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Equilibrium fluctuations for the disordered harmonic chain
perturbed by an energy conserving noise

Marielle Simon�

November 4, 2014

Abstract

We investigate the macroscopic behaviour of the disordered harmonic chain of oscillators, through
energy diffusion. The Hamiltonian dynamics of the system is perturbed by a degenerate conservative
noise. After rescaling space and time diffusively, we prove that energy fluctuations in equilibrium evolve
according to a linear heat equation. The diffusion coefficient is obtained from the non-gradient Varad-
han’s approach, and is equivalently defined through the Green-Kubo formula. Since the perturbation
is very degenerate and the symmetric part of the generator does not have a spectral gap, the standard
non-gradient method is reviewed under new perspectives.
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1 Introduction

In this paper we investigate diffusion behaviours in non-homogeneous media for interacting particle
systems. More precisely, we address the problem of energy fluctuations for chains of oscillators with
random defects. In the last fifty years, it has been recognized that introducing randomness in interacting
particle systems has a drastic effect on the conduction properties of the material [8]. As far as we know,
the only mathematically tractable model of oscillators is the one dimensional system with harmonic
interactions [1]. The anharmonic case is poorly understood from a rigorous point of view, but since
the works of Peierls [22, 23], it is now well understood that non-linear interactions between atoms
should play a crucial role in the derivation of the Fourier law. In [2, 5, 7] (among others) it is proposed
to model the anharmonicity by stochastic perturbations, in order the recover the expected diffusivity.
Being inspired by all these previous works, the aim of this paper is to prove the diffusivity of disordered
harmonic chains perturbed by an energy conserving noise. In some sense, the noise simulates the effect of
non-linearities, and the conductivity of the one-dimensional chain becomes finite and positive. Moreover
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1 INTRODUCTION 2

we prove that all the effects of the disorder are, on a sufficiently large scale, contained in a diffusion
coefficient, which depends on the statistics of the field, but not on the randomness itself.

The disorder effect has already been investigated for lattice gas dynamics: the first article dealing with
scaling limits of particle systems in random environment is the remarkable work of Fritz [12], and since
then the subject has attracted a lot of interest, for example in [11, 14, 20, 24]. These papers share one
main feature: the models are non-gradient due to the presence of the disorder. Except for [12], the non-
gradient systems are often solved by establishing a microscopic Fourier’s law up to a small fluctuating
term, following the sophisticated method initially developed by Varadhan in [28], and generalized to
non-reversible dynamics [16].

The previous works mainly deal with symmetric systems of particles that evolve according to an
exclusion process in random environment: the particles are attempting jumps to nearest neighbour sites
at rates which depend on both their position and the objective site, and the rates themselves come from
a quenched random field. Different approaches are adopted to tackle the non-gradient feature: whereas
the standard Varadhan’s method is helpful in dimension d ¥ 3 only [11], the “long jump” variation
developed by Quastel in [24] is valid in any dimension. The study of disordered chains of oscillators
perturbed by a conservative noise has appeared more recently, see for instance [3, 4, 9]. In these papers,
the thermal conductivity is defined by the Green-Kubo formula only. Here, the diffusion coefficient is
also defined through hydrodynamics.

In [27], we have obtained the diffusive scaling limit for a homogeneous chain of coupled harmonic
oscillators perturbed by a noise, which randomly flips the sign of the velocities, so that the energy is
conserved but not the momentum. Our first motivation was to investigate the same chain of harmonic
oscillators, still perturbed by the velocity-flip noise, but now provided with i.i.d. random masses. In [27],
a system of non-linear homogeneous hydrodynamic equations has been derived thanks to the relative
entropy method: this system involves the only two conserved quantities (energy and total length of the
chain). One of the major ingredient for the proof was an exact fluctuation-dissipation equation (see for
example [18]), which reproduces the Fourier law at the microscopic level.

The disorder assumption makes all previous computations pointless: in particular, the fluctuation-
dissipation equations are not directly solvable any more. To overcome this difficulty, one replaces these
exact equations by approximations: more precisely, there exists a sequence of local functions for which
an approximate fluctuation-dissipation decomposition holds, in the sense that the difference has a small
space-time variance with respect to the dynamics in equilibrium. The main ingredients of the usual non-
reversible non-gradient method are: first, a spectral gap for the symmetric part of the dynamics, and
second, a sector condition for the total generator.

Our model has special features that enforce Varadhan’s method to be considered with new perspec-
tives. In particular, the symmetric part of the generator (which comes from the stochastic noise) is poorly
ergodic, and does not have a spectral gap when restricted to micro-canonical manifolds. Moreover, due
to the degeneracy of the perturbation, the asymmetric part of the generator is difficult to control by
its symmetric part (in technical terms, the sector condition does not hold), with the only velocity-flip
noise. Finally, the energy current depends on the disorder, and has to be approximated by a fluctuation-
dissipation equation which takes into account the fluctuations of the disorder itself.

Because of the high degeneracy of the velocity-flip noise, we add a second stochastic perturbation,
that exchanges velocities (divided by the square root of mass) and positions at random independent
Poissonian times, so that a kind of sector condition can be proved (see Proposition 5.7: we call it the
weak sector condition). However, the spectral gap estimate and the usual sector condition still do not hold
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when adding the exchange noise, meaning that the stochastic perturbation remains very degenerate; the
noises are still far from ergodic.

Due to the harmonicity of the chain, the generator of the dynamics preserves the degree of polyno-
mials, and even a degenerate noise is sufficient to apply Varadhan’s approach. The sector condition and
the non-gradient decomposition are only needed for a specific class of functions. Even if the stochastic
noise still does not have a spectral gap, it does make no harm. Contrary to the standard Varadhan’s ap-
proach, we do not need an in-depth study of the so-called closed forms: indeed, in the general theory (we
invite the reader to see [26, 15] for more details), one usually proves some strong result concerning the
decomposition of every closed form, which then is applied only to a specific family of functions. Here, it
turns out that proving the decomposition only for these functions is successful and enough to achieving
our goals. This is a clear advantage of our model: since some difficult technical parts are in some sense
simplified, the usual approach to non-gradient problems becomes slightly neater. The main difficulties
appear in the foundations that are necessary for using it. We have made the decision to adopt a detailed
level in the redaction of Varadhan’s method, even if some proofs may look rather standard for expert
readers. We hope that this choice will be beneficial for the reader not familiar with it.

For the non-linear ordered chain, S. Olla and M. Sasada [21] do need a less degenerate noise than
ours, in particular both the spectral gap and the sector condition hold. They show that ideas from Varad-
han’s method can be used to prove a diffusive behaviour of the energy: its fluctuations in equilibrium
evolve following an infinite Ornstein-Uhlenbeck process. The covariances characterizing this linearised
heat equation are given in terms of the diffusion coefficient, which is defined through a variational for-
mula. We use their ideas to prove energy fluctuations at equilibrium as a consequence of the non-gradient
approach.

Furthermore, we show that the diffusion coefficient can be equivalently defined by the Green-Kubo
formula. The latter is the space-time variance of the current at equilibrium, which is only formal in
the sense that a double limit (in space and time) has to be taken. As in [3], we prove here that the
limit exists, and that the homogenization effect occurs for the Green-Kubo formula: for almost every
realization of the disorder, the thermal conductivity exists, is independent of the disorder, is positive
and finite. Finally, let us introduce γ ¡ 0 the intensity of the flip noise, and λ ¡ 0 the intensity of the
exchange noise. We denote the diffusion coefficient by Dpλ,γq when obtained through the variational
formula in the Varadhan’s method, and by Dpλ,γqwhen defined through the Green-Kubo formula. Then,
we rigorously prove that the two conductivities are equal: Dpλ,γq � Dpλ,γq, when the two intensities
λ,γ are positive. In addition, we prove in Theorem 7.1 that the Green-Kubo formula remains well defined
when λ � 0, that is Dp0,γq exists, is finite and positive. Finally, Theorem 7.4 states that Dpλ,γq tends
to Dp0,γq as λ goes to 0. The existence question for Dp0,γq (the hydrodynamics diffusion coefficient)
remains open.

Before ending the introduction, let us be more precise on the model and the fluctuation result. We
introduce the harmonic Hamiltonian system described by the sequence tpx , rxuxPZ, where px stands
for the momentum of the oscillator at site x , and rx represents the distance between oscillator x and
oscillator x � 1. Each atom x P Z has a mass Mx ¡ 0, the velocity of atom x is given by px{Mx . We
assume the disorder M :� tMxuxPZ to be a collection of real i.i.d. positive random variables such that

@ x P Z, 1
C
¤Mx ¤ C,
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for some finite constant C¡ 0. The equations of motions are given by$''&''%
dpx

dt
� rx � rx�1,

drx

dt
� px�1

Mx�1
� px

Mx
.

The dynamics conserves the total energy

E :�
¸
xPZ

"
p2

x

2Mx
� r2

x

2

*
.

To overcome the lack of ergodicity of deterministic chains1, we add a stochastic perturbation to this new
dynamics, and prove that the convergence of the energy fluctuations distribution holds (Theorem 3.1).
The noise can be easily described: at independently distributed random Poissonian times, the quantity
px{

?
Mx and the interdistance rx are exchanged, or the momentum px is flipped into �px . This noise

still conserves the total energy E , and is very degenerate.
Even if Theorem 3.1 could be proved mutatis mutandis for this harmonic chain, for pedagogical

reasons we now focus on a simplified model, which has the same features and involves simplified com-
putations2. From now on, we study the dynamics on the new configurations tηxuxPZ written as

mxdηx � pηx�1 �ηx�1qdt, (1)

where m :� tmxuxPZ is the new disorder with the same characteristics as before. It is notationally
convenient to change the variable ηx into ωx :�?

mxηx , and the total energy reads

E �
¸
xPZ
ω2

x .

Let us now introduce the corresponding stochastic energy conserving dynamics: the evolution is de-
scribed by (1) between random exponential times, and at each ring one of the following interactions can
happen:

a. Exchange noise – two nearest neighbour variables ωx and ωx�1 are exchanged;
b. Flip noise – the variable ωx at site x is flipped into �ωx .
As a consequence of these two perturbations, the dynamics conserves the total energy only, the other

important conservation laws of the Hamiltonian part being destroyed by the stochastic noises3. The
following family tµβuβ¡0 of grand-canonical Gibbs measures is invariant for the process:

µβpdωq :�
¹
xPZ

d
2π
β

exp

�
�β

2
ω2

x



dωx . (2)

The index β stands for the inverse of the temperature. Notice that with our notational convenience, µβ
does not depend on the disorder. Observe also that the dynamics is not reversible with respect to the

1In the deterministic system of harmonic oscillators, it is well known that the energy is ballistic, destroying the validity of the
Fourier law. The remarkable work of Liebowitz, Lieb and Rieder [19] is the standard reference for more details.

2We invite the reader to see [6] for the origin of this new particle system.
3It is now well understood that the ballisticity of the harmonic chain is due to the infinite number of conserved quantities.

In 1994, Fritz, Funaki and Lebowitz [13] propose different stochastic noises that are sufficient to destroy the ballisticity of the
chain: the velocity-flip noise is one of them.
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measure µβ . We define eβ as the thermodynamical energy associated to β , namely the expectation of
ω2

0 with respect to µβ , and χpβq � 2β�2 as the variance of ω2
0 with respect to µβ .

We consider the system starting with µβ and we denote by Eµβ the expectation for the stochastic
dynamics starting with this invariant distribution. We prove a diffusive behaviour for the energy: first,
define the distribution-valued energy fluctuation field

YN :� 1?
N

¸
xPZ
δx{N

 
ω2

xp0q � eβ
(
.

It is well known that YN converges in distribution as N Ñ8 towards a centred Gaussian field Y, which
satisfies

Eµβ
�
YpFqYpGq�� χpβq»

R
FpyqGpyqdy,

for smooth test functions F,G. In this paper we prove that these energy fluctuations evolve diffusively in
time (Theorem 3.1). More precisely, the following distribution

YN
t �

1?
N

¸
xPZ
δx{N

 
ω2

xptN2q � eβ
(

converges in law as N Ñ8 to the solution of the linear Stochastic Partial Differential Equation (SPDE)

BtY � DB2
yY �

b
2DχpβqByBpy, tq, t ¡ 0, y P R.

where D is the diffusion coefficient, and B is the standard normalized space-time white noise.
Finally, we could think of using the entropy method to derive the hydrodynamic equation. For that

purpose, the initial law is not assumed to be the equilibrium measure µβ , but a local equilibrium measure
(see (60) below). We conjecture that this property of local equilibrium propagates in time. In other
words, let e0 : T Ñ R be a bounded function, where T denotes the torus r0, 1q. We would like to
show that the empirical energy profile converges in the thermodynamic limit to the macroscopic profile
ept, �q : TÑ R solution of $&%

Be
Bt
pt, uq � D

B2e
Bu2

pt, uq, t ¡ 0, u P T,
ep0, uq � e0puq.

Unfortunately, even if the diffusion coefficient is well defined through the non-gradient approach, this
does not straightforwardly provide a method to derive the hydrodynamic limits.

Let us now give the plan of the paper. Section 2 is devoted to introduce the model and all notations
and definitions that are needed. The convergence of the energy fluctuations field (in the sense of finite
dimensional distributions) is proved in Section 3. The main point is to identify the diffusion coefficient
D (Section 5), by adapting the non-gradient method introduced in [28]. In Section 4, we derive the
Boltzmann-Gibbs principle. Finally, Section 6 gives a precise description of the diffusion coefficient
through several variational formulas. In Section 7 we prove the convergence of the Green-Kubo formula,
and demonstrate rigorously that both definitions of the diffusion coefficient are equivalent. In Section
8, we present a second disordered model, where the interaction is described by a potential V. For this
anharmonic chain, we need a very strong stochastic perturbation, which has a spectral gap, and satisfies
the sector condition. We conclude in Section 9 by highlighting the step where the usual techniques for
proving hydrodynamic limits fail. In Appendices, technical points are detailed: in Appendix A, the space
of square-integrable functions w.r.t. the standard Gaussian law is studied through its orthonormal basis
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of Hermite polynomials. In Appendix B we replace the usual result concerning the decomposition of
closed forms by some weaker version. The sector condition is proved for a specific class of functions
in Appendix C. In Appendix D, the tightness for the energy fluctuation field is recalled for the sake of
completeness.

