffusively, we prove that the equilibrium energy fluctuations evolve according to a linear heat equation.
The diffusion coefficient is obtained from Varadhan’s non-gradient approach, and is equivalently defined
through the Green-Kubo formula. Since the perturbation is very degenerate and the symmetric part of
the generator does not have a spectral gap, the standard non-gradient method is reviewed under new
perspectives.
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1 Introduction

This paper deals with diffusive behaviour in heterogeneous media for interacting particle systems.
More precisely, we address the problem of energy fluctuations for chains of oscillators with random de-
fects. In the last fifty years, it has been recognized that introducing disorder in interacting particle systems
has a drastic effect on the conduction properties of the material [8]. The most mathematically tractable
model of oscillators is the one-dimensional system with harmonic interactions [1]. The anharmonic case
is poorly understood from a mathematical point of view, but since the works of Peierls [24, 25], it is
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admitted that non-linear interactions between atoms should play a crucial role in the derivation of the
Fourier law. In [2, 5, 7] (among many others) the authors propose to model anharmonicity by stochastic
perturbations, in order to recover the expected macroscopic behavior: in some sense, the noise simulates
the effect of non-linearities. Being inspired by all these previous works, the aim of this paper is to prove
the diffusive energy behavior of disordered harmonic chains perturbed by an energy conserving noise.
Moreover we prove that all the disorder effects are, on a sufficiently large scale, contained in a diffusion
coefficient, which depends on the statistics of the field, but not on the randomness itself.

On the one hand, the disorder effect has already been investigated for lattice gas dynamics: the first
article dealing with scaling limits of particle systems in random environment is the remarkable work
of Fritz [12], and since then the subject has attracted a lot of interest, see for example [11, 15, 22,
26]. These papers share one main feature: the models are non-gradient' due to the presence of the
disorder. Except in [12], non-gradient systems are usually solved by establishing a microscopic Fourier
law up to a small fluctuating term, following the sophisticated method initially developed by Varadhan
in [30], and generalized to non-reversible dynamics in [17]. These previous works mostly deal with
systems of particles that evolve according to an exclusion process in random environment: the particles
are attempting jumps to nearest neighbour sites at rates which depend on both their position and the
objective site, and the rates themselves come from a quenched random field. Different approaches are
adopted to tackle the non-gradient feature: whereas the standard method of Varadhan is helpful in
dimension d > 3 only (see [11]), the “long jump” variation developed by Quastel in [26] is valid in any
dimension. The study of disordered chains of oscillators perturbed by a conservative noise has appeared
more recently, see for instance [3, 4, 9]. In all these papers, the thermal conductivity is defined by the
Green-Kubo formula only. Here, we also define the diffusion coefficient through hydrodynamics and we
prove that both definitions are equivalent.

On the other hand, the study of one-dimensional chains of oscillators is an active field of research. In
[19], the authors derive the diffusive scaling limit for a homogeneous (without disorder) chain of cou-
pled harmonic oscillators, perturbed by a noise which randomly flips the sign of the velocities (called
velocity-flip noise), so that the energy is conserved but not the momentum. We want to investigate here
the scaling limit of equilibrium fluctuations for the same chain of harmonic oscillators, still perturbed
by the velocity-flip noise, but now provided with i.i.d. random masses. In [29], for the same model,
an exact fluctuation-dissipation relation (see for example [20]) reproduces the Fourier law at the micro-
scopic level. With random masses, however, the fluctuation-dissipation equations are no longer directly
solvable. We therefore adapt Varadhan’s non-gradient approach, which allows one to show that an ap-
proximate fluctuation-dissipation decomposition holds. The main ingredients of the usual non-reversible
non-gradient method are: first, a spectral gap estimate for the symmetric part of the dynamics, and sec-
ond, a sector condition for the total generator. The rigorous study of the disordered harmonic chain
perturbed by the velocity-flip noise contains three major obstacles: (i) first, the symmetric part of the
generator (which, in our case, comes only from the stochastic noise) is poorly ergodic, and does not
have a spectral gap when restricted to micro-canonical manifolds. This issue is usually critical to apply
Varadhan’s method ; (ii) second, the degeneracy of the perturbation implies that the asymmetric part of
the generator cannot be controlled by its symmetric part (in technical terms, the sector condition does
not hold) ; (iii) finally, the energy current depends on the disorder, and has to be approximated by a
fluctuation-dissipation equation which takes into account the fluctuations of the disorder itself.

'Roughly speaking, the gradient property states that the microscopic current (of density, or energy, depending on the conser-
vation law under consideration) can be decomposed as a local gradient. We refer to Section 2.2 for more details.
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To overcome the second obstacle (ii), namely the lack of sector condition due to the high degeneracy
of the velocity-flip noise, we add a second stochastic perturbation, that exchanges velocities (divided by
the square root of mass) and positions at random independent Poissonian times, so that a kind of sector
condition can be proved (see Proposition 5.7: we call it the weak sector condition). However, the spectral
gap estimate and the usual sector condition still do not hold when adding the exchange noise, meaning
that the stochastic perturbation remains very degenerate; in other words, the noises are still far from
ergodic. To sum up, the final model that we rigorously investigate here is: the coupled harmonic chain
with random masses, perturbed by two degenerate stochastic noises, one which exchanges velocities
and positions, the other one which flips the sign of velocities. The main results and contributions of this
article are

e an adaptation of the non-gradient method to a microscopic model for which neither the spectral
gap inequality nor the sector condition hold (Theorem 3.3 and Theorem 5.9), which makes no use
of the closed forms theory. In particular, the main novelty is Lemma 4.3 ;

e the macroscopic behavior of the equilibrium fluctuations of the energy, which is diffusive, with a
diffusion coefficient D depending only on the statistics of the random masses field (Theorem 3.1) ;

o the equivalence between two definitions of the diffusion coefficient: the one obtained via Varad-
han’s approach, and the one obtained from the Green-Kubo formula (Theorem 7.3).

Our model has one crucial feature, that makes an adaptation of Varadhan’s approach possible despite the
lack of spectral gap of the symmetric part of the generator: thanks to the harmonicity of the chain, the
generator of the dynamics preserves homogeneous polymonials together with their degree. In particular,
the derivation of the sector condition and the non-gradient decomposition of closed discrete differential
forms at the center of the non-gradient method (see [28, 16] for more details) can be carried out rather
explicitly in a suitable space of quadratic functions, without need for a spectral gap. Although some
further complications appear in the study of our model, this is one of its clear advantages. It allows us to
avoid significant technical difficulties usually inherent to Varadhan’s approach, and to adapt the latter to
a model with a very degenerate noise. In particular, if the chain is not assumed to be harmonic, a stronger
noise than ours is generally needed: the one proposed by Olla and Sasada in [23] is strong enough so
that the spectral gap and the sector condition hold, and they were able to use ideas from Varadhan’s
approach to determine the scaling limit of the equilibrium fluctuations. Our purpose here is to show,
using elements of the non-gradient method as well, that in the presence of i.i.d. random masses, the
annealed (i.e. averaged out over the masses’ randomness) equilibrium fluctuations of the energy evolve
following an infinite Ornstein-Uhlenbeck process. The covariances characterizing this linearised heat
equation are given in terms of the diffusion coefficient, which is defined through a variational formula.
We opted for a rather detailed redaction, even if some proofs may look standard to expert readers. We
hope that this choice will be beneficial for the reader not already familiar with the non-gradient method.
Finally, we also show that the diffusion coefficient can be equivalently given by the Green-Kubo
formula. The latter is defined as the space-time variance of the current at equilibrium, which is only
formal in the sense that a double limit (in space and time) has to be taken. Asin [3], where the disordered
harmonic chain is perturbed by a stronger energy conserving noise, we prove here that the limit exists,
and that the homogenization effect occurs for the Green-Kubo formula: for almost every realization of
the disorder, the thermal conductivity exists, is independent of the disorder, is positive and finite. This
allows us to prove that the diffusion coefficient D obtained through the variational formula in Varadhan’s
method, and the coefficient D defined through the Green-Kubo formula, are actually equal: D = D.

To conclude this introduction, we introduce in more details the model on which this article focuses.
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As explained earlier, we consider here an infinite harmonic hamiltonian system described by the sequence
{Dx>Tx}xez, Where p, stands for the momentum of the oscillator at site x, and r, represents the distance
between oscillator x and oscillator x + 1. Each atom x € Z has a mass M,, > 0, thus the velocity of
atom x is given by p,/M,. We assume the disorder M := {M, } 7 to be a collection of real i.i.d. positive
random variables such that 1

VxeZ, EnggC, (1

for some finite constant C > 0. The equations of motions are given by
dpx
de
dre _ Pxi1 Px
dt Mx+1 Mx

=Tx —T'x—1,

(2

J

so that the dynamics conserves the total energy

2 2
&= Z {vax + %x}
X€EZL X
To overcome the lack of ergodicity of deterministic chains?, we add a stochastic perturbation to (2).
The noise can be easily described: at independently distributed random Poissonian times, the quantity
Px/v/M, and the interdistance r, are exchanged, or the momentum p, is flipped into —p,. This noise
still conserves the total energy £, and is very degenerate. The main goal of this paper is to prove that
the energy fluctuations in equilibrium converge in a suitable space-time scaling limit (Theorem 3.1).
Even if Theorem 3.1 could be proved mutatis mutandis for this harmonic chain described by {p,, .},
for pedagogical reasons we now focus on a simplified model, which has the same features and involves
simplified computations®. From now on, we study the dynamics on new configurations {1, }cz € RZ
written as

mxdnx = (nx+1 - nx—l)dt: 3

where m := {m,},c; is the new disorder with the same characteristics as in (1). It is notationally
convenient to change the variable 7, into w, := ,/m,n,, so that the total energy reads

&= Z w)zc.
XEZL

Let us now introduce the corresponding stochastic energy conserving dynamics: the evolution is de-
scribed by (3) between random exponential times, and at each ring one of the following interactions can
happen:

a. Exchange noise — the two nearest neighbour variables w, and w, , ; are exchanged;

b. Flip noise — the variable w, at site x is flipped into —w, .

As a consequence of these two perturbations, the dynamics only conserves the total energy, the other
important conservation laws of the hamiltonian part being destroyed by the stochastic noises?. It is not

2For the deterministic system of harmonic oscillators, it is well known that the energy is ballistic, destroying the validity of
the Fourier law. For more details, see the remarkable work of Lebowitz, Lieb and Rieder [21], which is the standard reference.

3We invite the reader to see [6] for the origin of this new particle system.

“*It is now well understood that the ballisticity of the harmonic chain is due to the infinite number of conserved quantities.
In 1994, Fritz, Funaki and Lebowitz [13] propose different stochastic noises that are sufficient to destroy the ballisticity of the
chain: the velocity-flip noise is one of them.
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difficult to check that the following family {ug} g~ of grand-canonical Gibbs measures on RZ is invariant
for the resulting process {w,(t); x € Z,t = 0}:

up(dw) := H A/ 2/5—7[ exp <—gw§> dw,. 4)

XEZ

The index f stands for the inverse temperature. Note that with our notational convenience, ug does not
depend on the disorder m. Observe also that the dynamics is not reversible with respect to the measure
ug. We define eg := B! as the thermodynamical energy associated to 3, namely the expectation of
a)(z) with respect to ug, and y () = 23 ~2 as the static compressibility, namely the variance of wg with
respect to ug.

To state the convergence result, let us define the distribution-valued energy fluctuation field, as fol-
lows: at time O, it is given by

1
Yo 1= == 2 Ban{w}(0) —ep},
\/N XEZL

where &, is the Dirac measure at point u € R. We assume that the dynamics is at equilibrium, namely
that {w,(0)},cz is distributed according to the Gibbs measure ug. Itis well known that y})“ converges
in distribution as N — oo towards a centered Gaussian field ), which satisfies

By [VEV(O)] - 2(8) | FIGy,

for continuous test functions F, G. One of the main results of this article, Theorem 3.1 below, states that
the energy fluctuations evolve diffusively in time: starting from ug, and averaging over the disorder m,

the energy field
1
=N 2 Sen{wi(tN?) —eg}

XEZ

converges in distribution as N — oo to the solution of the linear Stochastic Partial Differential Equation

(SPDE)
0.Y =D}y +1/2Dx (B)o,W,  t>0,y€eR.

where D is the diffusion coefficient, defined by variational formula (see Definition 2.4 below), and W is
the standard normalized space-time white noise.

We note that one could think of using the well-known entropy method [14] to further derive the
hydrodynamic equation: in that case, the initial law is not assumed to be the equilibrium measure g,
but a local equilibrium measure (see (81) below). We conjecture that this property of local equilibrium
propagates in time, and that an hydrodynamic limit result holds. In other words, lete; : T — R be a
bounded function, where T denotes the torus [0,1). The problem is to show that the empirical energy
profile %ZX /N w2 (tN?) converges as N — o to the macroscopic profile e(t, -) : T — R solution to

de 0%e
—(t,u) =D—=(t,u), t>0,ueT,
() =D (t)

e(0,u) =eq(u).

Unfortunately, even if the diffusion coefficient D is well defined through the non-gradient approach, this
does not straightforwardly provide a method to prove such a result. This topic is discussed in Section 9.

Let us now give the plan of the article. Section 2 is devoted to properly introducing the model and
all definitions that are needed. The convergence of the energy fluctuations field (in the sense of finite
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dimensional distributions) is stated and proved in Section 3. The main point is to identify the diffusion
coefficient D (Section 5), by adapting the non-gradient method of Varadhan [30]. This is done in several
steps: in Section 4, we derive the so-called Boltzmann-Gibbs principle, in Section 5 we obtain the diffusion
coefficient as resulting from a projection of the current in some suitable Hilbert space, and finally Section
6 improves the description of the diffusion coefficient through several variational formulas. In Section 7
we prove the convergence of the Green-Kubo formula, and demonstrate rigorously that both definitions
of the diffusion coefficient are equivalent. In Section 8, we present a second disordered model, where
the interaction is described by a potential V which is not assumed to be harmonic anymore. For this
anharmonic chain, we need a very strong stochastic perturbation, which has a spectral gap, and satisfies
the sector condition. We conclude in Section 9 by highlighting the step where the usual techniques for
proving hydrodynamic limits fail. In Appendices, technical points are detailed: in Appendix A, the space
of square-integrable functions w.r.t. the standard Gaussian law is studied through its orthonormal basis
of Hermite polynomials. The sector condition is proved in Appendix B for a specific class of functions
suitable for our needs. In Appendix C, the tightness for the energy fluctuation field is investigated for
the sake of completeness.