2 The harmonic chain perturbed by stochastic jump noises

2.1 Generator of the Markov process

We first describe the dynamics on the finite torus TN :� t1, ..., Nu, meaning that boundary conditions
are periodic. The configuration tωxuxPTN

evolves according to a dynamics which can be divided into
two parts, a deterministic one and a stochastic one. The space of configurations of our system is given
by ΩN � RN. We recall that the disorder is an i.i.d. sequence m� tmxuxPZ which satisfies:

@ x P Z, 1
C
¤ mx ¤ C,

for some finite constant C ¡ 0. The corresponding product and translation invariant measure on the
space ΩD � rC�1, CsZ is denoted by P and its expectation is denoted by E. For a fixed disorder field
m� tmxuxPZ, we consider the system of ODE’s

?
mxdωx �

�
ωx�1?
mx�1

� ωx�1?
mx�1



dt, t ¥ 0, x P TN

and we superpose to this deterministic dynamics a stochastic perturbation described as follows: to each
atom x P TN, and each bond tx , x � 1u, x P TN is associated an exponential clock of rate λ ¡ 0 and
γ ¡ 0 respectively, such that each clock is independent of each other. When the clock attached to x
rings, ωx is flipped into �ωx , and when the clock attached to the bond tx , x � 1u rings, the values ωx

and ωx�1 are exchanged. This dynamics can be entirely defined by the generator of the Markov process
tωxptq ; x P TNut¥0, that is

Lm
N �Am

N � γSflip
N �λSexch

N

where,

Am
N �

¸
xPTN

"�
ωx�1?
mx mx�1

� ωx�1?
mx�1mx


 B
Bωx

*
,

and, for all functions f : ΩD �ΩN Ñ R,

Sflip
N f pm,ωq �

¸
xPTN

f pm,ωxq � f pm,ωq,

Sexch
N f pm,ωq �

¸
xPTN

f pm,ωx ,x�1q � f pm,ωq.

Here, the configuration ωx is the configuration obtained from ω by flipping the momentum of atom x:

pωxqz �
#
ωz if z � x ,

�ωx if z � x .
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The configuration ωx ,x�1 is obtained from ω by exchanging the momenta of atoms x and x � 1:

pωx ,x�1qz �

$''&''%
ωz if z � x , x � 1,

ωx�1 if z � x ,

ωx if z � x � 1.

We denote the total generator of the noise by SN :� γSflip
N � λSexch

N , where γ,λ ¡ 0 are two positive
parameters which regulate the respective strengths of noises.

One quantity is conserved: the total energy
°
ω2

x . The following translation invariant product Gibbs
measures µN

β
on ΩN are invariant for the process:

dµN
β pωq :�

¹
xPTN

d
2π
β

exp

�
�β

2
ω2

x



dωx .

In the following, the expectation of f with respect to µN
β

is denoted by x f yβ . The index β stands for

the inverse temperature, namely xω2
0yβ � 1{β . Let us notice that the Gibbs measures do not depend on

the disorder m. From the definition, our model is not reversible with respect to the measure µN
β

. More

precisely, Am
N is an antisymmetric operator in L2pµN

β
q, whereas SN is symmetric.

We denote by Ω the space of configurations in the infinite line, that is Ω :� RZ, and by µβ the product
Gibbs measure on RZ. Hereafter, for every β ¡ 0, we denote by P�

β
the probability measure on ΩD �Ω

defined by
P�β :� Pbµβ .

Along the article we will widely use the fact that P�
β

is translation invariant. We write E�
β

for the corre-
sponding expectation.

2.2 Energy current

Since the dynamics conserves the total energy, there exist instantaneous currents of energy jx ,x�1

such that Lm
N pω2

xq � jx ,x�1pm,ωq � jx�1,xpm,ωq. The quantity jx ,x�1 is the amount of energy flowing
between the particles x and x � 1, and is equal to

jx ,x�1pm,ωq � 2ωxωx�1?
mx mx�1

�λpω2
x�1 �ω2

xq.

The energy conservation law can be read locally as

ω2
xptq �ω2

xp0q � Jx ,x�1ptq � Jx�1,xptq,

where Jx ,x�1ptq is the total energy current between x and x � 1 up to time t. This can be written as

Jx ,x�1ptq �
» t

0
jx ,x�1psqds�Mx ,x�1ptq,

where Mx ,x�1ptq is a martingale which can be explicitly computed as an Itô stochastic integral:

Mx ,x�1ptq �
» t

0

!
ω2

x�1 �ω2
x

)
ps�qd �Nx ,x�1psq �λs

�� » t

0

!
ω2

x�1 �ω2
x

)
ps�qd �Nx�1,xpsq �λs

�
,
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where pNx ,x�1qxPZ are independent Poisson processes of intensity λ. We write jx ,x�1 � jAx ,x�1 � jSx ,x�1
where jAx ,x�1 (resp. jSx ,x�1) is the current associated to the antisymmetric (resp. symmetric) part of the
generator:

jAx ,x�1pm,ωq � 2ωxωx�1?
mx mx�1

jSx ,x�1pm,ωq � jSx ,x�1pωq � λpω2
x�1 �ω2

xq.

Unfortunately, the current cannot be directly written as the gradient of a local function, neither by an
exact fluctuation-dissipation equation (in other words, the current is not the sum of a gradient and a
dissipative term of the form Lm

N pτxhq, where h is a local function of the system configuration). This
means that we are in the non-gradient case. We also define the static compressibility that is equal to the
variance of the one-site energy ω2

0 with respect to µβ , namely

χpβq :� xω4
0yβ �xω2

0y2
β �

2
β2

.

2.3 Cylinder functions

For every x P Z and every measurable function f on ΩD � Ω, we consider the translated function
τx f , which is defined on ΩD�Ω by: τx f pm,ωq :� f pτxm,τxωq, where τxm and τxω are the disorder
and particle configurations translated by x P Z, respectively:

pτxmqz :� mx�z , pτxωqz �ωx�z .

Let Λ be a finite subset of Z, and denote by FΛ the σ-algebra generated by tmx ,ωx ; x P Λu. For a
fixed positive integer `, we define Λ` :� t�`, ...,`u. If the box is centred at site x P Z, we denote it by
Λ`pxq :� t�`� x , ...,`� xu. If f is a measurable function on ΩD�Ω, the support of f , denoted by Λ f , is
the smallest subset of Z such that f pm,ωq only depends on tmx ,ωx ; x P Λ f u and f is called a cylinder
(or local) function if Λ f is finite. In that case, we denote by s f the smallest positive integer s such that
Λs contains the support of f and then Λ f � Λs f

. For every cylinder function f : ΩD �ΩÑ R, consider
the formal sum

Γ f :�
¸
xPZ
τx f

which does not make sense but for which

∇0pΓ f q :� Γ f pm,ω0q � Γ f pm,ωq,
∇0,1pΓ f q :� Γ f pm,ω0,1q � Γ f pm,ωq.

are well defined. Similarly, we define

p∇x f qpm,ωq :� f pm,ωxq � f pm,ωq,
p∇x ,x�1 f qpm,ωq :� f pm,ωx ,x�1q � f pm,ωq.

DEFINITION 2.1. We denote by C the set of measurable cylinder functions ϕ on ΩD �Ω, such that

(i) for all ω P Ω, the random variable m ÞÑ ϕpm,ωq is continuous on ΩD;

(ii) for all m P ΩD, the functionω ÞÑ ϕpm,ωq belongs to L2pµβq and has null average with respect to µβ .
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Notice that piiq � piiiq implies that the function ω ÞÑ supmPΩD
ϕpm,ωq belongs to L2pµβq and has

null average with respect to µβ .

DEFINITION 2.2. We introduce the set of quadratic cylinder functions on ΩD �Ω, denoted by Q � C, and
defined as follows: f P Q if there exists a sequence

 
ψi, jpmq

(
i, jPZ of real cylinder measurable functions on

ΩD, with finite support in ΩD, such that

(i) for all i, j P Z and all ω P Ω, the random variable m ÞÑψi, jpm,ωq is continuous on ΩD;

(ii) ψi, j vanishes for all but a finite number of pairs pi, jq,
(iii) f is written as

f pm,ωq �
¸
iPZ
ψi,ipmqpω2

i�1 �ω2
i q �

¸
i, jPZ
i� j

ψi, jpmqωiω j , (3)

In other words, quadratic functions are homogeneous polynomials of degree two in the variable
ω, that have null average with respect to µβ for every m P ΩD. An other definition through Hermite
polynomials is given in Appendix A. We are now ready to define two sets of functions that will play
further a crucial role.

DEFINITION 2.3. Let C0 be the set of cylinder functions ϕ on ΩD�Ω such that there exists a finite subset Λ
of Z, and cylinder, measurable functions tFx ,GxuxPΛ defined on ΩD �Ω, that verify

ϕ �
¸
xPΛ

!
∇xpFxq �∇x ,x�1pGxq

)
,

and such that, for all x P Λ,

(i) for all ω P Ω, the functions m ÞÑ Fxpm,ωq and m ÞÑ Gxpm,ωq are continuous on ΩD;

(ii) for all m P ΩD, the functions ω ÞÑ Fxpm,ωq and ω ÞÑ Gxpm,ωq belong to L2pµβq.
Let Q0 � C0 be the set of such functions ϕ, with the additional assumption that the cylinder functions Fx ,
Gx are homogeneous polynomials of degree two in the variable ω.

Before giving a few properties of these two spaces, we redefine the generators of the Markov process
on the whole discrete line: the operators Lm, Am and S are acting on cylinder functions f defined on
ΩD �Ω as

Lm f �Am f � S f , (4)

with

Am �
¸
xPZ

"�
ωx�1?
mx mx�1

� ωx�1?
mx�1mx


 B
Bωx

*
,

and

S f � γSflip f �λSexch f ,

Sflip f pm,ωq �
¸
xPZ

p∇x f qpm,ωq �
¸
xPZ

!
f pm,ωxq � f pm,ωq

)
,

Sexch f pm,ωq �
¸
xPZ

p∇x ,x�1 f qpm,ωq �
¸
xPZ

!
f pm,ωx ,x�1q � f pm,ωq

)
.

We denote Sx � γ∇x � λ∇x ,x�1 for x P Z. For Λ` defined as above, Lm
Λ`

, resp. SΛ` , is the restriction of
the generator Lm, resp. S, to the finite box Λ`, assuming periodic boundary conditions.
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2.4 Properties of C0 and Q0

Before giving the main properties of the sets introduced above, we define the quadratic form associ-
ated to the generator: for any x P Z and cylinder functions f , g P C, let us define

D`pµβ ; f q :� @p�Lm
Λ`
q f , f

D
β
� @p�SΛ`q f , f

D
β
�

¸
xPΛ`

@p�Sxq f , f
D
β

,

and notice that@p�Sxq f , g
D
β
� γ

2

@ p f pm,ωxq � f pm,ωqq pgpm,ωxq � gpm,ωqqD
β

� λ
2

@�
f pm,ωx ,x�1q � f pm,ωq��gpm,ωx ,x�1q � gpm,ωq�D

β
,

The symmetric form D` is called the Dirichlet form, and is well defined on C. This is a random variable
with respect to the disorder m.

PROPOSITION 2.1. For every function ϕ P C0, the quantity xϕ, p�Sq�1ϕyβ is well defined. Moreover, the
following elements belong to Q0:

paq jS0,1, jA0,1.

pbq Lm f , S f and Am f , for all f PQ.

Proof. The fact that the function ϕ P C0 can be written by definition as

ϕ �
¸

xPΛϕ

∇xpFxq �∇x ,x�1pGxq

implies that we can write

xϕ, p�Sq�1ϕyβ �
1
γ

¸
xPΛϕ

x∇xpFxq, Fxyβ �
1
λ

¸
xPΛϕ

x∇x ,x�1pGxq,Gxyβ ,

and the right-hand side above is well defined. Besides, the first statement paq is directly obtained from
the following identities: for x P Z, and k ¥ 1,

ω2
x�1 �ω2

x �∇x ,x�1

�
ω2

x

�
(5)

ωxωx�k � Sx

��ωxωx�1

γ



�

k�1̧

`�1

Sx�`

��ωxωx�`�1

λ



. (6)

Then, if f PQ, it is easy to see that (5) and (6) are sufficient to prove pbq. For instance,

Lmpωxωx�1q �
ωxωx�2?
mx�1mx�2

� ωx�1ωx�1?
mx mx�1

�
ω2

x�1 �ω2
x?

mx mx�1

� 4γωxωx�1 �λpωx�2 �ωx�1qωx �λpωx�1 �ωxqωx�1.

The integrability and regularity conditions are easy to check.
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PROPOSITION 2.2 (Dirichlet bound). Let ϕ be a cylinder function in C0, written by definition as

ϕ �
¸

xPΛϕ

∇xpFxq �∇x ,x�1pGxq,

for some functions Fx and Gx satisfying the conditions of Definition 2.3. Let us consider h P C with support
in Λ`. Denote by `ϕ the integer `ϕ :� `� sϕ � 1 so that the support of τxϕ is included in Λ` for every
x P Λϕ. Then, the following constant

Cϕ :� p2sϕ � 1q
"�

sup
xPΛϕ
E�β

�
F2

x

�	1{2
�
�

sup
xPΛϕ
E�β

�
G2

x

�	1{2
*

that only depends on ϕ satisfies�����E�β
� ¸
|x|¤`ϕ

τxϕ, h
������¤ Cϕ|2`ϕ � 1|1{2

�
E
�
D`pµβ ; hq�	1{2

. (7)

Proof. First, let us assume first that ϕ �∇0pF0q, so that sϕ � 1. Then we have�����E�β
� ¸
|x|¤`ϕ

τxϕ, h
�������

����� ¸
|x|¤`ϕ

E�β
�
τxF0,∇xh

������¤ ¸
|x|¤`ϕ

!
E�β

�pτxF0q2
�1{2 E�β

��
∇xh

�2�1{2
)

¤
� ¸
|x|¤`ϕ

E�β
�pτxF0q2

�
1{2�
E
�
D`pµβ ; hq�	1{2

¤ |2`ϕ � 1|1{2 E�β
�
F2

0

�1{2
�
E
�
D`pµβ ; hq�	1{2

.

In the same way, if ϕ �°
yPΛ∇ypFyq, we have�����E�β

� ¸
|x|¤`ϕ

τxϕ, h
�������

����� ¸
|x|¤`ϕ

¸
yPΛ

E�β
�
τxFy ,∇y�xh

������
¤

¸
|x|¤`ϕ

¸
yPΛ

!
E�β

�pτxFyq2
�1{2 E�β

��
∇x�yh

�2�1{2
)

¤ p2sϕ � 1q|2`ϕ � 1|1{2
�

sup
yPΛ
E�β

�
F2

y

�	1{2�
E
�
D`pµβ ; hq�	1{2

.

The general case easily follows.

Finally, if we use the decomposition of every function in L2pµβq over the basis of Hermite polynomials,
we can prove the following result (the details for the proof are given in Proposition A.3 in Section A):

PROPOSITION 2.3 (Variance of quadratic functions). If ϕ PQ0, then

E�β
�
ϕ, p�SΛϕq�1ϕ

�� sup
gPQ

!
2E�β

�
ϕ, g

��E�Dsϕpµβ ; gq�) .
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2.5 Semi-inner products and diffusion coefficient

For cylinder functions g, h P C, let us define:

! g, h"β ,�:�
¸
xPZ
E�β rg τxhs, and ! g "β ,��:�

¸
xPZ

x E�β
�
gω2

x

�
. (8)

Both quantities are well defined because g and h belong to C and therefore all but a finite number of
terms on each sum vanish. Notice that ! �, � "β ,� is a semi inner product, since the following equality
holds:

! f , g "β ,�� lim
ΛÒZ

1
|Λ|E

�
β

� ¸
xPΛ

τx f ,
¸
xPΛ

τx g
�

.

Since! f �τx f , g "β ,�� 0 for all x P Z, this scalar product is only semi-definite. In the next proposition
we give explicit formulas for elements of C0.

PROPOSITION 2.4. If ϕ P C0 with

ϕ �
¸
yPΛ

!
∇ypFyq �∇y,y�1pGyq

)
,

then

! ϕ "β ,�� � E�β
�
pω2

0 �ω2
1q

¸
yPΛ

τ�yGy

�
,

! ϕ, g "β ,� � E�β
�
∇0pΓgq

¸
yPΛ

τ�yFy �∇0,1pΓgq
¸
yPΛ

τ�yGy

�
for all g P C.

Proof. The proof is straightforward.

DEFINITION 2.4. We define the diffusion coefficient Dpβq for β ¡ 0 as

Dpβq :� λ� 1
χpβq inf

f PQ
sup
gPQ

!
! f ,�S f "β ,� �2! jA0,1 �Am f , g "β ,� �! g,�S g "β ,�

)
.

The first term in the sum (λ) is only due to the exchange noise, whereas the second one comes from
the Hamiltonian part of the dynamics. Formally, this formula could be read as

Dpβq � λ� 1
χpβq ! jA0,1, p�Lmq�1 jA0,1 "β ,�, (9)

but the last term is ill-defined because jA0,1 is not in the range of Lm. More rigorously, we should define
! jA0,1, p�Lmq�1 jA0,1 "β ,� as

limsup
zÑ0

! jA0,1, pz �Lmq�1 jA0,1 "β ,� .

The last expression is now well defined, and the problem is reduced to prove convergence as z Ñ 0.
Hille-Yosida Theorem (see Proposition 2.1 in [10] for instance) suggests that (9) is equal to the infinite
volume Green-Kubo formula:

Dpβq � λ� 1
χpβq lim

zÑ0
z¡0

» �8

0
e�zt E�β

�¸
xPZ

jAx ,x�1ptq, jA0,1p0q
�

dt, (10)
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In Section 7, we prove that (10) is well defined and converges, inspired by [3], and we also show that
the diffusion coefficient can be equivalently defined in the two ways. Assuming the convergence in the
Green-Kubo formula, one can easily see that Dpβq does not depend on β . We denote by Lpzq the second
term of the right-hand side of (10), that is

Lpzq :� 1
χpβq

» �8

0
e�zt ! jA0,1ptq, jA0,1p0q "β ,� dt.

Let L2
β ,� be the Hilbert space generated by the set of square integrable local functions and the inner

product ! �, � "β ,�. Consider hz :� hzpm,ω;βq the solution of the resolvent equation in L2
β ,� i.e.

pz �Lmqhz � jA0,1.

Then we have

Lpzq � 1
χpβq ! hz , jA0,1 "β ,��

β2

2
! hz , jA0,1 "β ,� .

Observe that if ω is distributed according to µβ then β1{2ω is distributed according to µ1. Besides,
jA0,1 is a homogeneous function of degree two in ω and Lm preserves the degree of polynomials, which
implies that hz is also homogeneous of degree two. It follows that hzpm,ω; 1q � hzpm,ω;βq and then
the diffusion coefficient does not depend on β .

3 Macroscopic fluctuations of energy

In this section we are interested in the fluctuations of the empirical energy, when the system is at equi-
librium. We prove that the limit fluctuation process is governed by a generalized Ornstein-Uhlenbeck
process, whose covariances are given in terms of the diffusion coefficient. We adapt the non-gradient
method introduced by Varadhan. In particular, we establish rigorously the variational formula that ap-
pears in the definition of the diffusion coefficient (Definition 2.4). Varadhan’s approach is investigated
in Sections 4, 5 and 6.

3.1 Energy fluctuation field

Recall that we denote by eβ the thermodynamical energy associated to the inverse of temperature
β ¡ 0, namely eβ � β�1. We define the energy empirical distribution πN

t,m on the torus T� r0,1q as

πN
t,mpduq � 1

N

¸
xPTN

ω2
xptqδx{Npduq, t P r0,Ts, u P T,

where δu stands for the Dirac measure. We denote by tωptqut¥0 the Markov process generated by N2Lm
N

and by M1 the set of positive, Radon measures on T, endowed with the weak topology. The space of
trajectories in M1, which are right-continuous and left-limited (i.e. the Skorokhod space) is denoted by
D pr0, Ts,M1q. If the initial state of the dynamics is given by the equilibrium Gibbs measure µN

β
, then,

for any fixed t ¥ 0, the measure πN
t,m weakly converges towards the deterministic measure on T, equal

to teβduu. Our goal is to investigate the fluctuations of the empirical measure πN
t,m with respect to this

limit. Let us fix the disorder m, and the inverse of temperature β ¡ 0. Consider the system under the
equilibrium measure µN

β
.
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DEFINITION 3.1 (Empirical energy fluctuations). We denote by YN
t,m the empirical energy fluctuation field

defined as

YN
t,mpHq �

1?
N

¸
xPTN

H
� x

N

	 
ω2

xptq � eβ
(

,

where H : TÑ R is a smooth function.

We are going to prove that the distribution YN
t,m converges in law towards the solution of the linear

SPDE:
BtY � DB2

yY �
b

2Dχpβq ByBpy, tq,
where B is a standard normalized space-time white noise, and D is the diffusion coefficient defined in
Theorem 5.9. Observe that there is no dependence on the disorder m in the limit process. In other
words, the latter is described by the stationary generalized Ornstein-Uhlenbeck process with zero mean
and covariances given by

xYtpHqY0pGqyβ �
χpβq?
4πtD

»
R2

du dv HpuqGpvqexp

�
�pu� vq2

4tD



,

for all t ¥ 0 and smooth functions H,G : TÑ R. Here, H (resp. G) is the periodic extension to the real
line of H (resp. G).

Consider for k ¡ 5{2 the Sobolev space H�k of distributions Y on T such that they have finite norm

||Y||2�k �
¸
n¥1

pπnq�2k
��Ypenq

��2,

where en is the function x ÞÑ ?
2sinpπnxq. We denote by YN

m the probability measure on the space
Cpr0,Ts,H�kq of continuous trajectories on the Sobolev space, induced by the energy fluctuation field
YN

t,m and the Markov process tωptqut¥0 generated by N2Lm
N , starting from the equilibrium probability

measure µN
β

. Let Y be the probability measure on the space Cpr0, Ts,H�kq corresponding to the general-
ized Ornstein-Uhlenbeck process Yt defined above. The main result of this section is the following.

THEOREM 3.1. For almost all realization of the disorder m P ΩD, the sequence tYN
muN¥1 weakly converges

in Cpr0, Ts,H�kq to the probability measure Y.

3.2 Strategy of the proof

We follow the lines of [21, Section 3]. The proof of Theorem 3.1 is divided into three steps. First,
we need to show that the sequence tYN

muN¥1 is tight. This point follows a standard argument, given for
instance in [15, Section 11], and recalled in Appendix D for the sake of completeness. Then, we prove
that the one-time marginal of any limit point Y� of a convergent subsequence of tYN

muN¥1 is the law of
a centered Gaussian field Y with covariances given by

xYpHqYpGqy � χpβq
»
T

du HpuqGpuq,

where H, G : T Ñ R are smooth functions. This statement comes from the central limit theorem for
independent variables. Finally, we prove the main point in the next subsections: all limit points Y� of
convergent subsequences of tYN

muN¥1 solve the martingale problems below.
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Martingale problems – For each smooth function H : TÑ R,

MtpHq :� YtpHq �Y0pHq �
» t

0
DYspH2qds, (11)

and

NtpHq :� pMtpHqq2 � 2tχpβqD
»
T

H1puq2du (12)

are L1pYq-martingales.

3.3 Martingale decompositions

Let us fix a smooth function H : TÑ R. We rewrite YN
t,mpHq as

YN
t,mpHq � YN

0,mpHq �
» t

0

?
N

¸
xPTN

∇NH
� x

N

	
jx ,x�1pm, sqds�MN

t,mpHq

where MN
t,m is the martingale defined as

MN
t,mpHq �

» t

0

1

N
?

N

¸
xPTN

∇NH
� x

N

	�
ω2

x�1 �ω2
x

�psqd
�
Nx ,x�1psq �λs

�
.

Hereafter, pNx ,x�1qxPZ and pNxqxPZ are independent Poisson processes of intensity (respectively) λ and
γ, and ∇N stands for the discrete gradient:

∇NH
� x

N

	
� N

�
H
� x � 1

N

	
�H

� x
N

	�
.

The discrete Laplacian ∆N is defined in a similar way:

∆NH
� x

N

	
� N2

�
H
� x � 1

N

	
�H

� x � 1
N

	
� 2H

� x
N

	�
.

To close the equation, we are going to replace the term involving the microscopic currents with a term
involving YN

t,m. In other words, the most important part in the fluctuation field represented by» t

0

?
N

¸
xPTN

∇NH
� x

N

	
jx ,x�1pm, sqds

is its projection over the conservation field YN
t,m (recall that the total energy is the unique conserved

quantity of the system). The non-gradient approach consists in using the fluctuation-dissipation approx-
imation of the current jx ,x�1 given by Theorem 5.9 below as D

�
ω2

x�1�ω2
x

��Lmpτx f q. For that purpose,
we rewrite, for any f PQ,

YN
t,mpHq � YN

0,mpHq �
» t

0
DYN

s,mp∆NHqds� I
1,N
t,m, f pHq � I

2,N
t,m, f pHq �M

1,N
t,m, f pHq �M

2,N
t,m, f pHq, (13)
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where

I
1,N
t,m, f pHq �

» t

0

?
N

¸
xPTN

∇NH
� x

N

	�
jx ,x�1pm, sq �D

�
ω2

x�1 �ω2
x

�psq �Lmpτx f qpm, sq
�

ds,

I
2,N
t,m, f pHq �

» t

0

?
N

¸
xPTN

∇NH
� x

N

	
Lmpτx f qpm, sqds,

M
1,N
t,m, f pHq �

» t

0

1

N
?

N

¸
xPTN

∇NH
� x

N

	#�
∇x ,x�1pω2

x � Γ f q
�psqd

�
Nx ,x�1psq �λs

�
�∇xpΓ f qpsqd

�
Nxpsq � γs

�+
,

M
2,N
t,m, f pHq �

» t

0

1

N
?

N

¸
xPTN

∇NH
� x

N

	#
∇x ,x�1pΓ f qpsqd

�
Nx ,x�1psq �λs

�
�∇xpΓ f qpsqd

�
Nxpsq � γs

�+
.

The strategy of the proof is based on the two following results.

LEMMA 3.2. For every smooth function H : TÑ R, and every function f PQ,

lim
NÑ8
E�β

�
sup

0¤t¤T

�
I

2,N
t,m, f pHq �M

2,N
t,m, f pHq

	2
�
� 0.

THEOREM 3.3 (Boltzmann-Gibbs principle). There exists a sequence of functions t fkukPN PQ such that

(i) for every smooth function H : TÑ R,

lim
kÑ8

lim
NÑ8
E�β

�
sup

0¤t¤T

�
I

1,N
t,m, fk

pHq
	2
�
� 0, (14)

(ii) and moreover

lim
kÑ8
E�β

�
λ
�
∇0,1pω2

0 � Γ fk
q
	2
� γ

�
∇0pΓ fk

q
	2
�
� 2Dχpβq. (15)

As a result, the martingale M
1,N
t,m, fk

converges in L2pP�
β
q, as N Ñ8 and then k Ñ8, to a martingale

MtpHq of quadratic variation

2tDχpβq
»
T

H1puq2 du,

and the limit YtpHq of YN
t,mpHq satisfies the equation

YtpHq � Y0pHq �
» t

0
YspDH2qds�MtpHq.

We have proved that the limit solves the martingale problems (11) and (12), which uniquely character-
ized the generalized Ornstein-Uhlenbeck process Yt . The proof of Lemma 3.2 is the content of the next
subsection. The proof of Theorem 3.3 is more challenging, and Sections 4, 5 and 6 are devoted to it.
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3.4 Proof of Lemma 3.2

In this paragraph we give a proof of Lemma 3.2. We define

XN
m, f ptq �

1

N
?

N

¸
xPTN

∇NH
� x

N

	
τx f pm, tq

As before, we can rewrite

I
2,N
t,m, f pHq �M

2,N
t,m, f pHq � XN

m, f ptq � XN
m, f p0q

� 1

N
?

N

» t

0

¸
xPTN

∇x ,x�1

�" ¸
zPTN

∇NH
� z

N

	
τz f

*
�∇N

� x
N

	
Γ f



pm, sqd�Nx ,x�1psq �λs

�
� 1

N
?

N

» t

0

¸
xPTN

∇x

�" ¸
zPTN

∇NH
� z

N

	
τz f

)
�∇NH

� x
N

	
Γ f



pm, sqd�Nxpsq �λs

�
.

Therefore,�
I

2,N
t,m, f pHq �M

2,N
t,m, f pHq


2

¤ 3
�

XN
m, f ptq � XN

m, f p0q
	2

� 3

�
1

N
?

N

» t

0

¸
xPTN

∇x ,x�1

�" ¸
zPTN

∇NH
� z

N

	
τz f

*
�∇NH

� x
N

	
Γ f



pm, sqd�Nx ,x�1psq �λs

�
2

� 3

�
1

N
?

N

» t

0

¸
xPTN

∇x

�" ¸
zPTN

∇NH
� z

N

	
τz f

*
�∇NH

� x
N

	
Γ f



pm, sqd�Nxpsq �λs

�
2

(16)

On the one hand,

E�β
��

XN
m, f

�2
�
� 1

N3

¸
x ,yPTN

∇NH
� x

N

	
∇NH

� y
N

	
E�β

�
τx f ,τy f

�
.

This last quantity is of order 1{N2, because f is a local function of zero average, and H is smooth. On
the other hand, let us define, at least formally,

Yxpm,ωq :�
¸

zPTN

∇NH
� z

N

	
τz f �∇NH

� x
N

	¸
zPZ
τz f .

Then, the expectation of the second term of (16) is equal to

3λ2 tN2

N3

¸
xPTN

E�β
� 
∇x ,x�1pYxq

(2
�
.