2 The harmonic chain perturbed by stochastic noises

2.1 Generator of the Markov process

Let us define the dynamics on the finite torus Ty := Z/NZ, meaning that boundary conditions are
periodic. The space of configurations is given by Qy = R™~. The configuration {cw, } xeT,, €volves accord-
ing to a dynamics which can be divided into two parts, a deterministic one and a stochastic one. The
disorder is an i.i.d. sequence m = {m, },.; which satisfies:

1
VxeZ, —
C

N

m, <C,

for some finite constant C > 1. The corresponding product and translation invariant measure on the
space Qp = [C1,C]% is denoted by P and its expectation is denoted by E. For a fixed disorder field
m = {m, },cz, we consider the system

Wy 41 . Wy_1
\/mx+1 \/mxfl

and we superpose to this deterministic dynamics a stochastic perturbation described as follows: with

Jmedow, = ( )dt, t=0, xeTy,

each atom x € Ty (respectively each bond {x,x + 1}, x € Ty) is associated an exponential clock of rate
y > 0 (resp. A > 0), and all clocks are independent one from another. When the clock attached to the
atom x rings, w, is flipped into —w,. When the clock attached to the bond {x, x + 1} rings, the values
w, and w,;, are exchanged. This dynamics can be equivalently defined by the generator L' of the
Markov process {w,(t); x € Ty};>0, Which is written as

L0 = AT 4y SIP 4 A 5o,

where

w W, _ 0
A£:Z< x+1 x—1 >a )

x€eTy \/mxmx-i-l \/mx—lmx Wy



2 THE HARMONIC CHAIN PERTURBED BY STOCHASTIC NOISES

and, for all functions f : Qp x Oy — R,

ﬂlpf (m, w) Z (f (m, ) — f (m, )),

x€Ty
ST (my ) = ) (f(nnco*x+w-—f<nna»).
xeTy

Here, the configuration «w” is the configuration obtained from w by flipping the value at site x:
. w, if z # x,
(w )z = .
—w, ifz=x,

x,x+1

and the configuration w is obtained from w by exchanging the values at sites x and x + 1:

w, ifz #x,x+1,
(W), =< w, .y ifz=x,
Wy ifz=x+1.

We denote the total generator of the noise by Sy := ysﬁlp + lSﬁXCh.
It is straightforward to see that the total energy Zwi is conserved by the dynamics and that the
following translation invariant product Gibbs measures ,ulg on )y are invariant for the process:

d,u/3 H \/7exp (——w >da)

x€Ty

The index f8 stands for the inverse temperature, namely Sw%d,ulg — B~1. Let us note that the Gibbs
measures do not depend on the disorder m. From the definition, our model is not reversible with respect
to the measure ,ug. More precisely, A} is an antisymmetric operator in L2 (,ug), whereas Sy is symmetric.

NOTATIONS — In the following, we denote by Q2 the space of configurations in the infinite line, that is
Q := RZ, and by up the infinite product Gibbs measure on RZ. The natural scalar product in Lz(,uﬁ) is
denoted by {:,-)3. Moreover, we denote by IF’;j the probability measure on 2 x Q defined by

]P’E =P ug.

Throughout this article we will widely use the fact that IE”;j is translation invariant. We write IE;; for
the corresponding expectation, and Ej [, -] for the scalar product in L2 (IP’;;) We also define the static
compressibility which is equal to the variance of the one-site energy co(z) with respect to ug, namely

£(B) = o)y — (@D} = 5.

2.2 Energy current

Since the dynamics conserves the total energy, there exist instantaneous currents of energy jy y1
such that L8 (w?) = j,_1 (M, ®) — j,+1(m, w). The quantity j, ,,; is the instantaneous amount of
energy flowing between the particles x and x + 1, and is equal to
20,0511
SO | A (? — ).

X x+1
\ m, My 1

jx,x+1 (m’ Cz)) =
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We write jy 11 = jf" w1 T ji «41 Where jf’x 41 (resp. j)f”x +1) Is the current associated to the antisym-
metric (resp. symmetric) part of the generator:

200, Wy 41
VvV My My 1
2 2 )

ji,x-&-l(m’ w) = jg,xﬂ(w) = Aoy —wyyy

jix—&-l <m’ w) =

As mentionned in the introduction, this model is non-gradient, i.e. the current cannot be directly written
as the gradient of a local function. Moreover, there is not an exact fluctuation-dissipation equation, as in
[29].

2.3 Cylinder functions

For every x € Z and every measurable function f on Qp x Q, we define the translated function
T.f on Qp x Qby: 7,.f(m,w) := f(r,m,7,w), where 7,m and 7,w are the disorder and particle
configurations translated by x € Z, respectively:

(Txm)z =My, (wa)z = Wxygz-

Let A be a finite subset of Z, and denote by F, the o-algebra generated by {m,,w, ; x € A}. For a
fixed positive integer ¢, we define A, := {—(,...,£}. If the box is centered at site x # 0, we denote it by
Ag(x) :={—L+x,...,L +x}. If f is a measurable function on Qp, x £, the support of f, denoted by A, is
the smallest subset of Z such that f (m, w) only depends on {m,,w, ; x € A¢} and f is called a cylinder
(or local) function if A¢ is finite. In that case, we denote by s; the smallest positive integer s such that
A, contains the support of f and then Ay = A ;- For every cylinder function f : Qp x Q — R, consider

the formal sum
Ff = Z Txf

XEZ

which is ill defined, but for which both gradients
VO(Ff) = Ff (m, (,()0) — Ff (m, C()),
Vo (y) :=Tf(m, 0>") — Tf (m, w),

only involve a finite number of non-zero contributions and are therefore well defined. Similarly, we
define for any x € Ty

(Vif)(m, 0) := f (m, ) — f(m, w),
(Vipraf)(m ) i= f(m, o) — f(m, w).
DEFINITION 2.1. We denote by C the set of cylinder functions ¢ on Qp x Q, such that
() for all w € Q, the random variable m — ¢ (m, w) is continuous on Qp;
(ii) for all m e Qp, the function w — p(m, w) belongs to L? (up) and has mean zero with respect to ug.
DEFINITION 2.2. We introduce the set of quadratic cylinder functions on Qp x £, denoted by Q < C, and

defined as follows: f € Q if there exists a sequence {wi’j(m)} of cylinder functions on Qp, with finite
support in Qp, such that

i,jEZ

(i) foralli,jeZand all w € §, the random variable m — v); ;(m) is continuous on Qp ;



THE HARMONIC CHAIN PERTURBED BY STOCHASTIC NOISES

(i) ), ; vanishes for all but a finite number of pairs (i, j), and is symmetric: \; ; =; ; ;

(iii) f is written as

)= 2o i(m)(w?,, — )+ D) Py (m)w;w;. ©)
i€Z i,jEZ
i#j

One easily checks that Q is invariant under the action of the generator LY. In other words, quadratic
functions are homogeneous polynomials of degree two in the variable w, that have mean zero with
respect to ug for every m € Qp. Another definition through Hermite polynomials is given in Appendix A
(see Section A.3). We are now ready to define two sets of functions that will play a crucial role later on.

DEFINITION 2.3. Let Cy be the set of cylinder functions ¢ on Q5 x Q such that there exists a finite subset A
of Z, and cylinder; measurable functions {F,, G, }.cx defined on Qp x Q, that verify

0= 2 {Vx(B) + Vi (GO},
xeA
and such that, for all x € A,
() for all w € Q, the functions m — F,(m, w) and m — G, (m, w) are continuous on Qp;
(i) for all m € Qp, the functions w — F,(m, w) and w — G, (m, w) belong to L?(ug).

Let Qo < Cy N Q be the set of such functions ¢, with the additional assumption that the cylinder functions
F,, G, are homogeneous polynomials of degree two in the variable « (but not necessarily with mean zero
as before).

ﬂ

Finally, we introduce the infinite volume counterparts of Ly, Ay, Sy Pand S eXCh, namely the operators

£m A™ Sf1P and $¢*h acting on cylinder functions f on Qp x O :
ﬁmf _ .Amf + Ysﬂipf +ASeXChf

with

Am_2< @xt1 W1 >a(9 ,
wX

x€eZ \/mxmx+1 \/mx—lmx

and

S f (m, ) = Y (V. )m, @) = 3 (£ (m %)~ £ (m,w)),

X€EZ X€EZ
Sexchf (m, w) _ Z (vx’x+lf)(m’ w) - Z (f (m’ a)x,x+1) _f(m, w))
XEZ XEZ

We shorten for convenience
S = YSﬂlp + ).SeXCh

the Markov generator giving the symmetric part of £™. Given A, = {—{,...,{}, we define C’/{‘[, resp.
Sy, » as the restriction of the generator L™, resp. S, to A,. For the jump dynamics SN we consider in

S, only the jumps with both ends in Ay, namely

SAK =7 Z xf m, C‘) +7L Z xx+1f)(m’w)'

xehg xeA\(€}
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2.4 Dirichlet form and properties of C, and Q,

Before giving the main properties of the sets introduced above, we introduce the usual quadratic form
associated to the generator: for any x € Z, any cylinder functions f, g € C, and any positive integer £, let
us define

Dy(ups ) = (LR f ) = (=S ) f g (6)

Since

1 1
<vxf) g>[5 = _£<vxf> vxg>/j and <vx,x+1f: g>/§ = _§<vx,x+1f: vx,x+1g>ﬁa

equation (6) in particular rewrites
‘u’ﬁ f Z < Xf + o Z < xx+1f > (7
XGAe xeA[\{l}

The symmetric form D, is called the Dirichlet form, and is well defined on C. It is a random variable with
respect to the disorder m. Note that, since the symmetric part of the generator does not depend on m,
we can write

E[Dy(ug; f)] = De(Pys f)-
PROPOSITION 2.1. The following elements belong to Q:
(@) g1 Jor-
(b) L£™f, Sf and A™f, forall f € Q.

Proof. The first statement (a) is directly obtained from the following identities: for x € Z, and k > 1

w)2c+1 - wyzc = vx,x+1 (wyzc) (8
1 k—1

Wy Wyt = _va (wxwarl) + Z vx+€,x+€+1 (wxwarE)' 9
(=1

Then, if f € Q is of the form (5), it is easy to see that (8) and (9) are sufficient to prove (b). For instance,

2 2
m Wy Wy 2 Wyp1Wyx1 Py — Dy
L (O“)waJrl) = -
\/mx+1mx+2 \/mxmx—l \/mxmx+1
- 4wawx+1 + A((*‘)x+2 - wx+1)wx + A(‘*‘)xfl - wx)wx+1-
The integrability and regularity conditions are straightforward. O

PrOPOSITION 2.2 (Dirichlet bound). Let ¢ be a cylinder function in Cy, written by definition as

0= D VB + Vinia (G},

X€eA

for some A < Z and some functions F, and G, satisfying the conditions of Definition 2.3. Let us consider
h € C with support in Ay. Denote by {, the integer {, := { —s, —1 so that the supports of ¢ and its gradients
Vi x+1¢ are included in Ay for every x € A,

Then, there exists a positive constant C(y,y) which depends only on ¢ and y such that

]Efj[ D fxso,h]’ <Ce,7) (DK(IF”/;;h))l/Z. (10)

|x|<e,

10



2 THE HARMONIC CHAIN PERTURBED BY STOCHASTIC NOISES

Proof. Let us assume first that ¢ = V(F,), so that s, = 1. Then we have

5| 3 ot <] X mplnnvil < 3 Bl By (7,07

xl<t, xl<e, xl<e,

(2 Eg[wo)z])l/z(% D(Eh)

x|<ty
- 2 o [211/2 * .11\ 1/2
<2y 120, +1[PEL[FF]77 (Dy(P)5h) 7.
Above we used the Cauchy-Schwarz inequality twice, and the fact coming from (7) that
« 27 _ 2 .
2. Ep[(V:h)] < 2 Di(@yih).

[x|<€,

In the same way, if ¢ = >}, ., V, (F,), we have

]E};[ Z Tx(p,h} Z Z]E%[TXF},,VHxh]‘

Ix|<t, lx|<, yeA

< 3 ME[(F)H P E[(Vesyh) ]

|x|<t, YEA

1/2
<V/2r71(25, +1)[26, + 1]V (supE; [F2]) (D (B3 1)) 2.
YEA

Therefore, the following constant

1/2 1/2
Cle,7) ::«/2y—1(23¢+1)|2€¢+1|1/2{<sup]E;3[F5]> ” (supm;[c?]) ! }

X€EA xXeA

satisfies (10). The general case easily follows. O

The main focus of this paper will be on the following quantities: for any ¢ € C let us define
B [0, () o] = sup {285 [0, k] - D,, (B5;h) } € [0, +o0). 11)

By polarization, this definition can be extended to give a meaning to IE;} [(p, (=S )—Hp], for any ¢, € C.
As a consequence of the previous results, these quantities are well defined for functions in Cy:
COROLLARY 2.3. For every function ¢ € C,, the quantity ]E;j [¢, (=S) L] is finite.
Proof. This is a consequence of (10) and of the variational formula (11):

Ej [, (—5) 1] = sup {2]E;5 [¢,h] - D, (IF’;j;h)}

heC

C%(¢,7)
4

< sup {C(so,r)(Dsh (B}:m)"” -, (PE;h)} - -
heC

O

Finally, if we use the decomposition of every function in L?(u p) over the basis of Hermite polynomials,
we can prove the following result for functions in Q, (the details for the proof are given in Appendix A,
Proposition A.3.):

PROPOSITION 2.4 (Variance of quadratic functions). If ¢ € Q,, then

Ep[0, (=Sh,)He] = sup {21@; [v.€] —Dsw(P};;g)}-

‘sg:stp

11
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2.5 Semi inner products and diffusion coefficient

For cylinder functions g,h € C, let us define:

« g h>»g, = Z EE [g T.h], and K gD ani= Z x]Ez [g w?]. (12)

XEZL XEZ
Both quantities are well defined because g and h belong to C and therefore all but a finite number of
terms on each sum vanish.

REMARK 2.1. Note that « -,- »g , is a semi inner product, since the following equality holds:
« g h>g *711m [ZTxg,Z }
XEA

Since « g — 7,8,h »p,= 0 for all x € Z, this inner product is not definite. In particular we have
«js,h»p,=0foranyhecC.

In the next proposition we give explicit formulas for elements of C,.