Again, since f is local and H is smooth, this quantity is of order 1{N2. Indeed, in the expression
∇x ,x�1pYxq, there is a sum over z P Z, but in which only terms with |z � x | ¤ 2 remain. The same
holds for the third term of (16).

4 CLT variances at equilibrium

In this section we are going to identify the diffusion coefficient D that appears in (13). Roughly
speaking, D can be viewed as the asymptotic component of the energy current jx ,x�1 in the direction of
the gradient ω2

x�1 �ω2
x , and makes the expression below vanish:

inf
f PQ

limsup
NÑ8

limsup
tÑ8

1
tN
E�β

��» t

0

¸
xPTN

�
jx ,x�1 �Dpω2

x�1 �ω2
xq �Lmpτx f q�ds


2 �
, for any β ¡ 0.
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Let us start by giving already-known tools that will help understand the forthcoming results, staying at
an informal level.

4.1 An insight through additive functionals of Markov processes

Consider a continuous time Markov process tYsus¥0 on a complete and separable metric space E,
which has an invariant measure π. We denote by x�yπ the inner product in L2pπq and by L the infinites-
imal generator of the process. The adjoint of L in L2pπq is denoted by L�. Fix a function V : E Ñ R in
L2pπq such that xVyπ � 0. Theorem 2.7 in [17] gives conditions on V which guarantee a central limit
theorem for

1?
t

» t

0
VpYsqds

and shows that the limiting variance equals

σ2pV,πq � 2 lim
zÑ0
z¡0

@
V, pz �Lq�1V

D
π

.

Let the generator L be decomposed as L � S �A, where S � pL�L�q{2 and A � pL�L�q{2 denote,
respectively, the symmetric and antisymmetric parts of L. Let H1 be the completion of the quotient of
L2pπq with respect to constant functions, for the semi-norm } � }1 defined as:

} f }2
1 :� @

f , p�Lq f
D
π
� @

f , p�Sq f
D
π

.

Let H�1 be the dual space of H1 with respect to L2pπq, in other words, the Hilbert space generated by
suitably regular functions and the norm } � }�1 defined by

} f }2
�1 :� sup

g

 
2
@

f , g
D
π
�}g}2

1

(
,

where the supremum is carried over some good functions g. Formally, } f }�1 can also be thought as@
f , p�Sq�1 f

D
π

.

Notice the difference with the variance σ2pV,πq which formally reads

2
@
V, p�Lq�1V

D
π
� 2

@
V,
�p�Lq�1

�
sV
D
π

.

Hereafter, Bs represents the symmetric part of the operator B. We can write, at least formally, that �p�Lq�1
�

s

(�1 ��S �A�p�Sq�1A¥�S,

where A� stands for the adjoint of A. We have therefore that
�p�Lq�1

�
s ¤ p�Sq�1. The following result

is a rigorous estimate of the time variance in terms of the H�1 norm, which is proved in [17, Lemma
2.4].

LEMMA 4.1. Given T ¡ 0 and a mean zero function V in L2pπq XH�1,

Eπ

�
sup

0¤t¤T

�» t

0
Vpsqds


2
�
¤ 24T}V}2

�1. (17)
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If we compare the previous left-hand side to the Boltzmann-Gibbs principle (15), the next step should
be to take V proportional to ¸

xPTN

�
jx ,x�1 �Dpω2

x�1 �ω2
xq �Lmpτx f q�

and then take the limit as N goes to 8. In the right-hand side of (17) we will obtain a variance that
depends on N, and the main task will be to show that this variance converges: this is studied in more
details in what follows. Precisely, we prove that the limit of the variance results in a semi-norm, which
is denoted by ||| � |||β and defined in (18). We are going to see that (18) involves a variational formula,
which formally reads

||| f |||2β �! f , p�Sq�1 f "β ,� �
2

λχpβq ! f "2
β ,�� .

The final step consists in minimizing this semi-norm on a well-chosen subspace in order to get the
Boltzmann-Gibbs principle, through orthogonal projections in Hilbert spaces. The hard point is that
||| � |||β only depends on the symmetric part of the generator S, and the latter is really degenerate, since
it does not have a spectral gap.

In Subsection 4.2, we relate the previous limiting variance (taking the limit as N goes to infinity)
to the suitable semi-norm. Subsection 4.3 is devoted to prove the Boltzmann-Gibbs principle inspired
by Lemma 4.1. Then, in Section 5 we investigate the Hilbert space generated by the semi-norm, and
prove some decompositions into direct sums. Finally, Section 6 focuses on the diffusion coefficient and
its different expressions.

4.2 Limiting variance and semi-norm

We now assume β � 1. All statements are valid for any β ¡ 0, and the same argument can be easily
written. In the following, we deliberately keep the notation χp1q, even if the latter could be replaced
with its exact value. We are going to obtain a variational formula for the variance

1
2`
E�1

���SΛ`
��1 ¸

|x|¤`ϕ

τxϕ,
¸

|x|¤`ϕ

τxϕ

�
where ϕ P Q0 and `ϕ � `� sϕ � 1. We first introduce a semi-norm on Q0. For any cylinder function ϕ
in Q0, let us define

|||ϕ|||21 :� sup
gPQ

#
2! ϕ, g "1,� �

2
λ

! ϕ "2
1,��

χp1q � λ
2
E�1

��
∇0,1Γg

�2
�
� γ

2
E�1

��
∇0Γg

�2
�+

(18)

� sup
gPQ
aPR

!
2! ϕ, g "1,� �2a ! ϕ "1,�� �E

�
D0

�
µ1; aω2

0 � Γg
��)

. (19)

Notice that, if ϕ PQ0 with

ϕ �
¸
yPΛ

!
∇ypFyq �∇y,y�1pGyq

)
,

then

|||ϕ|||21 ¤
2
γ
E�1

�� ¸
yPΛ

τ�yFy

	2
�
� 2
λ
E�1

�� ¸
yPΛ

τ�yGy

	2
�

We are now in position to state the main result of this subsection.
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THEOREM 4.2. Consider a quadratic cylinder function ϕ PQ0. Then

lim
`Ñ8

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ,
¸

|x|¤`ϕ

τxϕ

�
� |||ϕ|||21.

Here, `ϕ stands for `� sϕ � 1 so that the support of τxϕ is included in Λ` for every x P Λ`ϕ .

This theorem is the key of the standard non-gradient Varadhan’s method. As usual, the proof is
done in two steps that we separate as two different lemmas for the sake of clarity. First, we bound the
variance of a cylinder function ϕ P Q0, with respect to the canonical measure µ1, by the semi-norm
~ϕ~2

1 (Lemma 4.3). In the second step, a lower bound for the variance can be easily deduced from the
variational formula which expresses the variance as a supremum (Lemma 4.4).

LEMMA 4.3. Under the assumptions of Theorem 4.2,

limsup
`Ñ8

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ,
¸

|x|¤`ϕ

τxϕ

�
¤ |||ϕ|||21.

In this step, one need to know the weak limits of some particular sequences in Q0. In the typical
approach, these weak limits are viewed as germs of closed forms, but for the harmonic chain, this way of
thinking is not necessary.

Proof. We follow the proof given in [21, Lemma 4.3] and we assume for the sake of clarity that ϕ �
∇0pFq �∇0,1pGq, for two quadratic cylinder functions F,G (the general case can then be deduced quite
easily). We write the variational formula

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ,
¸

|x|¤`ϕ

τxϕ

�
� sup

hPC

"
2E�1

�
ϕ,

1
2`

¸
|x|¤`ϕ

τxh
�
� 1

2`
E
�
D`pµ1; hq�*

� sup
hPC

"
2E�1

�
F∇0

�
1
2`

¸
|x|¤`ϕ

τxh


�G∇0,1

�
1
2`

¸
|x|¤`ϕ

τxh

�

� 1
2`
E
�
D`pµ1; hq�*.

Since ϕ is quadratic, we can restrict the supremum in the class of quadratic functions h with support
contained in Λ` (the proof of that statement is detailed in Proposition A.3). We can also restrict the
supremum to functions h such that E

�
D`pµ1; hq� ¤ C`, as a standard consequence of Proposition 2.2.

Next, we want to replace the sums over Λ`ϕ with the same sums over Λ` (recall that `ϕ � `�sϕ�1¤ `).
For that purpose, we denote

ζ`0phq �∇0

�
1
2`

¸
|x|¤`

τxh



, ζ`1phq �∇0,1

�
1
2`

¸
|x|¤`

τxh



. (20)

First of all, from Cauchy-Schwarz inequality, we have

E�1

�
γ

2

�
ζ`0phq

	2
� λ

2

�
ζ`1phq

	2
�
¤ 1

2`
E
�
D`pµ1; hq�.

Then, from Proposition 2.2 we also can write����E�1�ϕ,
1
2`

¸
`ϕ¤x¤`

τxh
�����¤ 1

2`
Cϕ

�
E
�
D`pµ1; hq�	1{2

,
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where Cϕ is a constant that depends only on ϕ. These last two inequalities give the upper bound

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ,
¸

|x|¤`ϕ

τxϕ

�

¤ sup
h

"
2E�1

�
Fζ`0phq �Gζ`1phq

�
�E�1

�
γ

2

�
ζ`0phq

	2
� λ

2

�
ζ`1phq

	2
�*

� C?
`

.

Let us choose a sequence th`u satisfying E rD`pµ1; h`qs ¤ C`. Then, the sequence tζ`0ph`q,ζ`1ph`qu is
uniformly bounded in L2pP�1q, and this implies the existence of a weakly convergent subsequence. We
denote by pζ0,ζ1q a weak limit and assume that the sequence tζ`0ph`q,ζ`1ph`qu weakly converges to
pζ0,ζ1q. The conclusion is now based on the decomposition of a certain class of quadratic functions that
we prove in Appendix B, Theorem B.2: the pair pζ0,ζ1q can be written as the limit in L2pP�1q of functions
of the form

p∇0Γg , apω2
0 �ω2

1q �∇0,1Γgq,
with g PQ and a P R. We have obtained that

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ,
¸

|x|¤`ϕ

τxϕ

�
¤ sup
ζ0,ζ1

!
2E�1

�
Fζ0 �Gζ1

�� γ
2
E�1

�
ζ2

0

�� λ
2
E�1

�
ζ2

1

�)
� sup

gPQ
aPR

"
2E�1

�
F∇0Γg �G

�
apω2

0 �ω2
1q �∇0,1Γg

	�
� γ

2
E�1

�
p∇0Γgq2

�
� λ

2
E�1

��
apω2

0 �ω2
1q �∇0,1Γg

�2
�*

.

The inequality above is a consequence of the following fact: the L2-norm may only decrease along weakly
convergent subsequences. The result follows, after recalling (19).

We now turn to the upper bound.

LEMMA 4.4. Under the assumptions of Theorem 4.2,

lim sup
`Ñ8

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ,
¸

|x|¤`ϕ

τxϕ

�
¥ |||ϕ|||21.

Proof. We define, for f PQ,

J` :�
¸

y,y�1PΛ`

τy jS0,1, H f
`
�

¸
|y|¤`�s f �1

Spτy f q.

The following limits hold:

lim
`Ñ8

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ, J`

�
� ! ϕ "1,��, (21)

lim
`Ñ8

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ, H f
`

�
� ! ϕ, f "1,�,

lim
`Ñ8

p2`q�1E�1

��� SΛ`
��1

�
aJ`�H f

`

	
,
�

aJ`�H f
`

	�
�

λ

2
E�1

��
apω2

0 �ω2
1q �∇0,1Γg

�2
�
� γ

2
E�1

��
∇0Γg

�2
�
.
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We only prove (21), the other relations can be obtained in a similar way. As previously, we assume for
the sake of simplicity that ϕ �∇0pFq �∇0,1pGq. We recall the elementary identity

SΛ`

� ¸
xPΛ`

xω2
x



� J`pωq. (22)

Therefore,

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ, J`

�
��p2`q�1

¸
y,y�1PΛ`

¸
|x|¤`ϕ

y E�1
�
ϕω2

y�x

�
��p2`q�1

¸
y,y�1PΛ`

¸
|x|¤`ϕ

y E�1
�
G∇0,1pω2

y�xq
�

��p2`q�1
¸

|x|¤`ϕ

x E�1
�
G∇0,1pω2

0q
�� px � 1qE�1

�
G∇0,1pω2

1q
�

� p2`q�1p2`ϕ � 1q E�1
�
G,ω2

0 �ω2
1

�ÝÝÑ
`Ñ8

! ϕ "1,�� .

The last limit comes from Proposition 2.4 and the fact that `ϕ � ` � sϕ � 1. We also have used the

translation invariance of P�1. Then, we write the variational formula with h � p�SΛ`q�1paJ` �H f
`
q and

we obtain:

lim inf
`Ñ8

p2`q�1E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ,
¸

|x|¤`ϕ

τxϕ

�

¥ lim inf
`Ñ8

p2`q�1
"

2E�1

��� SΛ`
��1 ¸

|x|¤`ϕ

τxϕ, aJ`�H f
`

�
�E�1

��� SΛ`
��1�

aJ`�H f
`

�
, aJ`�H f

`

�*
� 2! ϕ, f "1,� �2a ! ϕ "1,�� �E

�
D0pµ1; aω2

0 � Γ f q
�

.

The result follows after taking the supremum on f PQ, and recalling (19).

4.3 Proof of Theorem 3.3

In this paragraph, we start the proof of Theorem 3.3 by using the result given in Theorem 4.2. First,
we show how to relate (14) to such variances. Recall that we have assumed β � 1, but the same
argument remains in force for any β ¡ 0.

PROPOSITION 4.5. Let ψ P C0, with sψ ¤ N. ThenC
sup

0¤t¤T

�» t

0
ψpsqds

�2
G

1

¤ 24T
N2

xψ, p�SNq�1ψy1. (23)

This result is proved for example in [17, Section 2, Lemma 2.4]. We are going to use this bound
for functions of type

°
x Gpx{Nqτxϕ, where ϕ belongs to Q0. The main result of this subsection is the

following.

THEOREM 4.6. Let ϕ PQ0, and G a smooth function on T. Then,

lim sup
NÑ8

E�1

�
sup

0¤t¤T

"?
N
» t

0

¸
xPTN

G
� x

N

	
τxϕpm, sqds

*2 �
¤ CT|||ϕ|||21

»
T

G2puqdu. (24)
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Proof. From Proposition 4.5, the left-hand side of (24) is bounded by

24TE�1

�?
N

¸
xPTN

G
� x

N

	
τxϕpmq, p�N2SNq�1

�?
N

¸
xPTN

G
� x

N

	
τxϕpmq


�
,

that can be written with the variational formula as

24T sup
f PC

"?
N

¸
xPTN

G
� x

N

	
E�1

�
f τxϕ

��N2E
�
DNpµ1; f q

�*
.

Since ϕ PQ0, from Proposition A.3 we can restrict the supremum over f PQ. Proposition 2.2 gives@
f τxϕ

D
1 ¤ Cϕ

A
τ�x f , p�SΛϕqpτ�x f q

E1{2

1

and by Cauchy-Schwarz inequality,

?
N

¸
xPTN

G
� x

N

	@
f τxϕ

D
1 ¤

�
1
N

¸
xPTN

G
� x

N

	2

1{2

N Cϕ
@

f , p�SNq f
D1{2

1 .

The supremum on f can be explicitly computed, and gives the final bound

E�1

�
sup

0¤t¤T

"?
N
» t

0

¸
xPTN

G
� x

N

	
τxϕpm, sqds

*2 �
¤ C1ϕT

�
1
N

¸
xPTN

G
� x

N

	2



. (25)

We are now going to show that, after sending N to infinity, the constant on the right-hand side is pro-
portional to |||ϕ|||21. For that purpose, we average on microscopic boxes: for k ! N, we denote

ϕk �
¸

yPΛk

τyϕ,

and we want to substitute ?
N

¸
xPTN

G
� x

N

	
τxϕ

with ?
N

2k� 1

¸
xPTN

G
� x

N

	
τxϕk.

The error term that appears is estimated by

E�1

�
sup

0¤t¤T

"?
N
» t

0

¸
x ,yPTN
|x�y|¤k

1
2k� 1

�
G
� x

N

	
�G

� y
N

		
τxϕpm, sqds

*2 �
.

From (25), the expression above is bounded by Ck{N2, and then vanishes as N Ñ8. We are reduced to
estimate

E�1

�
sup

0¤t¤T

" ?
N

2k� 1

» t

0

¸
xPTN

G
� x

N

	
τxϕkpm, sqds

*2 �
.

By the same argument, this is bounded by

CT
2k� 1

¸
xPTN

sup
f PQ

"?
NG

� x
N

	
E�1

�
f τxϕk

�� N2

2k� 1
E�1

�
τ�x f ,

��SΛk

�
τ�x f

�*

¤ CT
2k� 1

¸
xPTN

sup
f PQ

"
Cpϕq

?
NG

� x
N

	
E�1

�
τ�x f , p�SΛk

qpτ�x f q�1{2 � N2

2k� 1
E�1

�
τ�x f ,

��SΛk

�
τ�x f

�*
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The supremum on f can be explicitly computed, and gives the final bound

CpϕqT
�

1
N

¸
xPTN

G2
� x

N

	
 1
2k� 1

E�1
�
ϕk,

��SΛk

��1
ϕk

�
.

Taking the limit as N Ñ8 and then k Ñ8, we obtain (24) from the central limit theorem for variances
at equilibrium (Theorem 4.2).

We apply Theorem 4.6 to I
1,N
t,m, f pHq, and we get

limsup
NÑ8

E�1

�
sup

0¤t¤T

�
I

1,N
t,m, f pHq

	2
�
¤ CT||| j0,1 �Dpω2

1 �ω2
0q �Lm f |||21

»
T

H1puq2du.

To conclude the proof of Theorem 3.3, we show in Section 5 that there exists a sequence of local functions
t fku PQ such that

||| j0,1 �Dpω2
1 �ω2

0q �Lm fk|||1 ÝÝÑ
kÑ8

0,

and Section 6 is devoted to prove the second statement of Theorem 3.3.

5 Hilbert space and projections

We now focus on the semi-norm ||| � |||1 that was introduced in the previous section by (18). We can
easily define from ||| � |||1 a semi-inner product on C0 through polarization. Denote by N the kernel of the
semi-norm ||| � |||1 on C0. Then, the completion of Q0|N denoted by H1 is a Hilbert space. Let us explain
how Varadhan’s non-gradient approach is modified. Usually, the Hilbert space on which orthogonal
projections are performed is the completion of C0|N , in other words it involves all local functions. Then,
the standard procedure aims at proving that each element of that Hilbert space can be approximated by
a sequence of functions in the range of the generator plus an additional term which is proportional to the
current. The crucial steps for obtaining this decomposition consist in: first, controlling the antisymmetric
part of the generator by the symmetric one for every cylinder function, and second, proving a strong result
on germs of closed forms (see Appendix B). These two key points are not satisfied in our model, but they
can be proved when restricted to quadratic functions. It turns out that these weak versions are sufficient,
since we are looking for a fluctuation-dissipation approximation that involves quadratic functions only.

In Subsection 5.1, we show that H1 is the completion of SQ|N�t jS0,1u. In other words, all elements of
H1 can be approximated by a jS0,1�S g for some a P R and g PQ. This is not irrelevant since the symmetric
part of the generator preserves the degree of polynomial functions. Moreover, the two subspaces t jS0,1u
and SQ|N are orthogonal, and we denote their sum by

SQ|N `K t jS0,1u.

Nevertheless, this decomposition is not satisfactory, because we want the fluctuating term to be on the
form Lmp fkq, and not Sp fkq. In order to make this replacement, we need to prove the weak sector
condition, that gives a control of |||Amg|||1 by |||S g|||1, when g is a quadratic function. The argument
is explained is Subsection 5.2 and 5.3, and the weak sector condition is proved in Appendix C. The
only trouble is that this new decomposition is not orthogonal any more, so that we can not express the
diffusion coefficient as a variational formula, like (31). This problem is solved in Section 6.
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5.1 Decomposition according to the symmetric part

We begin this subsection with a table of calculus, very useful in the sequel.

PROPOSITION 5.1. For all g PQ0, h PQ,

! h,S g "1 � �! h, g "1,�

! h, jS0,1 "1 � �! h"1,��

! jS0,1,Sh"1 � 0
||| jS0,1|||21 � λ2χp1q.

Proof. The first two identities are direct consequences of Theorem 4.2 and of Equality (22). The last two
ones follow directly.

COROLLARY 5.2. For all a P R and g PQ,

|||a jS0,1 � S g|||21 � a2λχp1q � λ
2
E�1

�p∇0,1Γgq2
�� γ

2
E�1

�p∇0Γgq2
�

.

In particular, the variational formula for |||h|||1, h PQ0, writes

|||h|||21 �
1

λχp1q ! h, jS0,1 "2
1 � sup

gPQ

 �2! h,S g "1 �|||S g|||21
(

. (26)

PROPOSITION 5.3. We denote by SQ the space tSh ; h PQu. Then,

H1 � SQ|N `K t jS0,1u
Proof. We divide the proof into two steps.

(a) The space is well generated – The inclusion SQ|N � t jS0,1u � H1 is obvious. Moreover, from the
variational formula (26) we know that: if h P H1 satisfies ! h, jS0,1 "1� 0 and ! h,S g "1� 0 for all
g PQ, then |||h|||1 � 0.

(b) The sum is orthogonal – This follows directly from the previous proposition and from the fact
that: ! jS0,1,Sh"1� 0 for all h PQ.

5.2 Replacement of S with L
In this subsection, we prove identities which mix the antisymmetric and the symmetric part of the

generator, which will be used to get the weak sector condition (Proposition 5.7).

LEMMA 5.4. For all g, h PQ,
! S g,Amh"1��!Amg,Sh"1 .

Proof. This easily follows from the first identity of Proposition 5.1 and from the invariance by translations
of the measure P�1:

! S g,Amh"1 ��! g,Amh"1,���
¸
xPZ
E�1

�
τx g,Amh

�� ¸
xPZ
E�1

�
Ampτx gq, h

�
�

¸
xPZ
E�1

�
τxpAmgq, h

�� ¸
xPZ
E�1

�
Amg,τ�xh

�� ¸
xPZ
E�1

�
Amg,τxh

���!Amg,Sh"1 .
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LEMMA 5.5. For all g PQ,
! S g, jA0,1 "1��!Amg, jS0,1 "1 .

Proof. By the first identity of Proposition 5.1,

! S g, jA0,1 "1 ��! g, jA0,1 "1,���
¸
xPZ
E�1

�
τx g, jA0,1

���
¸
xPZ
E�1

�
g, jAx ,x�1

�
��

¸
xPZ

xE�1
�
g, jAx�1,x � jAx ,x�1

���
¸
xPZ

xE�1
�
g,Ampω2

xq
�

�
¸
xPZ

xE�1
�
Amg,ω2

x

���!Amg, jS0,1 "1 .

Then, these two lemmas together with the second identity of Proposition 5.1 imply the following:

COROLLARY 5.6. For all a P R, g PQ,

! a jS0,1 � S g, a jA0,1 �Amg "1� 0.

We are now in position to state the main result of this subsection.

PROPOSITION 5.7 (Weak sector condition). (i) There exists two constants C0 :� Cpγ,λq and C1 :�
Cpγ,λq such that the following inequalities hold for all f , g PQ:

|!Amg,S f "1| ¤ C0|||S f |||1 |||S g|||1. (27)

|!Amg,S f "1| ¤ C1|||S g|||1 �
1
2
|||S f |||1. (28)

(ii) There exists a positive constant C such that, for all g PQ,

|||Amg|||1 ¤ C|||S g|||1.

Proof. The proof is technical because made of explicit computations for quadratic functions. For that
reason, we report it to Appendix C.

5.3 Decomposition of the Hilbert space

We now deduce from the previous two subsections the expected decomposition of H1.

PROPOSITION 5.8. We denote by LmQ the space tLmg ; g PQu. Then,

H1 � LmQ|N `t jS0,1u.

Proof. We first prove that H1 can be written as the sum of the two subspaces. Then, we show that the
sum is direct.
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(a) The space is well generated – The inclusion LmQ|N �t jS0,1u �H1 follows from Proposition 2.1.
To prove the converse inclusion, let h P H1 so that ! h, jS0,1 "1� 0 and ! h,Lmg "1� 0 for all g P Q.
From Corollary 5.3, h can be written as

h� lim
kÑ8

S gk

for some sequence tgku PQ. More precisely, since ! S gk,Amgk "1� 0 by Lemma 5.4,

|||h|||21 � lim
kÑ8

! S gk,S gk "1� lim
kÑ8

! S gk,Lmgk "1 .

Moreover, we also have by assumption that ! h,S gk "1� 0 for all k, and from Proposition 5.7,

sup
kPN

|||Lmgk|||1 ¤ pC� 1q sup
kPN

|||S gk|||1 �: Ch

is finite. Therefore,

|||h|||21 � lim
kÑ8

! S gk,Lmgk "1� lim
kÑ8

! S gk � h,Lmgk "1¤ lim
kÑ8

Ch|||S gk � h|||1 � 0.

(b) The sum is direct – Let tgku PQ be a sequence such that, for some a P R,

lim
kÑ8

Lmgk � a jS0,1 in H1,

By a similar argument,

limsup
kÑ8

! S gk,S gk "1� limsup
kÑ8

! Lmgk,S gk "1� limsup
kÑ8

! Lmgk � a jS0,1,S gk "1� 0,

where the last equality comes from the fact that ! jS0,1,S gk "1� 0 for all k. On the other hand, by
Proposition 5.7, |||Lmgk|||1 ¤ pC� 1q|||S gk|||21. Then, a � 0. This concludes the proof.

Recall that jS0,1pm,ωq � λpω2
1 �ω2

0q. We have obtained the following result.

THEOREM 5.9. For every g PQ0, there exists a unique constant a P R, such that

g � apω2
1 �ω2

0q P LmQ in H1. (29)

In particular, this theorem states that there exists a unique number D, and a sequence of cylinder
functions t fku PQ such that

||| j0,1 �Dpω2
1 �ω2

0q �Lm fk|||1 ÝÝÑ
kÑ8

0. (30)

Let us notice that this convergence also holds with the same constant D and the same sequence fk if we
replace the semi-norm ||| � |||1 with ||| � |||β for any β ¡ 0 (as a consequence of a standard change of
variables argument). This concludes the first statement of Theorem 3.3. We prove the second statement
(15) in Proposition 6.5 in Section 6.
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6 On the diffusion coefficient

The main goal of this section is to express the diffusion coefficient in several variational formulas.
We also prove the second statement of Theorem 3.3. First, recall Definition 2.4, which can be written as

D� λ2 � 1
χp1q inf

f PQ
sup
gPQ
E
�
D0pµ1; Γ f q � 2

@
jA0,1 �Am f , Γg

D
1 �D0pµ1; Γgq

�
. (31)

From Theorem 5.9, there exists a unique number D such that

j0,1 �Dpω2
1 �ω2

0q P LmQ in H1.

We are going to obtain a more explicit formula for that D, and relate it to (31), by following the argument
in [21]. We first rewrite the decomposition of the Hilbert space given in Proposition 5.8, by replacing
jS0,1 with j0,1. This new statement is based on Corollary 5.6, which gives an orthogonality relation. The
second step is to find an other orthogonal decomposition (see (32) below), which will enable us to prove
the variational formula (31) for D.

Hereafter, we denote by Lm,� :� S �Am the adjoint of the generator in L2pµ1q, and

j�0,1 :� jS0,1 � jA0,1.

LEMMA 6.1. The following decompositions hold

H1 � LmQ|N `t j0,1u � Lm,�Q|N `t j�0,1u.

Proof. We only sketch the proof of the first decomposition, since it is done in [21]. Let us recall from
Proposition 5.8 that LmQ has a complementary subspace in H1 which is one-dimensional. Therefore, it is
sufficient to prove that H1 is generated by LmQ and the total current. Let h PH1 such that! h, j0,1 "1� 0
and ! h,Lmg "1� 0 for all g PQ. By Corollary 5.3, h can be written as

h� lim
kÑ8

S gk � a jS0,1

for some sequence tgku PQ, and a P R, and from Corollary 5.6,

|||h|||21 � lim
kÑ8

! a jS0,1 � S gk, a j0,1 �Lmgk "1 .

Moreover, from Proposition 5.7,

sup
kPN

|||a j0,1 �Lmgk|||21 ¤ 2a2||| j0,1|||21 � 2pC� 1q sup
kPN

|||S gk|||21 �: Ch

is finite. Therefore,

|||h|||21 � lim
kÑ8

! a jS0,1 � S gk � h, a j0,1 �Lmgk "1

¤ limsup
kÑ8

Ch|||a jS0,1 � S gk � h|||21 � 0.

The same arguments apply to the second decomposition.

We define bounded linear operators T, T� : H1 ÑH1 as

Tpa j0,1 �Lm f q :� a jS0,1 � S f ,

T�pa j�0,1 �Lm,� f q :� a jS0,1 � S f .
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From the following identity

|||a j0,1 �Lm f |||21 � |||a j�0,1 �Lm,� f |||21 � |||a jS0,1 � S f |||21 � |||a jA0,1 �Am f |||21,

we can easily see that T� is the adjoint operator of T and we also have the relations

! T jS0,1, j�0,1 "1 �! T� jS0,1, j0,1 "1� λχp1q
! T jS0,1,Lm,� f "1 �! T� jS0,1,Lm f "1� 0, for all f PQ.