PROPOSITION 2.5. If ¢ € Cy with

0= D {VuE) + Venia (G},

xeA
then
KPP = IE;; [(a)g — w?) Z TXGX},
xeA
LY, g»p. = IE}; [VO(Fg) Z T_xF +Vo1(Ty) Z T_XGX} forall geC.
XEA XEA
Proof. The proof is straightforward. O

We are now able to give the definition of the diffusion coefficient, which is going to be rigorously
derived from the non-gradient approach detailed in the next sections.

DEFINITION 2.4. We define the diffusion coefficient D() for 8 > 0 as

D(B):=A+

1nfsup{<<f —Sf »p, +2« A —ANf g »g, — < g, —Sg > *}. (13)
1(B) 7E0;3e5 pr e g »

The first term in the sum (A) is only due to the exchange noise, whereas the second one comes from
the hamiltonian part of the dynamics. Formally, this formula could be read as

D(B) = A+

1 A —1;A
L Jo L, (L™ TS P aa (14)
X(ﬁ) 0,1 0,1 ~B,

but the last term is not well defined because j€1 is not in the range of £L™. More rigorously, we should
define

D(B):=A+ limsup « jél, (z — Lm)_lj(’)\,1 >B ok - (15)

1
x(B) -0

The last expression, called Green-Kubo formula, is now well defined, and the problem is reduced to prove
convergence as z — 0. In Section 7, we prove that (15) indeed converges (the proof being inspired by

12



3 MACROSCOPIC FLUCTUATIONS OF ENERGY

[3]), and we also show that the diffusion coefficient can be equivalently defined in the two ways. Note
that, assuming the convergence in (15), one can easily see that D(f) does not depend on f3. Let ij , be
the Hilbert space generated by the closure of {g € C; « g,g »p < 00} w.rt. the inner product « - »g ,.

Consider h, := h,(m, w; ) the solution to the resolvent equation in L% . which reads as

(z— L™, = 2.

Observe that if w is distributed according to ug then 8 1/2 ¢ is distributed according to 1. Besides, jé\l is
a homogeneous polynomial of degree two in w, which implies that h, is also a homogeneous polynomial
of degree two (by the fact that L™ preserves every class of homogeneous polynomials). It follows that

1
A m\—1_-A A A
Ko (B=L™) oy Ppa =< Ny, o1 Ppa= 75 <hgjgq P10

ﬁZ

so that (15) in turns shows that D does not depend on f, since by definition y (8) = 23 2.

3 Macroscopic fluctuations of energy

In this section we state our main result on the fluctuations of the empirical energy around equilibrium.
We show that the limit fluctuation process is governed by a generalized Ornstein-Uhlenbeck process,
whose covariances are given in terms of the diffusion coefficient given in Definition 2.4. For that purpose,
we adapt the non-gradient method introduced by Varadhan. In particular, we rigorously establish the
variational formula that appears in Definition 2.4. The non-gradient approach is detailed and split in
several steps, in Sections 4, 5 and 6.

3.1 Energy fluctuation field

Recall that we denote by ey the thermodynamical energy associated to 5 > 0, namely eg = Bl We

define the energy empirical distribution nlt\lm on the continuous torus T = R/Z as

()= = 3 ()5, n(du), te[0,T], ueT,
x€Ty
where &, stands for the Dirac measure at point u, and where {w(t)}~¢ is the Markov process generated
by Nzﬁg. If the initial state of the dynamics is the equilibrium Gibbs measure ,ug, then, for any fixed
t > 0, and any disorder m € ), the measure nlt\{m weakly converges towards the measure {egdu} on T,
which is deterministic and with constant density w.r.t. the Lebesgue measure on T. Here we investigate
the fluctuations of the empirical measure nlt\fm with respect to this limit.

DEFINITION 3.1 (Energy fluctuation field). We denote by yi“m the empirical energy fluctuation field asso-
ciated with the Markov process {w(t)},>¢ generated by NLR and starting from ]P’;; =P® ,ug, defined by
its action over test functions H e C(T),

V) = =< V() (020~ ep).

x€Ty

We are going to prove that the annealed distribution of yi\]m converges in distribution towards the solu-

tion to the linear SPDE:
0,y = D&}z,y—l—q/ZDx(/j)&yW, (16)

13



3 MACROSCOPIC FLUCTUATIONS OF ENERGY

where W is a standard normalized space-time white noise, and D is the diffusion coefficient defined
in Definition 2.4. More precisely, the solution to (16) is the stationary generalized Ornstein-Uhlenbeck
process with zero mean and covariances given by

x(B) J = = < (u—V)2>
Ev |V, (H)Yy(G)| = H(u)G(v)exp | — dudv,
for all t > 0 and test functions H,G € C?(T). Here and after, H (resp. G) is the periodic extension to
the real line of H (resp. G). Let us fix a time horizon T > 0. The probability measure on the Skorokhod
space D([0,T],QN) induced by the Markov process {w(t)},>o generated by N*£} and starting from
IF’E =P® ug is denoted by IP’;N. Expectation with respect to ]P’;N is denoted by E;N.
p p p

Consider for k > 5/2 the Sobolev space §_; of distributions ) on T with finite norm

V2= D (mn) | V(ey)

n=>1

2

B

where e,, is the function x — +/2sin(nnx). We denote by Q)N the annealed probability measure on the
space D([0,T],$H_x) of continuous trajectories on the Sobolev space, induced by the Markov process
{w(t)}i>0 and the mapping YN : (m, w) — {YN_}o<;<r. In other words, we define

Y (Yer) =By o (M)

Finally, we let 2) be the probability measure on the space C([0, T], $_;) corresponding to the generalized
Ornstein-Uhlenbeck process ), solution to (16). The main result of this section is the following.

THEOREM 3.1. Fix k > 5/2 and T > 0. The sequence {Q)™}x=1 weakly converges in D([0,T],$_;) to the
probability measure %).

3.2 Strategy of the proof

We follow the lines of [23, Section 3]. The proof of Theorem 3.1 is divided into three steps. First,
we need to show that the sequence {9)N}y~; is tight. This point follows a standard argument, given for
instance in [16, Section 11], and recalled in Appendix C for the sake of completeness. Then, we prove
that any limit point 9* of {9N}y>, is concentrated on trajectories whose marginals at time t have, for
any t € [0, T|, the distribution of a centered Gaussian field with covariances given by

V[V (O] = 2(6) | A6 du,

T

where H,G € C%(T) are test functions. Since ug is stationary for the process w, this statement comes
from the central limit theorem for independent variables. Finally, we prove the main point in the next
subsections: all limit points 2)* of the sequence {@N}Nzl solve the martingale problems (17) and (18)
given below, namely, for any function H € C%(T),

W, (1) = 9, (H) ~ Do(#0) ~ [[ DY (), a”)
and
9, (H) = (M, (H))* — 2t ()D f H (u)?du as)

are L!(9)*)-martingales.

14



3 MACROSCOPIC FLUCTUATIONS OF ENERGY 15

3.3 Martingale decompositions

In what follows, in order to simplify notation we write f(m,s) := f(m, w(s)) for any f which is
defined on Qp, x Q. Let us fix He C*(T) and t € [0, T]. It6 calculus, and a discrete integration by parts,
permits to decompose YN _(H) as

VNL(H) =) (H f VN Y ONH () Juera (mys)ds + M (H) (19)
x€Ty

where /\/llt\lm is the martingale defined as

MY (H) 3 VNH( ) (@2 = @2,,) () [Ny 1 (AN%S) — AN%s].

—L NN Z,

Here and after, {N, ,1(t)}xez¢>0 and {N,(t)}yez >0 are independent Poisson processes of intensity 1,
and Vy stands for the discrete gradient:

o(Z) =n[a(55) - (Z)]

In what follows, the discrete Laplacian Ay is defined in a similar way:

() =0 ) (=) -an(3)|

To close the equation, we are going to replace the term involving the microscopic currents in (19) with

a term involving y?m. In other words, the dominant contribution in

fvaNH( ) esn(m,s)ds

x€Ty

is its projection over the conservation field yﬂm (recall that the total energy is the unique conserved
quantity of the system). The non- gradient approach consists in using the fluctuation-dissipation approx-
imation of the current —j, ., as D(w? 1= w?) + L™(t,f). This replacement is made rigorous in
Theorem 5.9 below.

After adding and subtracting D(
f € Q, as follows:

Wi — w?) + L™(1,f) in (19) above, we can rewrite it, for any

t
yﬁm(H):ygfm(HHwa (AnH)ds + 3y - (H) + 05 - (H) + 00 (H) + 9070 (H),  (20)
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where
3y (H) J'vﬁijva( ) [J1(mus) +D(e2,; = 02)(5) + £7(7.f ) (ms) | ds,
s )= [ VN S o () eneupm s
;e (H) = — f QQWﬁ(){vmﬂm§4wwmmmH@Wﬁamﬂ

= Vo (T5)(s) [Ny (yNs) — yNs] }

IR e ) VNH(E){ Va5 AN (AN) — AN

Vx(Ff)(s) d[Nx(Yst) — YNZS] }

The proof is based on the following two results.
LEMMA 3.2. For every function H € C?(T), and every function f € Q,
2N 2
NIEOE% [OiltlgT (jt:m’f( )+ mtmf( )> } -
THEOREM 3.3 (Boltzmann-Gibbs principle). There exists a sequence of functions {fi }ren € Q such that
(i) for every function H e C3(T),

lim lim E* | su (JLN (H))2 =0 2D
k—00 N—0 .Uﬁ Oéth t,m, fi ’
(i) and moreover
' . ) 2 2
Jim Eg [A (VO,I(“)O - ka)) + Y(Vo(ka)) ] = 2Dy (B). (22)

REMARK 3.1. Note that the expectation at the left hand side of (22) also rewrites as

22 (B) + Ep [ A (Yo, (1) +7(Vo(Ty) ],

since for any f € C, one can check that E} [(w) — w?)V,,Tf]| =0.

Using analogous ingredients as in Lemma 3.2 and Theorem 3.3, it is then straightforward to prove
that the martingale Dﬁiz 7, converges in LZ(IF’E), as N — oo then k — oo, to a martingale 91, (H) of
quadratic variation

2tDy () f H' (u)? du,
T
and the limit ), (H) of yi\fm(H) satisfies the equation

i) = Jof#) + [ 3,DB s + o, (80,

therefore any limit point 9)* of the sequence {2)"}y=; is concentrated on trajectories ) solving the
martingale problems (17) and (18), which uniquely characterized the generalized Ornstein-Uhlenbeck
process )V;. The proof of Lemma 3.2 is the content of the next subsection. The proof of Theorem 3.3 is
more challenging, and Sections 4, 5 and 6 are devoted to it.
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3.4 Proof of Lemma 3.2

In this paragraph we give a proof of Lemma 3.2. We define for any f € O

XN

o (H) = ZVNH( ) 7 f (m, 1)

xe’ll‘

First, by rewriting (19) with X} f (H) instead of YN _(H), one straightforwardly obtains
~2N
J ( )+9’ntmf( ) XIt\Imf(H) XI(\)Imf(H)

tm.f
f 3 v, x+1< Z VNH< ) T, f —vw(%)n)(m,s)d[Nx,xH(;Lst) AN%]

xeTy

N\FJ 2 (ZVNH( )eef - VNH<N>Ff>(m’5)d[Nx(YN25)—YN25]~

z€Ty

Therefore, using the convexity inequality (a + b + ¢)? < 3(a® + b% + ¢?), we obtain
2
(a2, ) + 028 (1) <3 (XY, () XY, (1)

(s 2 Veen (X van(E) e - van(3)n ), >d[Nx,x+1<xN2s>—xN2s])2

x€Ty z€Ty

(23)

(] S o s )

z€Ty

On the one hand, for any t € [0, T]
Ep | (X (1) = N3 Z VNH< >VNH<%>]E’[§ [v2f. 7, f]-

This last quantity is of order 1/N2, because f is a local function with mean zero, and H is smooth. On
the other hand, let us define,

=) VNH( )Tzf—VNH( )Z’L'Zf

z€Ty 2€EZL

which is ill defined, but for which

VeenYemo)i= Y, [VaH(S) -Vl (L) ] 7f

|z—x|<(f+1

is not. Moreover, the LZ(IPﬂ )-norm of V,. ;. 1Y, is of order C(f)/N because H is assumed to be of class

C2: this implies that the expectation of (23) w.r.t. ]E/*3 is

3A2tN?
X

N3 E;j [(vx,x+l(Yx))2] = O(Niz).

x€Ty

The same holds for (24).

17



4 CLT VARIANCES AT EQUILIBRIUM 18

4 CLT variances at equilibrium

In this section we are going to identify the diffusion coefficient D that appears in (20). Roughly
speaking, D can be viewed as the asymptotic component of the energy current j, .. in the direction of

the gradient —(wi 1= co)zc), which makes the expression below vanish for any fixed t > 0

t
L Z [jx’xﬂ + D(a)iﬂ — co}z() + ﬁm(rxf)]ds ], for any 8 > 0.

x€Ty

inf limsupE* [
g

feQ N-ow

Let us start by giving some known tools that will help understand the forthcoming results, at least at an
informal level.

4.1 An insight through additive functionals of Markov processes

Consider a continuous time Markov process {Y;};~, on a complete and separable metric space E,
and admitting an invariant measure 7. We denote by (-,-), the inner product in L?(7) and by £ the
infinitesimal generator of the process. The adjoint of £ in L2(7) is denoted by £*. Fix a functionV : E — R
in L2(7) such that (V), = 0. Theorem 2.7 in [18] gives conditions on V which guarantee a central limit
theorem for

and shows that the limiting variance equals

o?(V,m) =2 lin‘(l) Vv, (z— E)_1V>n.
z>0

Let the generator £ be decomposed as £ = S + A, where § = (£ + £*)/2 and A = (£ — L£*)/2 are
respectively the symmetric and antisymmetric parts of £. Let #; be the completion of the quotient of
L2(7r) with respect to constant functions, for the semi-norm | - |, defined as:

1FI3 = {fo (L) ) = Fo (=8)f )

Let H_, be the dual space of H; with respect to L?(r), in other words, the Hilbert space endowed with
the norm | - |_; defined by

112, = Sgp{2<f,g>n —|gl2},

where the supremum is carried over some suitable set of functions g. Formally, ||f | _; can also be thought
as

<f:c_8)_1f>n'
Note the difference with the variance o%(V, 7) which formally reads
2V, (L) V) =2V, [(=£) V).
Hereafter, B, represents the symmetric part of the operator B. We can write, at least formally, that
([(—0) '} = =S+ A" (=8)TU = =5,

where A* stands for the adjoint of .A. We have therefore that [(—[,)*1]5 < (—=8) 7. The following result
is a rigorous estimate of the variance in terms of the #_; norm, which is proved in [18, Lemma 2.4].
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LEMMA 4.1. Given T > 0 and a mean zero function V in L2(1) nH_1,

t 2
E, [ sup <f V(s)ds> ] < 24T|V|?,. (25)

0<t<T 0

In our case, the fact that the symmetric part of the generator does not depend on the disorder implies
that (25) still holds if we take the expectation with respect to the disorder P, and thus replace © with
P ® m. If we compare the previous left hand side to the Boltzmann-Gibbs principle (22), the next step
should be to take V proportional to

D7 es1 +#D(@2, ;) — @2) + L™(7,f)] (26)

x€Ty

and then take the limit as N goes to infinity. In the right hand side of (25) we will obtain a variance that
depends on N, and the main task will be to show that this variance converges: this is studied in more
details in what follows. Precisely, we prove that the limit of the variance results in a semi-norm, which
is denoted by ]H . |H 5 and defined in (27) below. More explicitly, we are going to see that (27) involves a
variational formula, which formally reads

\H(p”]é =<, (=8) o g+ ) ) >>fj’** .

1
Ax(B
The final step consists in minimizing this semi-norm on a well-chosen subspace in order to get the
Boltzmann-Gibbs principle, through orthogonal projections in Hilbert spaces. One significant difficulty
is that ||| . H| P only depends on the symmetric part of the generator S, and the latter is really degenerate,
since it does not have a spectral gap.

In Subsection 4.2, we relate the previous limiting variance (which is obtained by taking the limit as
N goes to infinity) to the suitable semi-norm. Subsection 4.3 is devoted to proving the Boltzmann-Gibbs
principle (using Lemma 4.1). Note that (26) is a sum of local functions in Q,, from Proposition 2.1
(recall that f € Q). Therefore, all our results will be restricted to that subspace. Then, in Section 5 we
investigate the Hilbert space generated by the semi-norm, and prove decompositions into direct sums.
Finally, Section 6 focuses on the diffusion coefficient and its different expressions. These three main
steps are quite standard, and many of the arguments can be found in [23]. For that reason, we shall be
more brief in the exposition, and refer the reader to [23] for more details.

4.2 Limiting variance and semi-norm

We now assume 3 = 1. All statements are valid for any 3 > 0, and the general argument can be easily
written. In the following, we deliberately keep the notation y (1), even if the latter could be replaced
with its exact value y (1) = 2. We are going to obtain a variational formula for the variance

1 . 1
ﬂEl[(_SA[) Z Tx P, Z Tx‘ao]
|x|<€, |x|<€,

where ¢ € Qg and £, = { — s, — 1. We first introduce a semi-norm on Qj:

19
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DEFINITION 4.1. For any cylinder function ¢ in Qy, let us define

. Ao 1
|||<p|||f D= zgg {2 <P,g 1, —%]E1 [(vorg)z] _ E]E1 [(Vo,lrg)z]} + e &P >>i** 27

A
B Sup{2 CP,8 21, F20 <P >4, _gEI [(Vorg)z] - EEI [(a(w(z) - w%) + V0,1Fg)2] },
geQ
aeR

where « - »q , and < - »q ,, were introduced in (12).

REMARK 4.1. The second identity in (28) follows from an explicit computation of the supremum in
a € R, which can be obtained by standard arguments, using the fact that E} [(co(z) — w%)vo’l Fg] = 0 for
any g €C.

Note that, from Proposition 2.5, one can easily bound H]cp”ﬁ for any ¢ € Q, as follows: if
Y= Z {vx(Fx> + vx,x+1<Gx)}:
XEA

then
s 2, 2 3, 2
loll? < 2E2 [( Y5 } 5 [( Y e .G, ] <o,
4 XEA XEA
We are now in position to state the main result of this subsection.

THEOREM 4.2. Consider a quadratic function ¢ € Qy. Then

Jim GO~ (- 5,) 7 3 wp 3 e = Dol

|x|<t, [x|<C,,
Here, £, stands for { —s,, — 1 so that the support of T, is included in A for every x € Ay,

This theorem is the key of the standard non-gradient method. As usual, the proof is done in two
steps that we separate as two different lemmas for the sake of clarity. First, we bound the variance of a
cylinder function ¢ € Q, with respect to P}, by the semi-norm ||¢ |2 (Lemma 4.3). In the second step,
a lower bound for the variance can be easily deduced from the variational formula which expresses the
variance as a supremum (11).

LEMMA 4.3. Under the assumptions of Theorem 4.2,

imsup(o) 5| (~5,) " 3] wap 3 e < ol

> x|<t,, x|<t,

In the proof of this lemma, one needs to know the weak limits of some particular sequences in Q. In
the typical approach, these weak limits are viewed as germs of closed forms, but for the harmonic chain,
this way of thinking is not necessary: this is one of the main technical novelties in this work. The rest of
this section is devoted to proving Lemma 4.3.

20
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Let us start by following the proof given in [23, Lemma 4.3] and we assume for the sake of clarity that
¢ = Vo(F) 4+ V;,1(G), for two quadratic cylinder functions F,G (the general case can then be deduced
quite easily). We write the variational formula

(25)‘11E[ =Sy) Y T, Y w]=§gg{ [%26 > Txh}_zle,DK(PI;h)}

[x|<E, [x|<e, [x|<e,

_ sup | 2% | P, (= D Teh) +GV ! Dl Tk 1D(IF’*-h)

A bt AP, x 01\ 2¢ x 20 L
Ix|<t, |x|<€,

Since ¢ is quadratic, we can restrict the supremum in the class of quadratic functions h with support
contained in A, (the proof of that statement is detailed in Proposition A.3). We can also restrict the
supremum to functions h such that D, (IP}; h) < C/, as a standard consequence of Proposition 2.2 (namely,
there is some constant C(¢) such that the right hand side is non-positive when D, (P3; h) > C(p){). Next,
we want to replace the sums over Ay, with the same sums over A, (recall that £, = { —s, —1 < {). For
that purpose, we denote

4
G0 =057 X =), A=Yz B <) 29

x=—{

First of all, from the Cauchy-Schwarz inequality, we have

E} [% (chm)” + %(Cﬁ(m)z} < iw(ﬂ”’{;h)-

Then, from elementary computations (similar to the proof of Proposition 2.2), we can write

{90’216 2 T;J{H<§C(g0,y)( o (P h))1/z

lo<x<t

where C(¢,v) is a constant which depends only on ¢ and y. These last two inequalities give the upper

bound
(ZE)_lE [ SA[ Z Tx¥> Z TX(P]
|x|<Ly, [x|<t,
< su {2E*[Féé(h)+GCe(h)]—E*{Z(Cl(h)>2+&<C€(h)>2”+£ (30)
S heg 1|¥ %0 1 1[5 \50 5 \°1 N

D, (P7;h)<Ct

from some constant C > 0. From now on, we denote generically by C a positive constant that does not
depend on £, but may depend on ¢ (and y), and may change from line to line. The conclusion is now
based on the following lemma:

LEMMA 4.4. Assume that h € Q with support in A,. From Definition 2.2, it reads as

¢ -1
2 Yiimow;+ 3 Pi(m)(ef,; - of).
i,j=—"{ i=—/
i#]
Then there exists a,(m) and R,(m, w) such that,
Z6(h) = Vo (Thy20)) (31)
L5 (h) = Vo1 (Thjan)) + a¢(m)(w) — w?) + Ry(m, w). (32)
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Moreover, if Dy(P3;h) < CL, then
N C
B[ (Re(m, )*| < = (33)
rl
Proof of Lemma 4.4. The proof of this lemma is rather straightforward, we merely sketch it. First, given

the shape of the function h, elementary computations yield that (31) and (32) hold with

(Y_10-1(t_gm) +_y _¢(Teyym)),

o]

a;(m) =

(=

(-1
Ry(m, w) = ( D Ye(Togm) wj_¢ + Z Y _,j(Tg41m) J+£+1>( — o).

j=—1 j=—t+1

Then, we straightforwardly obtain, by translation invariance of P,

N

j=— j=—t+1

where C; = 4E}[w? | (w; — wg)?*| = 8EY[w? ,w3] = 8. Furthermore, since both parts of the Dirichlet
form given in (7) are non-negative, in particular, we have

> L 3 B (h(m, %) ~ hm, )’

XEA[

> Y [(h(m, w!) - h(m,w))z] n rIE*{[(h(m,w‘é) — h(m,w))z]

2 2
21 o ¢ 2
~Txi 10t (3 wesmie) |+ Zaifreo (3 wosmie) ]
j=—t j=—t+1
-1 ¢ )
—smg[ S Gegtm)*| +ovmi| X (sm)?]
j=—t j=—t+1
The previous two bounds finally yield
. 2 1
El[(m(m,w)) ]< D)
which proves (33). O]

Lemma 4.4 above permits to bound the limit as £ — oo of (30) by

sup {Z]E’l' |FV0T; +G(a(m) (el — )+ Vo,Ty) |

feQ
_ 1[

a:Qp—R
where we denote by (¢, a, f) the quantity inside brackets. To conclude we want to restrict the supre-

N[

A
(VoIy)* + E(a(m)(wg_w%)""v&lrf)z]} =i sup H(p,a,f), (34
a:Qp—R

mum on real numbers a which do not depend on the disorder. This is done in a similar way as in [11,
Lemma 7.7]. To that aim, for any positive ¢, fix a,(m) such that

supH(p,a., f)= sup $H(p,a,f)—¢, (35)

feQ feQ
a:Qp—R
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and shorten d,(m) := a,(m) — E[a,]. Let us define, for any x € Z, the function b, € L?(PP) given by

x—1
Z Trd,(m) ifx>1,
b, (m) = { k=0 and by(m) =0,

=3 -1
Z —Trdg(m) ifx < -1.
k=x

which is defined in such a way that for any x € Z, b,,,(m) — b, (m) = 7,d,(m). For any n € N, let us
introduce the quadratic function

gn(m,©) = — 3 by(m)w?.

XEA,

One can easily check that, for any z € Z such that {z,z + 1} € A,,,
vz,z+1(gn) = Tzae(m)(w§+1 - 0)3), and VO(gn) =0.

Therefore, letting f, := f + g,/(2n) which still belongs to O, we get

VOFf = VOFJ?
Voails + ag(m)(w(z) — w%) = Vo,lrfn + E[ag](w(z) — w%) + R, (m, w),

where 1
R,(m,w) = ae(m)(w% - w%) - ﬂvo’lf‘gn.

We are now going to estimate the L2 (P})-norm of R, as follows: basic computations show that

o (bym) (2~ w2, )

1
ot (b m) (@2, - 0?).

Hence, from the Cauchy-Schwarz inequality and translation invariance of P, it is enough to show that

o iEKniTkae(m))z] o O and B 0. (36)

2 2 n—o0 2 n—oo
n n k=0 n

1 ~
ﬂvo,lrgn = &;(m)(wf — wf) +

These convergences are standard consequences of the translation invariance of P: more precisely, let us
fix a positive integer p and introduce for any x € Z the conditional expectation

5}((8,17) — E[Txas(m) Imy; ye Ap(x)].

From our assumptions, note that aﬁf’P g xaff*’ ) and E[&ff’p )] = 0. As a result,

The last inequality comes from the fact that ) 5I(f’p ) is a sum of identically distributed variables (because
of the translation invariance of P), for which we have a good control of the variance. Letting now, in the
bound above, n — o0, and then p — o0, we obtain that (36) holds, thus (35) rewrites

supH(p,Ela.],f)= sup $H(p,a,f)—e.
feQ feQ

a:Qp—R

23
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Since this holds for any € > 0, we finally obtain as wanted that

supH(p,a,f)= sup H(p,a,f),
feQ feQ
aeR a:Qp—R

and therefore

(2@)1E*[ SA[ Z T, Q, 2 Tx(p] <21€15{Z]E’{[FVOFg—i—G(a(cog—w%)+VO,1I‘g)]

[x|<e, [x|<e, SR

- gEI [(Vofg)z] - %Ei[(a(a)g — i)+ Vo,lrg)z] }

Lemma 4.3 follows, after recalling (28).
We now turn to the upper bound.
LEMMA 4.5. Under the assumptions of Theorem 4.2,
. s —1 2
imsup(20) 55| (-5,) " X e, X ] > ol
(o lx|<t, lx|<t,

Proof. We define, for f € Q, define {; ={ —s; — 1 and

Jp = Z Tng,l, H{z Z S(tyf).

y,y+1eA, |yl
The following limits hold:
—1 i
lli)rgc(zﬁ) [( —Sy,) xé T, Jg_ = —KQPD, 37)

: -1 £
elglgo(zz) E] |: SA[ Z Tx®P> H — < So,f >>1,* B

[x]<Ly,

ﬁ&WVWﬂF$MAQ%+%)@%+%)=
i et o) + 9ou)?] + i  (ry) ]

We only prove (37), the other relations can be obtained in a similar way. As previously, we assume for
the sake of simplicity that ¢ = V(F) + V; 1(G). One can easily check the elementary identity

SAZ< D xw ) = Jy(w). (38)

XEA@

Therefore,

@078[(-5)" B w0 B 3 yeifesd ]

[x|<t, YeA |x|<L,,

=—207" Y D) yEGVou(w?_,)]

YEA |x|<L,,
—(20)7" > x E[GVg(wd)] + (x + 1)E}[G Vo (w?)]
|x|<€,

—(20)71 (20, + 1) E}[G(w] — w3)]| — — < ¢ > 4, .

{—0
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The last limit comes from Proposition 2.5 and the fact that £, = £ —s, — 1. We also have used the
translation invariance of ]P”l*. Then, we use the variational formula (11), chosing

h:(SAK)*l(an—I—H{)za Z ywi—I— Z T

YeEM ly|<ty
we obtain:
hergg)lf(%) [ SA[ 2 Ty, 2 Tx(p]
[x|<€, [x|<E,
11angj1f(2£ { [ Z Txgo,aZyco + Z }—HE;[aZywi#— Z Tyf,an—i—H{]}
|x|<¢, YeA lyl<ts YeA lyl<ts

A
=20 € ¢ > 42 <0, f 21, 5B (@(@ - o) + VouTy)?| - TEI| (Vory) .

The result follows after taking the supremum on f € Q and a € R, and recalling (28). O

4.3 Proof of Theorem 3.3

In this paragraph, we start the proof of Theorem 3.3 by using the result given in Theorem 4.2. First,
we show how to relate (21) to such variances, as was rapidly sketched in Section 4.1. Recall that we
have assumed for convenience 3 = 1, but the same argument remains in force for any 3 > 0.