In particular,
H1 � Lm,�Q|N `K

 
T jS0,1

(
(32)

and there exists a unique number Q such that

j�0,1 �QT jS0,1 P Lm,�Q in H1.

We are going to show that D� λQ.

LEMMA 6.2.

Q � λχp1q
|||T jS0,1|||21

� 1
λχp1q inf

f PQ
||| j�0,1 �Lm,� f |||21. (33)

Proof. The first identity follows from the fact that

! T jS0,1, j�0,1 �QT jS0,1 "1� λχp1q �Q|||T jS0,1|||21 � 0.

The second identity is obtained from the following statement

inf
f PQ

||| j�0,1 �QT jS0,1 �Lm,� f |||1 � 0. (34)

After an easy computation, we can also prove that ! Tg, g "1�! Tg, Tg "1 for all g P H1. Since
jS0,1 � T jS0,1 is orthogonal to T jS0,1, we have:

jS0,1 � T jS0,1 P Lm,�Q.

By the fact we obtain the variational formula for |||T jS0,1|||1:

PROPOSITION 6.3.
|||T jS0,1|||21 � inf

f PQ
||| jS0,1 �Lm,� f |||21. (35)

Proof. With a similar argument (in the proof of the previous proposition), we have

inf
f PQ

||| jS0,1 � T jS0,1 �Lm,� f |||1 � 0,

and
inf
f PQ

||| jS0,1 � T jS0,1 �Lm,� f |||21 � inf
f PQ

||| jS0,1 �Lm,� f |||21 � inf
f PQ

|||T jS0,1|||21,

which concludes the proof.
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THEOREM 6.4.

D� 1
χp1q inf

f PQ
||| j�0,1 �Lm,� f |||21 �

χp1q
4 inf f PQ ||| jS0,1 �Lm,� f |||21

. (36)

Proof. By the definition, j0,1 �D jS0,1{λ P LmQ and therefore

! j0,1 � jS0,1
D
λ

, T� jS0,1 "1� λχp1q �
D
λ
|||T jS0,1|||21 � 0. (37)

So, D� λQ, and the variational formula for D can be deduced from the one for Q.

REMARK 6.1. We can rewrite the variational formula for D as:

D� 1
χp1q inf

f PQ

!
||| jS0,1|||21 � |||S f |||21 � ||| jA0,1 �Am f |||21

)
� λ� 1

χp1q inf
f PQ

!
|||S f |||21 � ||| jA0,1 �Am f |||21

)
(38)

� λ� 1
χp1q inf

f PQ
sup
gPQ

!
|||S f |||21 � 2! jA0,1 �Am f ,S g "1 �|||S g|||21

)
� λ� 1

χp1q inf
f PQ

sup
gPQ

!
! f ,�S f "1,� �2! jA0,1 �Am f , g "1,� �! g,�S g "1,�

)
(39)

� λ� 1
χp1q inf

f PQ
sup
gPQ
E
�
D0pµ1; Γ f q � 2

A
jA0,1 �Am f , Γg

E
1
�D0pµ1; Γgq

�
. (40)

We use the fact that in (38), we can restrict the infimum on functions f satisfying! jA0,1�Am f , jS0,1 "1� 0.
Let us notice that (39) and (40) recover the variational formula (31).

We are now in position to prove the remaining statement of Theorem 3.3:

PROPOSITION 6.5. For any sequence t fku PQ such that

lim
kÑ8

||| j0,1 �Dpω2
1 �ω2

0q �Lm fk|||1 � 0

we have

lim
kÑ8
E�1

�
λ
�
∇0,1pω2

0 � Γ fk
q
	2
� γ

�
∇0pΓ fk

q
	2�

� 2Dχp1q.

Proof. By assumption,
lim

kÑ8
|||T� j0,1 �Dpω2

1 �ω2
0q �Lm fk

�|||1 � 0

and therefore
lim

kÑ8
||| jS0,1 � S fk|||21 � D2|||Tpω2

1 �ω2
0q|||21.

Then, the result follows from

D� λQ � χp1q
|||Tpω2

1 �ω2
0q|||21

and

||| jS0,1 � S fk|||21 �
λ

2
E�1

��
ω2

0 �ω2
1 �∇0,1pΓ fk

q
	2�

� γ
2
E�1

��
∇0pΓ fk

q
	2�

. (41)
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7 Green-Kubo formulas

In this section, we study the convergence of the Green-Kubo formula given in (10), and then, we
investigate its behaviour when the intensity of the exchange noise vanishes.

7.1 Convergence of Green-Kubo formula

Linear response theory predicts that the diffusion coefficient is given by the homogenized Green-
Kubo formula. In [3, Section 3] it is proved that this formula can be well defined in infinite volume as
the following:

κpzq � λ� 1
2

» �8

0
dt e�zt ! jA0,1pm, tq, jA0,1pm, 0q "1,� (42)

where ! � "1,� is the inner product defined by (8). Even if the measure P�1 is not on the path space, the
translation invariance of P�1 permits to give a rigorous sense to (42) (see [3] for details).

Hereafter, we extend the inner-product ! � "1,� (originally defined on C) to the Hilbert space gen-
erated by the set of square integrable functions and denoted by L2

�. We define hz :� hzpm,ω; 1q as the
solution of the resolvent equation in L2

�

pz �Lmqhz � jA0,1. (43)

The Laplace transform is defined and is smooth on p0,�8q, and can be rewritten:

κpzq � λ� 1
2
! jA0,1, pz �Lmq�1 jA0,1 "1,� . (44)

THEOREM 7.1. The following limit
D :� lim

zÑ0
z¡0

κpzq (45)

exists, and is finite.

Proof. We investigate the existence of the limit

lim
zÑ0
z¡0

! jA0,1, pz �Lmq�1 jA0,1 "1,� . (46)

With the notations above, we have to prove that

Lpzq � 1
2
! hz , jA0,1 "1,�

converges as z goes to 0, and that the limit is finite and non-negative. Then, from (44) it will follow that
D ¥ λ¡ 0 and D is positive. We denote by || � ||1 the semi-norm corresponding to the symmetric part of
the generator due to the flip noise

|| f ||21 �! f , p�γSflipq f "1,�

and H� is the Hilbert space obtained by the completion of L2
� w.r.t. that semi-norm. We multiply (43) by

hz and integrate with respect to ! � "1,� and we get:

z ! hz , hz "1,� �||hz}2
1�! hz , p�λSexchqhz "1,��! hz , jA0,1 "1,� .
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Let us notice that p�γSflipqp jA0,1q � 2γ jA0,1. As a consequence, the Cauchy-Schwarz inequality for the
scalar product ! �, p�γSflipq� "1,� on the right-hand side gives

||hz||21 ¤ C

for some positive constant C. Since thzuz is bounded in H�, we can extract a weakly converging subse-
quence in H�. We continue to denote this subsequence by thzuz and we denote by h0 the limit.

Now we are going to show that the convergence is stronger (see (iv) in Lemma 7.2 below) and that the
limit is independent of the subsequence. Since the generator Lm conserves the degree of homogeneous
polynomial functions, we know that the solution of the resolvent equation is expected to be on the form

hzpωq �
¸

x ,yPZ2

ϕzpx , yqωxωy ,

where ϕz : Z2 Ñ R is a square-summable symmetric function. Let hz � h�z � h�z be the decomposition
of hz according to the two subspaces Q� and Q�, where Q� is generated by tω2

x , x P Zu and Q� is
generated by tωxωy , x � yu. The main point in the following argument is that all gradient terms
vanish in L2

�.
First of all, one can easily see how the spaces Q� and Q� are mapped by the generators:

Am : Q�ÑQ� Am : Q�ÑQ

Sflip : Q�Ñ t0u Sflip : Q�ÑQ�

Sexch : Q�ÑQ� Sexch : Q�ÑQ�

Moreover, if f P Q�, then Amp f q is a gradient in Q�, and Sexchp f q is a gradient in Q�. With all these
considerations, (43) rewrites in L2

� as#
zh�z �λSexchph�z q � 0

zh�z �λSexchph�z q � γSflipph�z q �Amph�z q � jA0,1.

The first equation means that h�z � 0 in L2
� and therefore the solution hz of the resolvent equation is an

element of Q�. As a consequence, we can write p�γSflipqphzq � 2γhz , and this remark is one of the key
points in the following argument.

LEMMA 7.2. All the properties below are satisfied:

(i) lim
zÑ0

z ! hz , hz "1,�� 0

(ii) thzu weakly converges as z goes to 0 towards h0 in L2
�

(iii) ! jA0,1, h0 "1,��! h0, p�Sqh0 "1,�

(iv) ! phz � h0q, p�Sqphz � h0q "1,� vanishes as z goes to 0

(v) the weak limit of thzu does not depend on the subsequence.

We briefly prove the five points: (i) and (ii) come from the fact that p�γSflipqphzq � 2γhz . To get
(iii), we multiply (43) by hz1 and integrate:

z ! hz1 , hz "1,� �! hz1 , p�Sqhz "1,� �! hz1 , p�Amqhz "1,��! hz1 , jA0,1 "1,� . (47)
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We first take the limit as z1 Ñ 0 and then as z Ñ 0, and we use (i) and (ii) to obtain (iii). In the same
way, multiplying (43) by hz gives

z ! hz , hz "1,� �! hz , p�Sqhz "1,��! hz , jA0,1 "1,� .

The first term of the left-hand side vanishes as z goes to 0, and the right-hand side converges to !
h0, p�Sqh0 "1,�. This implies (iv), that is

! phz � h0q, p�Sqphz � h0q "1,�ÝÝÑzÑ0
0.

The uniqueness of the limit follows by a standard argument with the same idea of (47). We have proved
the first part: the limit (46) exists. To obtain its finiteness, we are going to give an upper bound, using
the following variational formula:

! jA0,1, pz �Lmq�1 jA0,1 "1,�� sup
f

!
2! f , jA0,1 "1,� �|| f ||21,z � ||Am f ||2�1,z

)
,

where the supremum is carried over local functions and the two norms || � ||�1,z are defined by

|| f ||2�1,z �! f , pz � Sq�1 f "1,� .

For the upper bound, we neglect the term coming from the antisymmetric part Am f , that gives

! jA0,1, pz �Lmq�1 jA0,1 "1,�¤! jA0,1, pz � Sq�1 jA0,1 "1,� .

In the right-hand side we can also neglect the part coming from the exchange symmetric part Sexch, and
remind that Sflipp jA0,1q � �2 jA0,1. This gives an explicit finite upper bound. Then, we have from Lemma
7.2, Property (iii) that the limit

lim
zÑ0

! jA0,1, pz �Lmq�1 jA0,1 "1,��! jA0,1, h0 "1,��! h0, p�Sqh0 "1,�¥ 0,

and the positiveness is proved.

7.2 Equivalence of the definitions

In this subsection we rigorously prove the equality between the variational formula for the diffusion
coefficient and the Green-Kubo formula (see the end of Subsection 2.5).

THEOREM 7.3. For every λ¡ 0 and γ¡ 0,

D :� λ� 1
2

lim
zÑ0
z¡0

! jA0,1, pz �Lmq�1 jA0,1 "1,�

coincides with the diffusion coefficient D defined in Theorem 6.4.

Proof. From Subsection 6, we know that the diffusion coefficient can be written different ways. For
instance, one can easily check that

D� 2

~Tpω2
1 �ω2

0q~2
1

.

By definition of D, there exists a sequence t fεuε¡0 of functions in Q such that

gε :� j�0,1 �Dpω2
1 �ω2

0q �Lm,�p fεq
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satisfies ~gε~1 Ñ 0 as ε goes to 0. By substitution in the equality above, we get

D�1 � 1
2D2

! j�0,1 �Lm,� fε � gε, T�p j�0,1 �Lm,� fε � gεq "1

recalling that ! Tg, Tg "1�! g, T�g "1 for all g PH1. Therefore,

D� 1
2
! j�0,1 �Lm,� fε � gε, jS0,1 � S fε � gε "1

� 1
2
! j�0,1 �Lm,� fε, jS0,1 � S fε "1 �Rε

where Rε is bounded by C~gε~2
1, and then vanishes as ε goes to 0. Finally, from Proposition 5.1, we can

write
D� λ� 1

2
lim
εÑ0

! fε, p�Sq fε "1,� .

The problem is now reduced to prove that

lim
εÑ0

! fε, p�Sq fε "1,�� lim
zÑ0
z¡0

! jA0,1, pz �Lmq�1 jA0,1 "1,� . (48)

For every z ¡ 0 and ε ¡ 0, we have by definition above and (43),

jA0,1 � zhz �Lmhz (49)

j�0,1 � Dpω2
1 �ω2

0q � gε �Lm,� fε. (50)

First, multiply (50) by fε and integrate with respect to ! � "1,�, keeping in mind that all gradients give
no contribution. We get

�! jA0,1, fε "1,��! fε, gε "1,� �! fε, p�Sq fε "1,�

and using (49),

! Lmhz , fε "1,� �z ! hz , fε "1,��! fε, gε "1,� �! fε, p�Sq fε "1,� .

First, let z go to 0, and observe that z ! hz , fε "1,� vanishes, from the Cauchy-Schwarz inequality together
with Statement (i) of Lemma 7.2. The limit of! Lmhz , fε "1,� exists from the weak convergence of thzuz .
Then, take the limit as ε goes to 0, and observe that

! fε, gε "1,��! fε, p�Sqp�Sq�1 gε "1,� ¤ ! fε, p�Sq fε "1{2
1,� ! gε, p�Sq�1 fε "1{2

1,�

¤ C~gε~1 ÝÝÑ
εÑ0

0.

The first equality is justified by the fact that gε belongs to Q0, and the last inequality comes from the
definition of the semi-norm ~ � ~1 given in (18). As a consequence, we have obtained

lim
εÑ0

! fε, p�Sq fε "1,�� lim
εÑ0

lim
zÑ0

!�Lmhz , fε "1,� .

In the same way, multiply (50) by hz and integrate with respect to ! � "β ,� so that

�! jA0,1, hz "1,��! gε, hz "1,� �! Lm,� fε, hz "1,� .

If we send first z to 0, then ! gε, hz "1,� converges to ! gε, h0 "1,� from the weak convergence of thzuz .
With the same argument as before, we write

! gε, h0 "1,�¤ C~gε~1 ÝÝÑ
εÑ0

0.
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Therefore,

lim
zÑ0

! jA0,1, hz "1,� � lim
εÑ0

lim
zÑ0

!�Lm,� fε, hz "1,�

� lim
εÑ0

! fε, p�Sq fε "1,�

and the claim is proved.