PROPOSITION 4.6. Let 1) € Cy, with s, <N. Then
2 24T
. [ sup { [ v ds} ] < 2T g [, (—50) ] (39)
“1 0<t<T

This result is proved for example in [18, Section 2, Lemma 2.4], when there is no disorder. The
average w.r.t. the disorder can be added (as in the estimate (39)) without any trouble, since Sy does not
depend on m. We are going to use this bound for functions of type >, G(x/N)7 ¢, where ¢ belongs to
Q- The main result of this subsection is the following.

THEOREM 4.7. Let ¢ € Qp, and G € C*(T). Then,
limsup E* [ sup {\/7[ Z T, (m,s) } ] CTH]@\H j G%(u (40)
N—ow M |o<est xeTy
Proof. From Proposition 4.6, the left hand side of (40) is bounded by
24TE} [ VN G<—>T _N2Sy) (W 6(5)~ >]

which can be written with the variational formula as

24T sup{xf Z G (—) E}[f T.¢] NZDN(PI;f)}.

fec x€Ty

Since ¢ € Q, from Proposition A.3 we can restrict the supremum over f € Q. Proposition 2.2 gives

1/2
Ej[f 72] < C0u )7 ofs (=50, (5 of) |
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and by Cauchy-Schwarz inequality;,
* 1 xy 2 2 . 1/2
VN Y G ( )E [frel< (5 X G(ﬁ) NC(y,7)E;[f, (=Su)f] "
x€Ty x€Ty
The supremum on f can be explicitly computed, and gives the final bound
su \/7J G m,s ds} } ( G > 41
B [MET{ x; Ty (m,s) X; ( )

We are now going to show that, after sending N to infinity, the constant on the right hand side is propor-
. 2 . .
tional to ‘H(p ]Hl For that purpose, we average on microscopic boxes: for £ « N, we denote

1
%¢+1

Y =

Ty,

lyl<e,

where as before Ew ={— S — 1. We want to substitute

VN )G ()w

x€Ty

with

\ﬁZ G( )Tx@.

x€Ty

The error term that appears is estimated by

sl e (5[ 3 s OG) o () memaef |

x,y€Ty
Ix—yl<t,

Since Gy(x) := G(x/N) — (2(,, +1)7* ZIY*XK% G(y/N) is of order £/N, we obtain from (41) that the
expression above is bounded by C(£)/N?, and therefore vanishes as N — co. We are now reduced to

;N[ sup {WJ D1G(5) Tl mS)dS}z]- (42)

0<t<T x€Ty

estimate

Using once again (39) and the variational formula for its right hand side, one obtains straightforwardly,
using the translation invariance of P}, that (42) is bounded by

CTsup{\ﬁZ <> lg 7. @] — Nz]E;[ga(_SN)g]}

geQ

< Cngg {fx;;N (%) T <& Pe] — 2£Nj 1 X;N]EI [8: (- SAe(x))g] }
\CT(%H 2(%)?615{ [F 8] B[, (—5n,) £1}
< TEXD 5 62 (2 sup B [F @] - Bi[F, (-5, 1),

x€Ty feQy

where in the last inequality we denote by Q, the set of functions in Q depending only on the sites in
Ay_. To obtain the second bound, we split the supremum over x, and let f := (2 + 1)7_,g/G(x/N),
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and to obtain the third bound, we used the convexity of the Dirichlet form to replace f by its conditional
expectation w.r.t. sites in A,_;. Since ¢ € Q, from Corollary 2.3, one straightforwardly obtains, using
the polarization identity related to (7) and the elementary inequality ab < %az + b2, that

Ei[f @] = BI[f (—=8a,)(=Sn,) ' P
¢ -1

_ A _
= g Z E; [va’ vx((_s/\g)_l LPZ)] + E Z EI [vx,x+1f’ vx,x+1 ((_SA[)_l (Pf)]

x=—{ X=—1
< %EI (@0, (—Sa,) " @] +EJ[f (=Sa,)f -

We can now plug this bound in the previous estimate, let { — oo after N — oo and use Theorem 4.2 to
finally obtain as wanted

t 2
limsupE* [ sup {\/NJ Z G(%) Txtp(m,s)ds} ] < CT|||<p|||ff G%(u)du. (43)
0 T

N—o 1 0<t<T XGTN

~1,N
‘Jt,m,

We apply Theorem 4.7 to f (H), and we get

2
limsupE* [ sup (Jizf(H)) ] < CT||jo1 + D(w? — w?) + mem? f H' (u)?du.
N—oo HM1lo<e<T N T ’ T
To conclude the proof of Theorem 3.3, we show in Section 5 that there exists a sequence of local functions
{fx} € Q such that
liog +D(e? — )+ £mifl, —o,

and Section 6 is devoted to prove the second statement of Theorem 3.3.

5 Hilbert space and projections

We now focus on the semi-norm ‘H . H‘l that was introduced in the previous section, see (27). We can
easily define from H| . “‘1 a semi inner product on C, through polarization, which is denoted by « -, - ».
Let \V be the kernel of the semi-norm H| . |H1 on Cy. Then, the completion of Q| denoted by #; is a
Hilbert space. Let us explain how Varadhan’s non-gradient approach is modified. Usually, the Hilbert
space on which orthogonal projections are performed is the completion of Cy| -, in other words it involves
all local functions. Then, the standard procedure aims at proving that each element of that Hilbert space
can be approximated by a sequence of functions in the range of the generator plus an additional term
which is proportional to the current. Since for our model, all functions of interest are in Q, and since
the decomposition of germs of closed form is explicit in the set Q (recall (31) and (32)), the crucial step
to obtain this decomposition is to control the antisymmetric part of the generator by the symmetric one
for quadratic functions.

In Subsection 5.1, we show that #, is the completion of SO|+{ jg’l }. In other words, all elements of
‘H; can be approximated by a jg’ 1 +8g forsome a € Rand g € Q. This is quite natural since the symmetric
part of the generator preserveé the degree of polynomial functions. Moreover, the two subspaces { 1'3,1}
and SQ| are orthogonal, and we denote their sum by

@’N @J— {]g,l}

27
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Nevertheless, this decomposition is not satisfactory, because we want the fluctuating term to be on the
form £™(f;), and not S(f;). In order to make this replacement, we need to prove the weak sector
condition, that gives a control of |HAmgH‘1 by ]HSg] 1» when g is a quadratic function. The argument is
explained is Subsection 5.2 and 5.3, and the weak sector condition is proved in Appendix B. The only
trouble is that this new decomposition is no longer orthogonal, so that we can not directly express the
diffusion coefficient as a variational formula, like (49). This problem is solved in Section 6.

5.1 Decomposition according to the symmetric part

We begin this subsection with a table of calculus, very useful in the sequel. Recall that « -,- »
is obtained by polarization from the norm |H . |||1 defined in Definition 4.1, and also that « - »;, and
« - »1,, have been defined in (12).

PROPOSITION 5.1. For any ¢ € Qy and g € Q (which implies Sg € Q from Proposition 2.1),
KP,8g»1=—<KP,g >,

S
P JorP1=—< P>

<o, 8g»1 =0
and then

.12 = = < 81 210 = 221
A
sl = 25 (0,102 + 25 [(vr,?)

Proof. These identities are direct consequences of Theorem 4.2. The second one uses (38). The third
one uses Remark 2.1. O

COROLLARY 5.2. Forallae R and g € Q,

. A’ * *
|Ha]g,1 + Sg”ﬁ = a2y (1) + EEI [(VO,lrg)z] + g]El [(Vorg)z] .

In particular, the variational formula for H|(,0 1 ¢ € Qo, writes

1 .
llelly = 5 <« oo >t +§gg{2 <. (=8)g »1 —|lsel3}- (44)

PROPOSITION 5.3. We denote by SQ the space {Sg ; g € Q}. Then,
Hl = @b\/’ @l {131}
Proof. We divide the proof into two steps.
(a) The space is well generated — The inclusion SQ|y + {j5,} = #; is obvious (and follows from

Proposition 2.1). Moreover, from the variational formula (44) we know that: if h € H; satisfies «
h,j5, »=0and « h,Sg »,=0 forall g € Q, then ||h|, = 0.

(b) The sum is orthogonal — This follows directly from the previous proposition and from the fact
that: « jgl,Sg »;=0forall ge Q. O
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5.2 Replacement of S with £

In this subsection, we prove identities which mix the antisymmetric and the symmetric part of the
generator, which will be used to get the weak sector condition (Proposition 5.7).

LEMMA 5.4. For all g,h € Q,
«8g,A"h »1=— <« A™g,Sh > .

Proof. This easily follows from the first identity of Proposition 5.1 and from the invariance by translation

of the measure P}:

<« SgA"h > =— < g, A"h > ,=— Z E}[7,.g, A™h] = Z E}[A™(1,g),h]

XEZ X€EZ
—ZE T, (A™g) ZE _ ZE Mo, Teh| = — <« AMg,Sh > .
XEZ XEZL XEZ
O
LEMMA 5.5. For all g € Q,
€88, jo »1=— <A, j5, »1 .
Proof. From Proposition 5.1,
<<Sg;j(1)3tl »1=—X g)j(lil >>1,*:_ZE Tx8&> ]01 ZE g Jxx-i—l]
XEZ XEZL
== 20t~ ] = = 2 xE g, AT ()]
XEZ XEZ
= 2 xE}[ W2 =< AMg > = — < A™g, 5, > .
XEZ
O

These two lemmas together with the second identity of Proposition 5.1 (and the fact that « jgl D1 ax=
0) imply the following:

COROLLARY 5.6. ForallaeR, g€ Q,
< ajs,+8gajy, +A™g »1=0.
We now state the main result of this subsection.

PROPOSITION 5.7 (Weak sector condition). (i) There exist two constants Cy := C(y,A) and C; := C(y,A)
such that the following inequalities hold for all f, g € QO:

|« A™f, 88 1] < GoflSf |l |||Sg|||1- %)

|« A™f,Sg »1| < Ci[|SFI; + |||8g|||f~ (46)

(ii) There exists a positive constant C such that, for all g € Q,

lamsll, <cllsell,-

Proof. The proof is technical because made of explicit computations for quadratic functions. For that
reason, we report it to Appendix B. O
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5.3 Decomposition of the Hilbert space

We deduce from the previous two subsections the expected decomposition of #;.
PROPOSITION 5.8. We denote by L™Q the space {L™g ; g € Q}. Then,
Hy = Lm0y @ {J3 ).
Proof. We first prove that #; can be written as the sum of the two subspaces. Then, we show that the

sum is direct.

(a) The space is well generated -  The inclusion L™ Q)| + {j§ ,} = H, follows from Proposition 2.1.
To prove the converse inclusion, let h € H; so that « h, jg 1 »1=0and « h,LMg »;=0forall g€ Q.
From Proposition 5.3, h can be written as

k—o0
for some sequence {g;} € Q. More precisely, since « Sgi, A™g; »1= 0 by Lemma 5.4,
|||h|||f = lim « Sg,Sgx »1= lim « Sgi, LMgy > .
k—0o0 k—a0
Moreover, we also have by assumption that « h, £L™g; »;= 0 for all k, and from Proposition 5.7,

sup |27 gy, < (€ +1)sup [|Sgul, == s

is finite. Therefore,

|||h|||§ = kliﬂlg7 & Sgp, LTMg 1= klirrgo & Sg —h, LMg »1 < klingo Cpl|Sgx —h|, =0

(b) The sum is direct — Let {g;} € Q be a sequence such that, for some a € R,
klirlgo LM = ajg’1 in 4,
By a similar argument,

limsup « Sgi, Sgx »1=limsup « L™g,Sgi »1= limsup « L™g; — aJO 1»S&k »1=0,
k—o0 k—o0 k—o0

where the last equality comes from the fact that « jO 1»S8 »1= 0 for all k. On the other hand, by
8th (C+1 H‘Sgkml — 0. Then, a = 0. This concludes the proof. O

Recall that j§ , (m, w) = A(w3 — w?). We have obtained the following result.
THEOREM 5.9. For every g € Q, there exists a unique constant a € R, such that
g +a(w]—wi)elmQ inH,. (47)

In particular, this theorem states that there exists a unique number D, and a sequence of cylinder
functions {f;} € Q such that

ljo.1 + 5( —wp) + ﬁmfk|||1 P 0 (48)

=p2|f|

with the same constant D and the same sequence f. if we replace the semi-norm H| . |”1 with ||| . ||| 5 for any

1> therefore in particular, this convergence also holds

p > 0 (as a consequence of a standard change of variables argument). This concludes the first statement
of Theorem 3.3. We prove the second statement (22) in Proposition 6.5, Section 6.
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6 On the diffusion coefficient

The main goal of this section is to express the diffusion coefficient by various variational formulas.
We also prove the second statement of Theorem 3.3. First, recall the we defined the coefficient D in
Definition 2.4 as

D=2+

inf sup{<< fo=Sf > +2<jh —A™f,g >, — < g, —8g > *}. (49)
x(1) feQgeo ’ ’ ’ ’

From Theorem 5.9, there exists a unique D € R such that
Joa + ]5(&)% - w(z)) eLMQ in H;.

We are going to obtain variational formulas for D, and prove that D =D, by following the argument
in [23]. We first rewrite the decomposition of the Hilbert space given in Proposition 5.8, by replacing
jg’ , with jo 1. This new statement is based on Corollary 5.6, which gives an orthogonality relation. The
second step is to find an other orthogonal decomposition (see (50) below), which will enable us to prove
the variational formula (49) for D. Hereafter, we denote £L™* := S — A™ and j3,1 = 1'3,1 — jg"l.

LEMMA 6.1. The following decompositions hold
Hy = EmQ’N@ {jO,l} = Em’*Q|N@ {1'3,1}-

Proof. We only sketch the proof of the first decomposition, since it is done in [23]. Let us recall from
Proposition 5.8 that £mQ has a complementary subspace in H; which is one-dimensional. Therefore, it is
sufficient to prove that 7{; is generated by £mQ and the total current. Let h € H; such that « h, Joa»1=0
and « h, L™g »,= 0 for all g € Q. By Proposition 5.3, h can be written as

. .S
h= khj}o Sgi + ajoq
for some sequence {g;} € Q, and a € R, and from Corollary 5.6,

|||h|||f = klir& « ajg,1 + 88, ajo1 + LTgk »1 -

Moreover, from Proposition 5.7 and the standard inequality !Hcp + Hﬁ < 2‘”(,0 Hﬁ + ZHW] f, we have

sup [lajo + £ gi[l; < 20°|[Joal; +2(C+ 1) sup | Sgi[[; =: G

keN keN
is finite. Therefore,

[IR]l = lim <« aj, +Sg—hajor + L™k >
< Cp limsup H|ajg,1 +S5gr— h”|1 =0.
k—0o0
The same arguments apply to the second decomposition. O
We define bounded linear operators T,T* : H; — H; as

T(ajoq + L™f) = aj§, + Sf,
T*(ajo, + L™ f) = ajg,1 + Sf.
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From the following identity (which is a direct consequence of Corollary 5.6)

. 2 + %k ,x 2 _ -S 2 A 2
llajos +£™ £y = llaigy + 2™ £II; = llajg,y + SFII + lajs, +A"FI5,
we can easily see that T* is the adjoint operator of T and we also have the relations
« Tjg,l,ja,l »1 =<K T*J'g,l:jo,l »1= A’X(l)
K Tjo |, L™ f > =< T*j5 |, L™f »1=0, forall f € Q.
In particular,
Hy = Lm0y @ {Tj§, } (50)
and there exists a unique number Q such that
jo1—QTj5, € L™*Q  inHy.
We are going to show that D = AQ.
LEMMA 6.2. (1)
X 1T w2
i [, - £ £, 6D

i, Ar@)see
Proof. The first identity follows from the fact that
Sk . .5 (12
< TJg,vJo,l - QT]g,l »1=Ax(1) - Q\HTJ&JHl =0.

The second identity is straightforwardly obtained from the first identity, together with

. x .S * 2 o

flgg |HJo,1 —QTjy, — L™ f\Hl =0, (52)
which holds by construction of Q. O

Thanks to Corollary 5.6, for any g € Q, Tg and g — Tg are orthogonal, and therefore « Tg,g » =«
Tg,Tg », for all g € #;. In particular, j5, — Tj§, is orthogonal to Tj§ ,, thus

Jor —Tis, € L™ Q.
We can then obtain the following variational formula for |HT jg’ 1 H|1

PROPOSITION 6.3.
S 2 . . 2
5. Iy = inf flig. — <1l (53)

Proof. With a similar argument (as in the proof of the previous proposition), we have
inf (|55, — TjiS, — £™*f||, =0,
feo |||Jo,1 Jo,1 f |||1

and

. . . * 2 . . * 2 . 2
inf (113, = Tis, — £ Il = inf 135, — ™ £ 11 = 1T, I

where we used the fact that jg .- T jg’ , and L™ f are both orthogonal to T jg’ 1> which concludes the
proof. O
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We are now ready to derive variational formulas for D:

THEOREM 6.4.
x(1)

~ 1 2
D=——inf ||jz, — ™ F][S = : (54
IO TN | Y
Proof. By construction, jy; — (D/A) jg’l € LmQ and therefore
. Dg ... Dy
<jo1-— XJS’I,T 13,1 »1=Ax(1) — XH]T]ngﬁ =0. (55)

As a result, we obtain as wanted that, D = AQ, and the variational formula for D can be deduced from
the one for Q. O

REMARK 6.1. We can rewrite the variational formula (54) for D as:

b= g5 imt {5l + s I + 153 - 4 1
=2+ gy it {1 + Mg — Ams 11} 0
~ ot s i sup {57 2.« iy — AnF, 5 1 el
At sup <« £, > 2 <y AN g — < =g ) 67)
_p, (58)

by definition of the diffusion coefficient, see (49). To establish the third identity, we used (44) to restrict
the infimum in (56), to functions f satisfying « jgl — A™f, jg 1 »1=0.

We are now in position to prove the remaining statement of Theorem 3.3:
PROPOSITION 6.5. For any sequence {f; } € Q such that
lim [ +D(e] — wg) + £ fil; =0
we have ) )
lim |2(Voa(@?—T3)) +7(Vo(Ty)) | = 202(1).

Proof. By assumption,
lim [[T(jos +D(o? — w?) + L), =0

and therefore
. . 2 2
kli)rrolo i, + Sfell; = D?[|T(wF — )3

Then, the result follows from

D—20= x(1)
lIT(e? — )y
and Corollary 5.2, which yields
. 2 A . 2 Y . 2
5§+ Ssell; = 55| (w2 - w0 = Vou (1)) | + 2E3| (Vo(m) . (59)
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7 GREEN-KUBO FORMULAS

7 Green-Kubo formulas

In this section, we first prove the convergence of the infinite volume Green-Kubo formula, then we
rigorously show that it is equivalent to the diffusion coefficient given by Varadhan’s approach. For the
sake of clarity, in the following we simplify notations, and we denote « - »; , by « - >»,.

7.1 Convergence of Green-Kubo formula

Linear response theory predicts that the diffusion coefficient is given by the Green-Kubo formula. In
[3, Section 3] its homogenized infinite volume version is given by:

R(z) = A+ 1f £ Y By |y (m, 1), 7eig (m,0) . (60)

XEL

That formula can be guessed from the better-known finite volume Green-Kubo formula thanks to the
ergodicity property of the disorder measure P. We denote by L(z) the second term of the right hand side
of (60), that is

L) ::EJ - EE []01 0, Tuif (m,0)].

We also denote by L? the Hilbert space generated by the elements of C (recall Definition 2.1) and the
inner product « - »,. We define h, := h,(m, w) as the solution to the resolvent equation in L2

(2= L™h, = j§,.- (61)

Hille-Yosida Theorem (see Proposition 2.1 in [10] for instance) implies that the Laplace transform L(z)
is well defined, is smooth on (0, + ), and such that

1
K(z)=A+L(z) =24+ 3 < Jophy >, (62)

Since the generator L™ conserves the degree of homogeneous polynomial functions, the solution to the
resolvent equation is on the form

Z (Pz m, x, X x+1 )2(> + Z (pz(m:x>y)wxw

XEZL X,YEZL
X#Y
where, for all m € Qp, the function ¢,(m,-,-) : Z? — R is square-summable and symmetric. In the
Hilbert space L2, there exist equations involving the symmetric part S that can be explicitly solved:

LEMMA 7.1. There exists f € L? such that Sf = jg‘l in L2,

Proof. We look at the solutions f to Sf = jé\l on the form

f(m’ w) = Z (Pk(m’x)wxwark’
XEZL
k=1

such that, for all m € Qp,
2 lpr(m, %) < +o0. (63)

XEZL
k=1
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7 GREEN-KUBO FORMULAS

To simplify notations, let us erase the dependence of m for a while, and keep it in mind. Then, the
sequence {py(x);x € Z,k = 1} has to be solution to

—2 (k1 (X) + @pp1(x = 1)) + 44+ 1)@ (x) = A(@r_1(x) + Yx_1(x — 1)) =0, fork > 2, x € Z,

(A +27)01(x) = A(2(x) + a(x — 1)) = jmﬂ forxc .

oMy
(64)

We introduce the Fourier transform ¢, defined on T as follows:

Pr(&) = D pi(x)e¥ ™, EeT.

XEZ

From (63), this is well defined, and the inverse Fourier transform together with the Plancherel-Parseval
relation imply:

o) = fT Gu(E)e e
S g = Y f G(E)PE.

XEZ k=1
k=1

The system of equations (64) rewrites as

A(HTE £ 1) Bir (E) + 4A+1)Be(E) — A(e 2™ +1)Gy 1(£) =0, fork>2,E€T,

~ : ~ 1 65
(A+27)31(8) — A(e2™ +1)§,(&) = , foreT. (65)
Mmomy

Therefore, for any & € T fixed, & # 1/2, the sequence {@;(&)}x=1 is solution to the second order linear
recurrence relation:

2qe" e o
— m‘/’k@) +e Zlﬂitpk_1(§> =0, fork=>2, (66)

where a := (A + v)/A, with the two conditions:

Gi+1(8)

(A+27)01(8) — A(e*™ +1)@y(8) = O(m), forEeT,
D f 1Pr(E)2dE < +oo,

k=1

where 6(m) := 1/,/mom;. This system is explicitely solvable, and one can easily check that the following
function is solution:

6 (m)
yr(&) + A(1 + e—2ing)

r(&):= C(Z)Z(:; (1 — \/1 — a2 cosz(ﬂ:g)) .

Note that r(-) is continuous on T (from a direct Taylor expansion), and ¢ (x) can then be written as the
inverse Fourier transform of ¢ (&). O

$r(E) = (r(£) ",

where

We are now able to prove the existence of the Green-Kubo formula:

THEOREM 7.2. The following limit
D:= limx(z) (67)

z—0
z>0

exists, and is finite.
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7 GREEN-KUBO FORMULAS

Proof. We investigate the existence of the limit

. A —1:A .
zlgr(l) <o (B=LM) gy »u= 2215% L(z). (68)

z>0 z2>0

With the notations above, we have to prove that « h,, j§1 », converges as z goes to 0, and that the limit
is finite and non-negative. Then, from (62) it will follow that D>A>0andDis positive. We denote
by | - |1+ the semi-norm corresponding to the symmetric part of the generator:

Hf“%* =<« f) (_S)f %

and H;, is the Hilbert space obtained by the completion of C w.r.t. that semi-norm. The corresponding
dual norm is defined as

IF 12y, = Sug{Z <« f,g > —lgli.}- (69)
ge

We denote by H_, the Hilbert space obtained by the completion of C w.r.t. that norm. We already know
from the previous sections that 9, — H_;, (and we recover the result of Lemma 7.1, namely jg"l eH_q,).
We are going to prove the existence of the Green-Kubo formula by using some arguments given in
[18, Section 2.6]. For the reader’s convenience, we recall here the main steps, and refer to [18] for the
technical details of the proof. First, we take the inner product « -,- », of (61) and h, to obtain

2 <y, hy >, +h|7, =< by, oy > (70)
Since j&, € H_,,, the Cauchy-Schwarz inequality for the scalar product « - >, gives
Jo.1 1 y quality P g
2 < hyyhy >y 2, < hef o 18] -2

and we obtain that
thHﬂ* < ngtlu—ﬂ*'

The family {h,},- is therefore bounded in Hj,, and one can extract a weakly converging subsequence
in H;,. We continue to denote this subsequence by {h,} and we denote by h the limit. We also have

z L hz:hz >>*< Hjél”z—ﬂ*’

and then {zh,} strongly converges to 0 in L2. We now invoke the weak sector condition given in Propo-
sition 5.7: there exists Cy > O such that, for any homogeneous polynomials of degree two f, g € Hy,,

| < £, L™g >, | < (Co+ 1)If 1a I€]5x - 71

Indeed, this is a consequence of (45), since

| < f,AMg >, [ =]« Sf, AMg »1 [ < Co [SF]l, [[Sgll, = Collf lie Iglsss

and we also have from the Cauchy-Schwarz inquality,

| < f,8g > | <|f s lglaa -

The estimate given in (71) applied to g = h,, yields
|£7hy ] g = sfug{z <« fo L% >, —f I3} < (Go+ DIR[E, < (Co+Dligy 20 (72)
S

From (61) and (72) we deduce that

sup |zh, | _q. < 0.
z>0

Let us know refer to [18, Section 2.6, Lemma 2.16]: the condition (72) is sufficient to prove that
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7 GREEN-KUBO FORMULAS 37

e the sequence {(—£™)h,} weakly converges to j5, inH_g, ;

o the following identity holds
& hg, (=L™)hg »,=< ho, (=8)hg » =< ho, j§' . ; (73)

o the sequence {h,} strongly converges to h in Hy,, and the limit is unique.

We have proved the first part: the limit (68) exists. To obtain its finiteness, we are going to give an
upper bound, using the following variational formula:

g 6= L™ gy > = sup {2 < fu iy > U~ ARSI
where the two norms | - |4, are defined by
Iy, =< fo (2 —S)E'F », .
For the upper bound, we neglect the term coming from the antisymmetric part A™f, which gives
<o (= L™ e > << gy, (2 =8) 1y »u

In the right hand side we can also neglect the part coming from the exchange symmetric part S, and
remind that S™P( jé\l) = -2 jOAl' This gives an explicit finite upper bound. Then, we have from (73) that

. A my—1:A A
;El‘(l) < Jo1» (z—L™) Jog s =¥ Jo,pho », =< hg, (—=8)hy », >0,

and the positiveness is proved. O

7.2 Equivalence of the definitions

In this subsection we rigorously prove the equality between the variational formula for the diffusion
coefficient and the Green-Kubo formula.

THEOREM 7.3. For every A > 0 and y > 0,

— 1.. . -1
D:A+§zlgr(1)<<]él,(z—£m) Ljs >,

z>0
coincides with the coefficient D = D defined in Theorem 6.4.

Proof. From Subsection 6, we know that the diffusion coefficient can be written different ways. For

instance, since y (1) = 2, we have
2

IT(e0} = wR)lIF

By definition of D, there exists a sequence {f,},-q of functions in Q such that
g = gy + D(@ — o) + L,

satisfies || g.[|; — O as & goes to 0. Observe that g, € Q, — H_;, from Proposition 2.1. By substitution
in the equality above, we get

—_ ]‘ 2k * * k *
D t= ﬁ L 8. _]0,1 _Em’ fs:T (gs _]0,1 _['m’ fs) 21
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recalling that « Tg,Tg »;=« g,T*g », for all g € H;. Therefore,

1

D= 5 €8 —Jgr = L™ fer 8 —Jo1 — Sfe >

1 % * .
=3 <Joa + L™ fg,]g’1 +Sf. »1 +R,

where R, is bounded by C||g.||?

, and then vanishes as ¢ goes to 0. Finally, from Proposition 5.1, we can
write

1
D=A+-lim <« f,,(=S)fe >,
2 e—0

and we know that the limit above exists, which implies that | L for (=8)fe >, | is uniformly bounded in
€ by a constant C > 0. The problem is now reduced to prove that

. . A ~1:A
811_1)1}) L for (=8)fe >, = zlgr(l) <o (B =L™) g1 - (74)

z2>0

For every z > 0 and ¢ > 0, we have by definition above and (61),

j([i1 = th - £mhz (75)
Jo1 = 8 —D(@} = wp) = L™f,. (76)
First, we take the inner product « -, - », of (76) with f, (recall that « jg pfe = —< jg 1> Sfe »1=0),
to get
< jg"l)fe‘ Pe=—X fs: 8 Py — K fg) (_S)fe‘ 2«

and using (75),
— < ‘thz:fe >, T2 L hz:fg Pe=—X fs: 8 Py — K fs: (_S)fs P s

First, let z go to 0, and observe that the limit of « £L™h,, f, », exists since {£L™h,} weakly converges in
H_,, and f, € Hy,. Let us take the limit as & goes to 0, and write

« fe: 8e P < erHﬂ* ngH—n* < C”’geml —0.
£—0

The first equality is justified by the fact that g, belongs to Q, < H_,, and the last inequality comes from
the definition of the semi-norm || - ||; given in (27). As a consequence, we have obtained

lim « f,, (=8)f, »,=lim lim « £L™h,, f, >, .
e—0 e—>02—0
In the same way, take the inner product « -, - >, of (76) with h, to obtain
oL > =— < g hy >, + < L™ f, by >, .