7.3 Vanishing exchange noise

With the same ideas of the previous subsection, it can be easily shown that the homogenized Green-
Kubo formula also converges if the strength λ of the exchange noise vanishes. The aim of this paragraph
is to study the limit of (45) as λ goes to 0. First, we turn (44) into a new definition that highlights
the dependence on λ ¡ 0. For that purpose we introduce new notations: we denote S0 � γSflip, Sλ �
S0 �λSexch, and then#

Lm
0 �Am � S0

Lm
λ �Am � Sλ � Lm

0 �λSexch and J0pmqpωq �
ω0ω1?
m0m1

� jA0,1pm,ωq.

Let us introduce the homogenized Green-Kubo formula for both noises:

κpλ, zq :�! J0pmq, pz �Lm
λ q�1J0pmq "1,� (51)

and the homogenized Green-Kubo formula for flip noise only:

κ0pzq :�! J0pmq, pz �Lm
0 q�1J0pmq "1,� . (52)

According to the previous paragraph, we already know that the Green-Kubo formulas (51) and (52)
converge as z goes to 0. Then, the following diffusion coefficients are well defined, for all λ¡ 0,$&%Dpλq :� λ� lim

zÑ0
κpλ, zq,

D0 :� lim
zÑ0

κ0pzq.

The main result of this subsection is stated in the following theorem.

THEOREM 7.4. The function λ ÞÑ Dpλq is continuous at 0. More precisely,

lim
λÑ0

Dpλq � D0.

Let us remark that the theorem above does not imply the existence of the hydrodynamics diffusion
coefficient Dp0,γq. This question remains open.

Proof. The proof is divided into two steps. For the sake of readability, we erase the notation m in J0pmq,
and keep in mind its dependence on the disorder.
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Step 1 - Convergence of the diffusion coefficient. Let us denote by hz,0 and hz,λ the two solutions
of the following resolvent equations in L2

�:

pz �Lm
0 qhz,0 � J0,

pz �Lm,�
λ
qhz,λ � J0.

We look at the following difference, for λ, z ¡ 0 fixed,���! J0, pz �Lm
λ q�1J0 "1,� �! J0, pz �Lm

0 q�1J0 "1,�

���
�
���! J0, pz �Lm

λ q�1J0 "1,� �! J0, hz,0 "1,�

���
�
��! J0, pz �Lm

λ q�1
�pz �Lm

0 qhz,0 � pz �Lm
λ qhz,0

�"1
�

��
� λ

��! J0, pz �Lm
λ q�1Sexchphz,0q "1,�

��
� λ

��! pz �Lm,�
λ
q�1J0,Sexchphz,0q "1,�

�� .
To complete the proof, we are reduced to show that λ

���! hz,λ,Sexchphz,0q "1,�

��� vanishes when we first let

z Ñ 0 and then λÑ 0. For that purpose, we need more precise information on the two solutions hz,λ and
hz,0. Since the generator Lm

λ
(resp. Lm

0 ) conserves the degree of homogeneous polynomial functions, we
know that the solution of the resolvent equation hz,λ (resp. hz,0) has to be homogeneous polynomial of
degree two, precisely:

hz,λpωq �
¸

x ,yPZ
ϕz,λpm, x , yqωxωy ,

where ϕz,λpm, �, �q : Z2 Ñ R is a square integrable symmetric function. As before, we decompose every
degree two function h as h� h��h�, where h� belongs to Q� and h� belongs to Q�. We have seen in
the proof of Theorem 7.1 that the part belonging to Q� vanishes for the two solutions, in other words,
hz,λ and hz,0 are elements of Q�. As a consequence,

! hz,λ,Sexchphz,0q "1,� �! hz,λ,Sexchphz,0q "1,�

which is bounded by b
! hz,λ, p�Sexchqphz,λq "1,�

b
! hz,0, p�Sexchqphz,0q "1,�

according to the Cauchy-Schwarz inequality for the scalar product ! �, p�Sexchq� "1,�. We treat sepa-
rately the two terms into the two lemmas below. We prove that the first term is bounded by C{

?
λ, and

the second one is uniformly bounded for λ, z ¡ 0. Here we state the two lemmas:

LEMMA 7.5. There exists a constant C¡ 0 such that, for all z,λ¡ 0,

! hz,λ, p�Sexchqphz,λq "1,� ¤
C
λ

.

LEMMA 7.6. There exists a constant C¡ 0 such that, for all z ¡ 0,

! hz,0, p�Sexchqphz,0q "1,� ¤ C.

From these statements we deduce

λ
���! hz,λ,Sexchphz,0q "1,�

���¤ C0

?
λ

where C0 does not depend on λ, z ¡ 0, and Theorem 7.4 follows.
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Step 2 - Proofs of the two lemmas. We begin with the proof of Lemma 7.5. We recall the resolvent
equation in L2

�:
zhz,λ� pλSexch � S0 �Amqhz,λ � J0. (53)

We multiply (53) by hz,λ and integrate with respect to ! � "1,�, in order to get

z ! hz,λ, hz,λ "1,� �! hz,λ, p�S0qphz,λq "1,� �λ! hz,λ, p�Sexchqphz,λq "1,� �! J0, hz,λ "1,� .

The right-hand side rewrites as
p2γq�1 ! p�S0qpJ0q, hz,0 "1,� .

Cauchy-Schwarz inequality for the scalar product ! �, p�S0q� "1,� on the right-hand side gives

z ! hz,λ, hz,λ "1,� ¤ C

with C :� p2γq�1{2! J0, J0 "1{2
1,� and then

λ! hz,λ, p�Sexchqphz,λq "1,� ¤ C.

We now turn to Lemma 7.6. We prove a general result, precisely: there exists a constant C¡ 0 such that,
for all g PQ�,

! g, p�Sexchqg "1,� ¤ C! g, g "1,� . (54)

This fact is proved through explicit computations. Let us write g PQ� in the form

gpωq �
¸
xPZ
k¥1

φx ,kpmqωxωx�k.

A straightforward computation gives that

! g, p�Sexchqg "1,� � 1
2
E�1

��
∇0,1Γg

�2
�
�

¸
k¥2

E
��¸

zPZ
φz,kpτ�zmq �φz,kpτ1�zmq


2�
.

¤ 4
¸
k¥2

E
��¸

zPZ
φz,kpmq


2�
.

In the last inequality, we use the fact that the measure P on the disorder is translation invariant and that
pa� bq2 ¤ 2pa2 � b2q for all a, b P R. Besides, one can also check that

! g, g "1,� �
¸
k¥1

E
� ¸

x ,zPZ
φz,kpτ�zmqφx ,kpτ�xmq

�
�

¸
k¥1

E
��¸

zPZ
φz,kpmq


2�
,

thanks to the translation invariance of P. The bound (54) follows directly, with C� 4. To prove Lemma
7.6, it remains to show that ! hz,0, hz,0 "1,� is uniformly bounded in z. We recall the resolvent equation
in L2

�:
zhz,0 � pS0 �Amqhz,0 � J0. (55)

Notice that we can write S0phz,0q � �2γhz,0. We multiply (55) by hz,0 and integrate with respect to
! � "1,� in order to get

z ! hz,0, hz,0 "1,� �2γ! hz,0, hz,0 "1,� �! J0, hz,0 "1,� .

As previously, Cauchy-Schwarz inequality for the scalar product ! �, p�S0q� "1,� on the right-hand side
gives

! hz,0, hz,0 "1,� ¤ C,

with C :� p2γq�1 ! J0, J0 "1{2
1,� .
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8 The anharmonic chain perturbed by a diffusive noise

In this last main section we say a few words about the anharmonic chain, meaning that the interac-
tions between atoms are non-linear, and given by a potential V. As in [21], we assume that the function
V : RÑ R� satisfies the following properties:

(i) Vp�q is a smooth symmetric function,

(ii) there exist δ� and δ� such that 0  δ� ¤ V2p�q ¤ δ�  �8,

(iii) δ�{δ� ¡ p3{4q1{16.

Using the same notations as in the introduction, the configuration tpx , rxu now evolves according to$''&''%
dpx

dt
� V1prx�1q � V1prxq,

drx

dt
� px

Mx
� px�1

Mx�1
.

(56)

We define πx :� px{
?

Mx , and the dynamics on tπx , rxu is rewritten as:$'''&'''%
dπx

dt
� 1?

Mx

�
V1prx�1q � V1prxq

�
,

drx

dt
� πx?

Mx
� πx�1a

Mx�1
.

(57)

The total energy

E :�
¸
xPZ

"
π2

x

2
� Vprxq

*
is conserved. The flip and exchange noises have poor ergodic properties, and can be used for harmonic
chains only. For the anharmonic case, we introduce a stronger stochastic perturbation. Now, the total
generator of the dynamics writes Lm �Am � γS, where

Am :�
¸
x

1?
mx

�
X x � Yx ,x�1

�
, S :� 1

2

¸
x

X2
x � Y2

x ,x�1, (58)

where Yx ,y � πxBry
� V1pryqBπx

, and X x � Yx ,x . For this anharmonic case, the two needed ingredients
can be proved directly from [21]. First, notice that the symmetric part of the generator does not depend
on the disorder and is exactly the same as in [21]: the proof of the spectral gap is done in Section 12
of that paper. The sector condition can also be proved, inspired by [21]. After taking into account the
disorder and its fluctuation, the same argument of Lemma 8.2, Section 8 can be applied: it is mainly
based on the fact that both antisymmetric and symmetric parts involve the same operators Yx ,y .

9 Hydrodynamic limits

We briefly enlighten the failure in the derivation of the hydrodynamic limits. Let us assume that the
initial law for the Markov process tωptqut¥0 (still generated by N2Lm

N ), is not the equilibrium measure
µN
β

, but a local equilibrium measure (see (60) below). The main goal would be to prove that this property
of local equilibrium propagates in time: in other words hydrodynamics limits hold, with an energy profile
solution of the diffusion equation with constant coefficient D.
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9.1 Statement of the hydrodynamic limits conjecture

The distribution at time t of the Markov chain on TN with the generator N2Lm
N and the initial prob-

ability measure µN is denoted by Pm
µN ,t . The measure induced by Pm

µN ,t on D pr0, Ts,ΩNq is denoted by
Pm

N .
Recall that we denote by M1 the set of probability measures on T, endowed with the weak topol-

ogy and by D pr0,Ts,M1q the Skorokhod space of trajectories in M1. The measure induced by Pm
N on

D pr0, Ts,M1q is denoted by Qm
N :� Pm

N � �πN
��1

, where

πN :� 1
N

¸
xPTN

ω2
xδ x

N
.

CONJECTURE 9.1. Let T ¡ 0 be a time-horizon. Let tµNuN be a sequence of probability measures onΩN. Un-
der suitable conditions on the initial law µN, for almost every realization of the disorder m, the measure Qm

N
weakly converges in D pr0, Ts,M1q to the probability measure concentrated on the path tept, uqduutPr0,Ts,
where e is the unique weak solution of the system$&%

Be
Bt
pt, uq � D

B2e
Bu2

pt, uq, t ¡ 0, u P T
ep0, uq � e0puq.

What we expect as for “suitable assumptions” on the initial law are the common ones in the literature
of hydrodynamic limits, when dealing with non compact spaces. The first one is natural and related on
the relative entropy:

ASSUMPTION 9.2. We suppose that there exists a positive constant K0 such that the relative entropy HpµN|µN
� q

of µN with respect to a reference measure µN
� is bounded by K0N:

HpµN|µN
� q ¤ K0N. (59)

For instance, if µN is defined as a Gibbs local equilibrium state:

¹
xPTN

d
2π

β0px{Nq
exp

�
�β0px{Nq

2
ω2

x



dωx (60)

for some continuous function β0 : TÑ R�, then (59) is satisfied. The second one is related to energy
boundness, that has already been a major concern in [27]. More precisely,

ASSUMPTION 9.3. We assume there exists a positive constant E0 such that

limsup
NÑ8

µN
�

1
N

¸
xPTN

ω4
x

�
¤ E0. (61)

In the derivation of hydrodynamic limits with the usual entropy method, we need the following two
estimates: first, there exists a positive constant C such that, for any t ¡ 0

EPm
N

�
1
N

¸
xPTN

ω2
xptq

�
¤ C. (62)

This can be easily established using (61) and the Cauchy-Schwarz inequality. The second control that
we need is

lim
NÑ8
EPm

N

�» t

0

1
N2

¸
xPTN

ω4
xpsqds

�
� 0. (63)
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If µN is a convex combination of Gibbs local equilibrium states, then the same argument of [27] shows
that the law of the process remains a convex combination of Gaussian measures, and that (63) holds.

Contrary to the velocity-flip model, we do not need to assume a good control of every energy moment
if we expect the usual entropy method to work. This technical need was only due to the relative entropy
method.

With Assumptions 9.2 and 9.3 we could try to prove Theorem 9.1 by using the entropy method,
which permits to consider more general initial profiles (for example, the profile β0 can be assumed
only bounded, not smooth). The usual technical points of this well-known procedure are the one and
two-blocks estimates, as well as tightness. In this model, they are somehow easy to prove because the
diffusion coefficient is constant, and there is no need to prove its regularity.

9.2 Replacement of the current by a gradient

In this subsection we recall the main steps of the usual entropy method, and explain which ones can
be proved for our system. We fix the disorder m � tmxuxPTN

and T ¡ 0. For t P r0,Ts, we denote by
ZN

t,m the empirical energy field defined as

ZN
t,mpHq �

1
N

¸
xPTN

H
� x

N

	
ω2

xptq,

where H : TÑ R is a smooth function. We rewrite ZN
t,mpHq as

ZN
t,mpHq � ZN

0,mpHq �
» t

0

¸
xPTN

∇NH
� x

N

	
jx ,x�1pm,ωqpsqds�MN

t,mpHq,

where MN
t,mpHq is a martingale. The strategy consists in replacing the current jx ,x�1 by the linear com-

bination given in Theorem 5.9. For that purpose, for any f PQ we rewrite

ZN
t,mpHq � ZN

0,mpHq �
» t

0
DZN

s,mp∆NHqds� J
1,N
t,m, f pHq � J

2,N
t,m, f pHq �MN

t,mpHq,

where

J
1,N
t,m, f pHq �

» t

0

¸
xPTN

∇NH
� x

N

	�
jx ,x�1pm,ωqpsq �Dpω2

x�1 �ω2
xqpsq �Lm

N pτx f qpm,ωqpsq
�

ds,

J
2,N
t,m, f pHq �

» t

0

¸
xPTN

∇NH
� x

N

	
Lm

N pτx f qpm,ωqpsqds.

Theorem 9.1 would follow from the three lemmas below.

LEMMA 9.4. For every smooth function H : TÑ R and every δ ¡ 0,

lim
NÑ8
Pm

N

�
sup
r0,Ts

���MN
t,mpHq

���¡ δ�� 0.