If we send first z to O, then « g,,h, », converges to < g,,hy >, from the weak convergence of {h,} in
Hj;, and since g, € H_q,. As before, we write

« 8uho ».% Clgelly —> .
Therefore,
lim « j& ,h, »,= lim lim « £™*f,,h, »,=lim < f,, (=S)f. ».
z—0 ’ e—0z—0 £—0

and the claim is proved. O]
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8 THE ANHARMONIC CHAIN PERTURBED BY A DIFFUSIVE NOISE

8 The anharmonic chain perturbed by a diffusive noise

In this section we say a few words about the anharmonic chain, when the interactions between atoms
are non-linear, given by a potential V. As in [23], we assume that the function V: R — R satisfies the
following properties:

(i) V(+) is a smooth symmetric function,
(ii) there exist §_ and &, suchthat0 <&6_ <V"(-) <6, <+,
(i) &5_/5, > (3/4)'/1°.
Using the same notations as in the introduction, the configuration {p,, r, } now evolves according to

dp
d_tx = V/(rx-i-l) _V/(rx):

drx _ Px Px—1

dt M, M, ;

(77)

We define 7, := p,/4/M,, and the dynamics on {7, r,} rewrittes as:

dr 1
£ = [ ,(rx—&-l) _V,(rx)] >
dr, T, Ty 1

dt /M,
At M, M,

(78)

The total energy

£:=), {%2 +V(rx)}

XEZ
is conserved. The flip and exchange noises have poor ergodic properties, and can be used for harmonic

chains only. For the anharmonic case, we introduce a stronger stochastic perturbation. Now, the total
generator of the dynamics writes £™ = A™ + vS, where

1 1
Am . Xy = Yerp1), Si==>{x2+Y2_ .}, (79)
;\/W X X,X szl X xX,x+1
where
o . .0
Yx,_y = ﬂxa -V (ry)aﬂ'x, Xx = Yx’x.

For this anharmonic case, the needed ingredients can be proved directly from [23]: first, note that the
symmetric part of the generator does not depend on the disorder and is exactly the same as in [23].
Then, the proof of the spectral gap is done in Section 12 of that paper, and the sector condition can also
be proved, following Section 8. More precisely, after taking into account the disorder and its fluctuation,
the same argument of [23, Lemma 8.2, Section 8] can be applied, since it is mainly based on the fact
that both antisymmetric and symmetric parts involve the same operators Y, , .

9 Hydrodynamic limits

We briefly discuss the failure in the derivation of the hydrodynamic limits. Let us assume that the
initial law for the Markov process {w(t)},>¢ (still generated by N*£}), is not the equilibrium measure
,ulg, but a local equilibrium measure (see (81) below), and fix the disorder m. The main goal would be
to prove that this property of local equilibrium propagates in time: in other words hydrodynamics limits
hold, with an energy profile solution to the diffusion equation with constant coefficient D.
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9 HYDRODYNAMIC LIMITS

9.1 Statement of the hydrodynamic limits conjecture

Let us fix once more some notations. The distribution at time t of the Markov chain on Ty with the
generator Nzﬁﬁ and the initial probability measure u" is denoted by PY ;. The measure induced by PY,
on D ([0, T], Q) is denoted by Py The set of probability measures on ”]I‘, denoted by M, is endowed
with the weak topology. We also introduce D ([0, T], M; ) namely the Skorokhod space of trajectories in
M. The measure induced by P® on D ([0, T], M, ) is denoted by O := PR o (nV) ~' where

Z w 5x/N

xeTN
Expectation with respect to Py is denoted by Epm.

CONJECTURE 9.1. Let T > 0 be a time-horizon. Let {uN}y be a sequence of probability measures on Q. Un-
der suitable conditions on the initial law uY, for almost every realization of the disorder m, the measure oN
weakly converges in D ([0, T], M,) to the probability measure concentrated on the path {e(t,u)du} o 1,
where e is the unique weak solution to the system

L .
o\ =P
e(0,u) = ey(u).

What we expect as for “suitable assumptions” on the initial law are the common ones in the literature
of hydrodynamic limits, when dealing with non compact spaces. The first one is natural and related on

—(t,u), t>0,ueT

the relative entropy:

ASSUMPTION 9.2. Let us assume that there exists a positive constant K, such that the relative entropy
H(uN|ul) of uN with respect to some reference measure ul¥ (for example the Gibbs state with temperature
B! = 1) is bounded by KoN

H(u"|ul) < KoN. (80)

For instance, if uN is defined as a Gibbs local equilibrium state:

I Bo x/N exp (_ﬁO(Z/N)“’i) doo. (81)

xeTy

for some continuous function f; : T — R, then (80) is satisfied. The second one is related to energy
bounds, which have already been a major concern in [29]. More precisely,

ASSUMPTION 9.3. We assume that there exists a positive constant Eq such that

1
limsupuN [N Z wi] < E,. (82)

N—o0 x€eTy

In the derivation of hydrodynamic limits with the usual entropy method, we need the following two
estimates: first, there exists a positive constant C such that, for any t > 0

Epﬁ[% > wi(t)} <C. (83)
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9 HYDRODYNAMIC LIMITS

This can be easily established using (82) and the Cauchy-Schwarz inequality. The second control that

Jim B [ f >k ] 0. (84)

xeT

we need is

If uN is a convex combination of Gibbs local equilibrium states, then the same argument of [29] shows
that the law of the process remains a convex combination of Gaussian measures, and that (84) holds.

Contrary to the velocity-flip model, we do not need to assume a good control of every energy moment
if we expect the usual entropy method to work. This technical need was only due to the relative entropy
method.

With Assumptions 9.2 and 9.3 we could try to prove Conjecture 9.1 by using the entropy method,
which permits to consider general initial profiles (for example, the profile 3, can be assumed only
bounded, not smooth). The usual technical points of this well-known procedure are the one and two-
blocks estimates, as well as tightness. In this model, they are somehow easy to prove because the diffusion
coefficient is constant, and there is no need to show its regularity.

9.2 Replacement of the current by a gradient

In this subsection we recall the main steps of the usual entropy method, and explain which ones can
be proved for our system. We fix the disorder m = {m, },.r, and T > 0. For t € [0, T], we denote by
2N the empirical energy field defined as

ZNL(H) = 1 > H (%) w(t),

where H: T — R is a smooth function. We rewrite Z}\_(H) as in Section 3.3 as
ZhalH) = ) [| 3 98 () e aom)ds iy,

where zm{“m(H) is a martingale. The strategy consists in replacing the current j, ,,, by the linear com-
bination given in Theorem 5.9. For that purpose, for any f € Q we rewrite

) -+ 92 () + 90 (),

t
~L1LN
Zom(H) = 25, (H) + L DZ, (AyH)ds + 37

where

Toims () JZVNH )[Jxx+1<m5>+D< Wyy1~ i><s>+££<rxf><m,s>]ds,

x€Ty

~?rlif J 2 VyH ) N (Tof)(m,s)ds.

x€Ty
Theorem 9.1 would follow from the three lemmas below.

LEMMA 9.4. For every m € Q, for every smooth function H: T — R and every 6 > 0,

lim Py [sup ‘im )‘ > 5] =0.

N—oo
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9 HYDRODYNAMIC LIMITS

LEMMA 9.5. For every m € Qp, for every f € Q and every smooth function H: T — R,
. ~2,N _
llgljolépEPll\? [’Jtmf(H)‘] =0.
LEMMA 9.6. There exists a sequence of functions { fi }ren € Q such that, for every smooth function H: T — R,

~LN
o iy e 12,00 <o,

Lemma 9.4 and Lemma 9.5 can be proved, following the same standard arguments given for example
n [16, Section 7]. We need the energy moment estimate (84) in Lemma 9.4, in the computation of the
quadratic variation of the martingale. The next subsection is devoted to highlight what fails in Lemma
9.6, which should be related to the results of Sections 4, 5 and 6.

REMARK 9.1. Conditioned to proving Lemma 9.6, Theorem 9.1 would follow: recall that Q' is the
distribution on the path space D ([0,T], M;) of the process 7'51;1. Following the same argument as for
the generalized exclusion process in [16, Section 7.6], we can show that the sequence {Qm, N> 1} is
weakly relatively compact. It remains to prove that every limit point Q7' is concentrated on absolutely
continuous paths e(t,du) = e(t,u)du whose densities are solutions to the hydrodynamic equations given
in Theorem 9.1. It could be seen from Lemma 9.6 by following the proof of [16, Theorem 7.0.1].

9.3 Failed variance estimate

In this paragraph we fix the disorder m, and we erase it whenever no confusion arises. We are going

to recall here the usual main steps of the entropy method. We rewrite J 1’N H) as

m,f(
”:Ef f Z G Txgo m, s)ds,

xeTy

where
p(m,s) := @(m, (s)) := jo,1(m, w(s)) + D(w] — wy)(s) + LY (f) (m, w(s))

6(2) = (3)

Entropy inequality — In Lemma 9.6, note that the expectation with respect to the law of the process
PP\ is taken. There is a priori no hope to get any estimate of this expectation, apart from the well-known
entropy inequality. More precisely, let us denote by XfN(co) the following quantity:

X{I(w) = Z G(%) Tep(w).

From the entropy inequality, we obtain

o )

for all @ > 0. Since the entropy is decreasing in time, we know that, for all disorder field m, H(PY| u,g)
is bounded. From the arbitrariness of a, we are reduced to investigate the convergence of the second
term in the previous right hand side.

11 o
] < a_NH(IPN |.U/5) + a_NlogE“g {GXP <aN U; Xy (w)(s)ds

J X/ (w)(s) ds
0
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9 HYDRODYNAMIC LIMITS 43

Feynman-Kac formula - Usually, the purpose is to reduce the dynamics problem to the study of the
largest eigenvalue for a small perturbation of the generator N2Sy. This reduction relies on the Feynman-
Kac formula together with variational formula for the largest eigenvalue of a symmetric operator. By

Feynman-Kac formula,
T T
E,n [exp {NJ X{I(w)(s) ds}] < exp {f An(s) ds}
B 0 0

where Ay (s) is the largest eigenvalue of the symmetric operator N2Sy(-) + NXfN (w). From the variational
formula for the largest eigenvalue of an operator in a Hilbert space, we also know that

n(s) < sup { (XL ()8 = N*Pu(iag; v8)

where the supremum is taken over all measurable functions g which are densities with respect to ,ug. In
particular,

Liogs,, [exp { j N (0)() d}] < ' sgp{<xf;<w> g@), —NDNwﬁ;@}ds

0

Reduction to microscopic blocks — With the same spirit of the one-block estimate presented in
[29], it is then crucial to replace microscopic quantities with their spatial averages. Here, with the same
ideas of [16], we can replace

. 1
Joq by W—1)+1 Z Jxx+1

XEAg 1

1
2 2
Y g L

w
XGA[
1
LY (f)(w) by o +1(7xf)
N 2£f+1erMf £+l

where £y = { —s; — 1 so that .Csf+1(fyf) is F,-mesurable for every y € Ay, . Let us introduce the
following notation

1 D 1
wht = > Gepr + > (w?,, —w?)+ > (Tof) (85)
+1 s+1 X
2£’+1X6A 20 +1 x x 2£f+1xe/\gf f

XEA(

with £ = £ — 1. Finally, thanks to the regularity of the function G and the fact that D is constant, we are
able to reduce Lemma 9.6 to Lemma 9.7 below. We also need to perform a cut-off in order to control
high energy values, and this is valid thanks to (84).

where

Z G <—> 7, WH(w).

xeTy
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Reduction to a variance estimate — Then, the challenge is to reduce the proof of Lemma 9.7 to
the following result:

. . _ -1 S A _
}g&lingo(zﬁ)xEK( Sp,) tWHLwW >ﬂ]_0 87)

This convergence holds, since it is equivalent to the conclusion of Theorem 5.9, where the diffusion
coefficient D is defined through the non-gradient approach. Here is the main obstacle. If we follow the
strategy given in [16, Section 7.3], we can bound the supremum in (86) by the largest eigenvalue of
S, + bW/ where b is a small constant. In order to estimate this largest eigenvalue, we usually use a
perturbation method which provides a bound on the largest eigenvalue in terms of the variance of W/,
This can not be proved, and suggests that the entropy inequality together with the Feynman-Kac formula
are not the good tools to prove the hydrodynamic limits for systems which do not have a spectral gap
(see the last concluded section).

We conclude this section by explaining why the perturbation theory does not work. Let us try to
prove Lemma 9.7. Since ug is translation invariant, we may rewrite <YI{I’Z () g()) p as

> (6 (%) WH@)r wg(@)) -

xeTy p

Since the Dirichlet form is convex, the supremum in (86) is bounded from above by

5N
20 2 5P {b<Wf”Z 8 — Delig; \/E)}, (88)

2 x€Ty
where the constant b = b(x, {, 6, N) satisfies

bli= (o () 25| <161 2y

Let us denote by Ay ¢ ¢ this last supremum inside the sum (88), which does not depend on x. We consider
a sequence {gy }rey that approaches this supremum, such that

Jim VB (51 BW14) V2 = By

The idea of the perturbation theory is to expand /g, around the constant value 1. We write

(Veio (Sn, +DW) e ) = (W), + 2WH (g, — 1)+ (W (Ve 1))
- Df (.U'ﬂ§ \/Ek) (89)

We know that (W/ 4 > =0 and we use the Cauchy-Schwarz inequality for the scalar product (-, (—S,,))p
in the second term. We obtain that (89) is bounded, for every A > 0, by

b <£<Wf’ea (_SAz)ilwf’€>ﬁ + %De (Ups ﬁk)) + b<Wf’e(\/§k - 1)2>/3 — Dy (kg3 V/8r)-

It remains to bound the third term in the expression above. This could be done if we had the following
lemma.

LEMMA 9.8. There exists a constant C := C({, f, B,y, A) such that, for every g =0,

(W (8~ 1)%) < CDy (13 VE). (90)
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9 HYDRODYNAMIC LIMITS

As before, we could try to use the fact that W/+ is a quadratic function. Even this fact is not helpful,
and we give now a counter-example to this last lemma. We denote by H,, the normalized one-variable
Hermite polynomial of degree n > 3 (see Appendix A). Let us consider

{ V&(w) = [Hy(wo)|

Wf’[((,l)) = Hz(COO) = O)g —1.

Let us note that (H)g = 1, and (H, )5 = 0, so that the two test functions g and W/** satisfy all expected
conditions. By using the recursive relation

Hn+1(°)o> = woH,(wo) —nH,_1(wy),

we get for the left hand side of (90),

<H2(|Hn| - 1)2>/j = <‘°g Hi(w0)>ﬂ - <Hi>ﬁ - 2<H2|Hn|>/5 + <H2>ﬁ
= (HY, ) +2nH,  Hyq +0°HY Dy —1—2(H,[H, ),
=1+n? —1-2(H,[H,[ ), > n* - 2.

Above the last equality comes from the orthonormality of the polynomial basis, and the last inequality
is a consequence of the Cauchy-Schwarz inequality <H2]Hn\>?j < (H3)p(H2)s = 1. Let us assume that
there exists a constant C > 0 which does not depend on n such that

n? — 2 < (Hy([Hy| = 1)) < CDy(pg; [Hy).-
From the convexity of the Dirichlet form, we have

Dy(up; Hp|) < Dy(up; Hy).

In the case where n is an even positive integer, the flip noise gives a zero contribution to the Dirichlet
form, and then, for all n even, we have

Dy (up;Hp) = %<(Hn(w1) - Hn(wO))2>ﬂ = A(Hp — A<Hn(COO)I‘In(CUl»/j =4

In the last equality, we use the fact that H,, is unitary, and that H, (wq)H, () constitutes another element
of the Hermite polynomial basis, then is orthogonal to the constant polynomial 1. Letting n go to infinity,
we obtain a contradiction to (90).

Ergodic decomposition — Another idea would be to use the ergodic decomposition. The generator
S), restricted to finite boxes does not have a spectral gap, but it becomes ergodic when restricted to some
finite orbits. However, this approach fails, because the space is not compact, and we need to disintegrate
the measure ug with respect to all energy levels in (0, +-00). This enforces us to introduce a cut-off in the
variational formula giving the largest eigenvalue. In other words, an indicator function 1{|w,| < Eq}
will appear in front of W/¢. Finally, we will have to deal with functions of the configurations that are not
quadratic any more, and we do not know how to prove the convergence result (87) for general functions.
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9 HYDRODYNAMIC LIMITS

9.4 Conclusion

Even if the non-gradient method can be applied in some cases when the spectral gap does not hold,
(and then the diffusion coefficient is well defined), this does not straightforwardly imply the hydrody-
namic limits.

In order to derive the hydrodynamic theorem, we would need to bypass the entropy inequality to-
gether with the Feynman-Kac formula. The entropy inequality is however a convenient mean to trans-
form the averages w.r.t. the unknown law ,ult\I into equilibrium averages w.r.t. ,ug, which are more easily
tractable. The same problem would arise in the relative entropy method.
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A HERMITE POLYNOMIALS AND QUADRATIC FUNCTIONS

A Hermite polynomials and quadratic functions

In the whole section we assume 3 = 1. Every result can be restated for the general case after replacing
the variable w by 8 ~2w.

Let y be the set of positive integer-valued functions & : Z — N, such that £, vanish for all but a finite
number of x € Z. The length of £, denoted by ||, is defined as

[HEDIM

XEZL

For £ € y, we define the polynomial function Hy on Q2 as

He(w) = [ [ he (o),

XEZL

where {h,},cy are the normalized Hermite polynomials w.r.t. the one-dimensional standard Gaussian
probability law (with density (271) /2 exp(—x2/2) on R). The sequence {Hg }¢c, forms an orthonormal
basis of the Hilbert space L2(u, ), where u is the infinite product Gibbs measure on R%, defined by (4)
with 8 = 1. As a result, every function f € L?(u;) can be decomposed in the form

fw) = Y F(E)Hg(w).
gex

Moreover, we can compute the scalar product {f, g); for f = > F(§)H; and g = > - G(&)H as

f+8)1 =Y, F(E)G(E).

Eex

DEFINITION A.1. We denote by y, < x the subset sequences of length n, i.e. y,:={{€y; |§|=n}.A
function f € L2(u,) is of degree n if its decomposition

f =) F(EH;

ey
satisfies: F(&) = 0 forall & ¢ y,,.

REMARK A.1. In this paper, we mainly focus on degree 2 functions, which are by Definition A.1 of the
form

Dol x) (@i —1)+ ) elx,y)ww, ©1)

XEZ X#Y

where ¢ : Z? — R is a square summable symmetric function. Note that they all have zero mean w.r.t. u;,
and they can also be rewritten as

Plex) (@ —w )+ Y (XYoo,

XEZ X#Yy

for some square summable symmetric function v : Z2 — R.
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A HERMITE POLYNOMIALS AND QUADRATIC FUNCTIONS

A.1 Local functions

On the set of n-tuples x := (xq,...,x,) of Z", we introduce the equivalence relation x ~ y if there
exists a permutation o on {1,...,n} such that x,; = y; for all i € {1,...,n}. The class of x for the
relation ~ is denoted by [x] and its cardinal by c(x). Then the set of configurations of y, can be identified
with the set of n-tuples classes for ~ by the one-to-one application:

2"~ = dn
[X] = [(Xl,...,Xn)] — g[x]
where for any y € Z, (& [X]) y = 2 1,_,.. We identify £ € y, with the occupation numbers of a

configuration with n particles, and [x]| corresponds to the positions of those n particles. A function
F: y, — R is nothing but a symmetric function F : Z" — R through the identification of & with [x]. We
denote (with some abuse of notations) by (-, -) the scalar product on ®L?(y,,), each y, being equipped
with the counting measure. Hence, for two functions F,G : y — R, we have

F,G) = Z Z E,(§)G Z Z Gp(x),
n=0&ey, n>0er“

with F,, G, the restrictions of F, G to y,.

A.2 Dirichlet form

It is not hard to check the following proposition, which is a direct consequence of the fact that h,, has
the same parity of the integer n.

PROPOSITION A.1. If a local function f € 12(u,) is written on the form f = dex F(&)Hg, then
Sf(w) = ), (SF)(&)He(w),
gex
where G is the operator acting on functions F: y — R as
12 Exx+1 +YZ gxfl (g)
XEZ XEZ

Above £ is obtained from & by exchanging £, and & .
From this result we deduce:
COROLLARY A.2. For any f = Y., F(§)He € L?(u), we have

D(us; f) =<{f,=Sf ) = Z{;‘Z(@““ —F(©) 7 ) (- F2<£>}

Eey XEZL XEZL

A.3 Quadratic functions

Recall Definition 2.2. In other words, we are mostly interested in quadratic functions f in L2(u;),
which have zero average with respect to u; and compact support. They correspond exactly to degree 2
functions as we already noticed in Remark A.1, but with the additional assumption that their support is
compact.

The next propositions give some useful properties:
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B PROOF OF THE WEAK SECTOR CONDITION

PROPOSITION A.3. If f € L2(u,) is of degree 2, then the following variational formula

sup {2(f,g); — D(u1;8)}
8€L2(uy)
can be restricted over degree 2 functions g.
Moreover, if the support of f is finite and included in A, then the supremum can be restricted to functions
with support included in A.

Proof. This fact follows after decomposing g as >, fey G(&)Hg. Corollary A.2 and the orthogonality of
Hermite polynomials imply that we can restrict the supremum over functions g of degree two (91).

Moreover, if x # y, then ((w?—1) (w§—1)>1 =0,andif x, y,z, t are all distinct, then {w, @, w,w.); = 0.
This implies that the support of g can be restricted to the one of f, otherwise it would only increase the
Dirichlet form. O

PROPOSITION A.4. Let {f,}.cn be a sequence of degree 2 functions in L?(u;). Suppose that {f,} weakly
converges to f in L2(u;). Then, f is of degree 2.
Moreover, if any f, has support included in some finite subset A, then the support of f is included in A.

Proof. For alln e N, and & ¢ y,, the scalar product < S Hg>1 vanishes (by definition). From the weak
convergence, we know that

<fn’H€>1 - <f’ HE>1’
as n goes to infinity, for all £ € y. This implies: <f, H€>1 =0 forall & ¢ y,. O

Note that the set denoted by Q and defined in Definition 2.2 contains cylinder quadratic functions in
LZ(]P”I*). The conclusions of Propositions A.3 and A.4 can be restated for our purpose as:

COROLLARY A.5. If f € Q, then the following variational formula

sup {2E}[f,g] - D(P};¢)}
gel2(P})

can be restricted over functions g in Q. Moreover, if {f,}, is a sequence of functions in Q such that {f,}
weakly converges to f in L*(P?), then f belongs to Q.

B Proof of the weak sector condition

In this section we prove Proposition 5.7 that we recall here for the sake of clarity.

PROPOSITION B.1 (Weak Sector condition). (i) There exists two constants Cy(y,A) and C;(y,A) such
that the following inequality hold for all f, g € Q:

|« A™f,5g >p| < Col|Sf | lISell -

1
[« Amf, 8 »p| < Cillsf [l + 5 sell.

(ii) There exists a positive constant C(f3) such that, for all g € Q,

lamglly <cB)llsslls-
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B PROOF OF THE WEAK SECTOR CONDITION

Proof. We prove (i). We assume that

Z pr 0 x+1 32() + Z wx,k(m)wxwx+k

XEZL X€EZL
k=1
2
E: ¢x0 x+1 x)‘+ E: @xk(nﬂcox(ox+k-
XEZL X€EZL
k=1

We denote by A™ the discrete Laplacian in the variable m, that is
A™p(m) = 24p(m) — 3 (7ym) — 3 (7_ym),
and 7, A™ is the operator defined as
(TxA™)Y(m) := A™Y (7,m).

Straightforward computations show that
* A *
llsell, = ‘]E [(Vorg)z] +5Ep [(Vo,lrg)z]

=%ZE[ : ]+Z—§ZE[<ZTX(A%,O>)Z]

XEZL XEZL XEZ
k=1
A 2
- ﬁ Z E[(Z [T—x(’(/)x,k> - Tl—x(#"x,k)]) :|:
k=2 XEZ

H|Sf|||z>|||3ﬂipf|||2=gEE{<ZZ%,k(m)wowk>z} TSE [(Z soz,k(m>)z]. (92)

Z2EZL k=1 2€Z
k=1

Now we deal with « A™g,Sf >»g. From Proposition 5.1, and by definition,

CA™G,Sf > ==Y By [f, 7. (A™g)]

Z2€Z
=—x;ZE[soxo I wi,fzm‘“g»ﬁ]—X;ZE[sox,k<m><wxwx+k,u(Amg»ﬁ]
k=1
A
);Z [\/71/::)%22 z((Pz,l)]
T X X
é [<\/ml:pm:+1 - \/m:ﬁl’;ﬁz) Z T_Z(SOZ’Z)]
T X X
kgmgz {<\/mlfmx]2rl \/mximkx+k+1> QPZkH)}
T X X,
lgz)é {(\/mjc:l;x’il \/mximkwk 1> (P 1)}
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B PROOF OF THE WEAK SECTOR CONDITION

From Cauchy-Schwarz inequality, and recalling 1/,/mom; < C (P-a.s.), we obtain the following bound:

C 211/2 211/2
|« Ang.sf »51 < 228 (D erampen) | B[ (Zraen) | 3

XEZ 2€EZL

3C 271/2 271/2
+EE[(271wx,l_wx,l> ] E{(Z’F—z@u) } (94)
XEZ 2€EZL
291/2 271/2
el (o) (g T o
k=2 X€EZ 2EZL

Z [( Z T 1Yk — wx,k> 2] v E[(E T—z(pz,k—1>2] 1/2- (96)

k=2 X€EZ 2€E7Z

Now we are going to use twice the trivial inequality vab < a/e + £b/2 for a particular choice of ¢ > 0:
in (93) we take € = y/C and in (94) we take ¢ = 2y/(3C). This trick gives the final bound

2C2 2 2
|« A, 55 | < 208 (S enamo) ) |+ 25 L u| ( Sonateam) |
B B* &

XEZ 2€EZL
9c2 2

Z [( 2 lex,k - wx,k) ]

k=2 XEZ

Recalling (92), we obtain
9C? 1
|« Amg,57 >y | < Sllsell; + 3llsf1
If we use the Cauchy-Schwarz inequality, we get:
18C>
« AT, Sf »f < Y—AH!SgH!E 5 1l5-

We have proved (i) with Cy = 4/18C2/(yA) and C; = 9C2/(yA). Now we turn to (ii). From Lemma 5.5
and Statement (i),
«Ag,joy »p = < S8 Jgy »p < ISl pllica -

Moreover, from Statement (i), we also get, for all f € Q,
m 2C 2
—2 <A™, 5f »p < [ISf[l + gl

As a result, the variational formula (44) for |H.Amg|||2 gives:

A 112
P T R L A
Imely < st %23 2l < (gt + 25 el

The result is proved. O



C TIGHTNESS

C Tightness

In this section we prove the tightness of the sequence {@N}Nzl, by using standard arguments. First,
let us recall that the space $_; is equipped with the norm defined as

V12 = 3 (rn) (v (e,) -

n=1
THEOREM C.1. The sequence {9 }n=; is tight in C([0,T], H_g).

Proof. The tightness of the sequence {2)N} follows from two conditions (see [16], page 299):

lim limsupP* sup YN |_ >A] =0 97
fim timsups | sup [
(98)
lim lim sup P* [w(yg, 5) > 8] =0, for all € > 0, (99)
6—0 N—oawo M

where the modulus of continuity w(Y, §) is defined by

W(y’5) = Sup ”yt_ystk'
[t—s|l<&
0<s<t<T

Let us remind the decomposition of yfm given in (20):
t

YL (H) =V (H) + JO DY, m(ANH)ds + My ¢« (H) + Zy, - (H),

where smijfl £ (H) is the martingale defined in Subsection 3.3, and ZY £ (H) is defined as the sum of the
remaining terms in the decomposition. On the first hand,

2
E*, | su <ZN H ) }
up [ogtzT t’m’f’(( )

can be estimated by the proof of Lemma 3.2 and Theorem 3.3. On the other hand,

g, | (i, 00|

can be computed explicitly. O
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