LEMMA 9.5. For every f PQ and every smooth function H : TÑ R,

lim sup
NÑ8

EPm
N

���J2,N
t,m, f pHq

���� 0.
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LEMMA 9.6. There exists a sequence of functions t fkukPN PQ such that, for every smooth function H : TÑ R,

lim
kÑ8

lim
NÑ8
E
�
EPm

N

���J1,N
t,m, fk

pHq
����� 0.

Lemma 9.4 and Lemma 9.5 can be proved, following the same standard arguments given for example
in [15, Section 7]. We need the energy moment estimate (63) in Lemma 9.4, in the computation of the
quadratic variation of the martingale. The next subsection is devoted to highlight what fails in Lemma
9.6, which should be related to the results of Sections 4, 6 and 5.

REMARK 9.1. Conditioned to proving Lemma 9.6, Theorem 9.1 would follow: recall that Qm
N is the

distribution on the path space D pr0, Ts,M1q of the process πN
t . Following the same argument as for

the generalized exclusion process in [15, Section 7.6], we can show that the sequence
 
Qm

N ,N ¥ 1
(

is
weakly relatively compact. It remains to prove that every limit point Qm

� is concentrated on absolutely
continuous paths ept, duq � ept, uqdu whose densities are solutions of the hydrodynamic equations given
in Theorem 9.1. It could be seen from Lemma 9.6 by following the proof of [15, Theorem 7.0.1].

9.3 Failed variance estimate

In this paragraph we fix the disorder m, and we erase it whenever no confusion arises. We are going
to recall here the usual main steps of the entropy method. We rewrite J

1,N
t,m, f pHq as

J
1,N
t,m, f pHq �

» t

0

¸
xPTN

G
� x

N

	
τxϕpm,ωqpsqds,

where $&%ϕpm,ωq :� j0,1pm,ωq �Dpω2
1 �ω2

0q �Lm
N p f qpm,ωq

G
� x

N

	
:�∇NH

� x
N

	
.

Entropy inequality – In Lemma 9.6, note that the expectation with respect to the law of the process
Pm

N is taken. There is a priori no hope to get any estimate of this expectation, apart from the well-known

entropy inequality. More precisely, let us denote by X f
Npωq the following quantity:

X f
Npωq :�

¸
xPTN

G
� x

N

	
τxϕpωq.

From the entropy inequality, we obtain

EPm
N

�����» T

0
X f

Npωqpsqds

�����¤ 1
αN

HpPm
N |µN

β q �
1
αN

logEµN
β

�
exp

�
αN

����» T

0
X f

Npωqpsqds

����
� ,

for all α ¡ 0. Since the entropy is decreasing in time, we know that, for all disorder field m, HpPm
N |µN

β
q

is bounded. From the arbitrariness of α, we are reduced to investigate the convergence of the second
term in the previous right-hand side.

Feynman-Kac formula – Usually, the purpose is to reduce the dynamics problem to the study of the
largest eigenvalue for a small perturbation of the generator N2SN. This reduction relies on Feynman-Kac
formula and on a variational formula for the largest eigenvalue of a symmetric operator. By Feynman-Kac
formula,

EµN
β

�
exp

"
N
» T

0
X f

Npωqpsq ds
*�

¤ exp

"» T

0
λNpsq ds

*
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where λNpsq is the largest eigenvalue of the symmetric operator N2SNp�q�NX f
Npωq. From the variational

formula for the largest eigenvalue of an operator in a Hilbert space, we also know that

λNpsq ¤ sup
g

!@
NX f

Np�q gp�qD
β
�N2DNpµβ ;

?
gq
)

where the supremum is taken over all measurable functions g which are densities with respect to µN
β

. In
particular,

1
N

logEµN
β

�
exp

"» T

0
NX f

Npωqpsq ds
*�

¤
» T

0
sup

g

"A
X f

Npωq gpωq
E
β
�NDNpµβ ;

?
gq
*

ds.

Reduction to microscopic blocks – With the same spirit of the one-block estimate presented in
[27], it is then crucial to replace microscopic quantities with their spatial averages. Here, with the same
ideas of [15], we can replace

j0,1 with
1

2`� 1

¸
xPΛ`

jx ,x�1

ω2
0 with

1
2`� 1

¸
xPΛ`

ω2
x

Lm
N p f qpωq with

1
2` f � 1

¸
xPΛ` f

Lm
s f �1pτx f q

where ` f � ` � s f � 1 so that Ls f �1pτy f q is FΛ`-mesurable for every y P Λ` f
. Let us introduce the

following notation

W f ,` :� 1
2`1� 1

¸
yPΛ`1

jy,y�1�D

�� 1
2`� 1

¸
|x|¤`

ω2
x �

1
2`� 1

¸
|x�1|¤`

ω2
x

��� 1
2` f � 1

¸
yPΛ` f

Ls f �1pτy f q (64)

with `1 � `�1. Finally, thanks to the regularity of the function G and the fact that D is constant, we are
able to reduce Lemma 9.6 to Lemma 9.7 below. We also need to perform a cut-off in order to control
high energy values, and this is valid thanks to (63).

LEMMA 9.7. For all δ ¡ 0,

inf
f PQ

lim sup
`Ñ8

limsup
NÑ8

sup
g

"A
Y f

N,`pωq gpωq
E
β
�δNDNpµβ ;

?
gq
*
¤ 0, (65)

where
Y f

N,`pωq :�
¸

xPTN

G
� x

N

	
τxW f ,`pωq.

Reduction to a variance estimate – Then, the challenge is to reduce the proof of Lemma 9.7 to
the following result:

inf
f PQ

lim
`Ñ8

2`�E
�A��SΛ`

��1
W f ,`,W f ,`

E
β

�
� 0 (66)

This convergence holds, since it is equivalent to the conclusion of Theorem 5.9, where the diffusion
coefficient D is defined through the non-gradient approach. Here is the main obstacle. If we follow the
strategy given in [15, Section 7.3], we can bound the supremum in (65) by the largest eigenvalue of
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SΛ` � bW f ,` where b is a small constant. In order to estimate this largest eigenvalue, we usually use a
perturbation method which provides a bound on the largest eigenvalue in terms of the variance of W f ,`.
This can not be proved, and suggests that the entropy inequality together with the Feynman-Kac formula
are not the good tools to prove the hydrodynamic limits for systems which do not have a spectral gap
(see the last concluded section).

We conclude this section by explaining why the perturbation theory does not work. Let us try to
prove Lemma 9.7. Since µβ is translation invariant, we may rewrite

@
Y f ,`

N p�q gp�qD
β

as¸
xPTN

A
G
� x

N

	
W f ,`pωqτ�x gpωq

E
β

.

Since the Dirichlet form is convex, the supremum in (65) is bounded from above by

δN
2`

¸
xPTN

sup
g

!
b
@
W f ,` g

D
β
�D`pµβ ;

?
gq
)

, (67)

where the constant b� bpx ,`,δ, Nq satisfies

|b| :�
����G� x

N

	 2`
δN

����¤ }G}8
2`
δN

.

Let us denote by λN,`, f this last supremum inside the sum (67), which does not depend on x . We consider
a sequence tgkukPN that approaches this supremum, such that

lim
kÑ8

@?
gk,

�
SΛ` � bW f ,`

�?
gk

D
β
� λN,`, f .

The idea of the perturbation theory is to expand
?

gk around the constant value 1. We writeA?
gk,

�
SΛ`�bW f ,`

�?
gk

E
β
� b

�@
W f ,`

D
β
�2

@
W f ,`p?gk�1qD

β
�@

W f ,lp?gk�1q2D
β

	
�D`pµβ ;

?
gkq.
(68)

We know that
@
W f ,`

D
β
� 0, and we use the Cauchy-Schwarz inequality for the scalar product x�, p�SΛ`q�yβ

in the second term. We obtain that (68) is bounded, for every A¡ 0, by

b

�
b
A

@
W f ,`, p�SΛ`q�1W f ,`

D
β
� A

b
D`pµβ ;

?
gkq



� b

@
W f ,`p?gk � 1q2D

β
�D`pµβ ;

?
gkq.

It remains to bound the third term in the expression above. This could be done if we had the following
lemma.

LEMMA 9.8. There exists a constant C :� Cp`, f ,β ,γ,λq such that, for every g ¥ 0,@
W f ,`p?g � 1q2D

β
¤ CD`pµβ ;

?
gq. (69)

As before, we could try to use the fact that W f ,` is a quadratic function. Even this fact is not helpful,
and we give now a counter-example to this last lemma. We denote by Hn the normalized one-variable
Hermite polynomial of degree n¥ 3 (see Appendix A). Let us consider# ?

gpωq � |Hnpω0q|
W f ,`pωq � H2pω0q �ω2

0 � 1.
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Let us notice that xH2
nyβ � 1, and xH2yβ � 0, so that the two test functions g and W f ,` satisfy all expected

conditions. By using the recursive relation

Hn�1pω0q �ω0Hnpω0q � nHn�1pω0q,

we get for the left-hand side of (69),@
H2p|Hn| � 1q2D

β
� @
ω2

0 H2
npω0q

D
β
� @

H2
n

D
β
� 2

@
H2|Hn|

D
β
� @

H2

D
β

� @
H2

n�1 � 2nHn�1Hn�1 � n2H2
n�1

D
β
� 1� 2

@
H2|Hn|

D
β

� 1� n2 � 1� 2
@
H2|Hn|

D
β
¥ n2 � 2.

Above the last equality comes from the orthonormality of the polynomial basis, and the last inequality
is a consequence of the Cauchy-Schwarz inequality xH2|Hn|

D2
β
¤ xH2

2yβxH2
nyβ � 1. Let us assume that

there exists a constant C¡ 0 which does not depend on n such that

n2 � 2¤ @
H2p|Hn| � 1q2D

β
¤ CD`pµβ ; |Hn|q.

From the convexity of the Dirichlet form, we have

D`pµβ ; |Hn|q ¤ D`pµβ ; Hnq.

In the case where n is an even positive integer, the flip noise gives a zero contribution to the Dirichlet
form, and then, for all n even, we have

D`pµβ ;Hnq �
λ

2

A�
Hnpω1q �Hnpω0q

�2
E
β
� λxH2

nyβ �λ
@
Hnpω0qHnpω1q

D
β
� λ.

In the last equality, we use the fact that Hn is unitary, and that Hnpω0qHnpω1q constitutes another element
of the Hermite polynomial basis, then is orthogonal to the constant polynomial 1. Letting n go to infinity,
we obtain a contradiction to (69).

Ergodic decomposition – Another idea would be to use the ergodic decomposition. The generator
S` restricted to finite boxes does not have a spectral gap, but it becomes ergodic when restricted to some
finite orbits. However, this approach fails, because the space is not compact, and we need to disintegrate
the measure µβ with respect to all energy levels in p0,�8q. This enforces us to introduce a cut-off in the
variational formula giving the largest eigenvalue. In other words, an indicator function 1t|ωx | ¤ E0u
will appear in front of W f ,`. Finally, we will have to deal with functions of the configurations that are not
quadratic any more, and we do not know how to prove the convergence result (66) for general functions.

9.4 Conclusion

Even if the non-gradient method can be applied in some cases when the spectral gap does not hold,
(and then the diffusion coefficient is well defined), this does not straightforwardly imply the hydrody-
namic limits.

In order to derive the hydrodynamic theorem, we would need to bypass the entropy inequality to-
gether with the Feynman-Kac formula. The entropy inequality is however a convenient mean to trans-
form the averages w.r.t. the unknown law µN

t into equilibrium averages w.r.t. µN
β

, which are more easily
tractable. The same problem would arise in the relative entropy method, because of the entropy inequal-
ity.
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A Hermite polynomials and quadratic functions

In the whole section we assume β � 1. Every result can be restated for the general case after multi-
plying the process by β�1{2.

A.1 Hermite polynomials on RZ

Let χ be the set of positive integer-valued functions ξ : ZÑ N, such that ξx vanish for all but a finite
number of x P Z. The length of ξ, denoted by |ξ|, is defined as

|ξ| :�
¸
xPZ
ξx .

For ξ P χ, we define the polynomial function on Ω

Hξpωq �
¹
xPZ

hξx
pωxq,

where thnunPN are the normalized Hermite polynomials w.r.t. the centered one-dimensional Gaussian
law with variance 1. The sequence tHξuξPχ forms an orthonormal basis of the Hilbert space L2pµ1q,
where µ1 is the infinite product Gibbs measure defined by (2). As a result, every function f P L2pµ1q can
be decomposed in the form

f pωq �
¸
ξPχ

FpξqHξpωq.

Moreover, we can compute the scalar product x f , gy1 for f �°
ξ FpξqHξ and g �°

ξGpξqHξ as

x f , gy1 �
¸
ξPχ

FpξqGpξq.

DEFINITION A.1. We denote by χn � χ the subset sequences of length n, i.e. χn :� tξ P χ ; |ξ| � nu . A
function f P L2pµ1q is of degree n if its decomposition

f �
¸
ξPχ

FpξqHξ

satisfies: Fpξq � 0 for all ξ R χn.

In the next paragraph we focus on degree 2 functions, which are by definition on the form¸
xPZ
ϕpx , xqpω2

x � 1q �
¸
x�y

ϕpx , yqωxωy (70)

where ϕ : Z2 Ñ R is a square summable symmetric function.

Local functions – On the set of n-tuples x :� px1, . . . , xnq of Zn, we introduce the equivalence
relation x� y if there exists a permutation σ on t1, . . . , nu such that xσpiq � yi for all i P t1, . . . , nu. The
class of x for the relation � is denoted by rxs and its cardinal by cpxq. Then the set of configurations of
χn can be identified with the set of n-tuples classes for � by the one-to-one application:

Zn{ � Ñ χn

rxs � rpx1, . . . , xnqs ÞÑ ξrxs
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where for any y P Z, pξrxsqy � °n
i�1 1y�x i

. We identify ξ P χn with the occupation numbers of a
configuration with n particles, and rxs corresponds to the positions of those n particles. A function
F : χn Ñ R is nothing but a symmetric function F : Zn Ñ R through the identification of ξ with rxs. We
denote (with some abuse of notations) by x�, �y the scalar product on `L2pχnq, each χn being equipped
with the counting measure. Hence, for two functions F,G : χ Ñ R, we have

xF, Gy �
¸
n¥0

¸
ξPχn

FnpξqGnpξq �
¸
n¥0

¸
xPZn

1
cpxq FnpxqGnpxq,

with Fn,Gn the restrictions of F,G to χn.

Dirichlet form – It is not hard to check the following proposition, which is a direct consequence of
the fact that hn has the same parity of the integer n.

PROPOSITION A.1. If a local function f P L2pµ1q is written in the form f �°
ξPχ FpξqHξ, then

S f pωq �
¸
ξPχ

pSFqpξqHξpωq,

where S is the operator acting on functions F : χ Ñ R as

SFpξq � λ
¸
xPZ

�
Fpξx ,x�1q � Fpξq�� γ¸

xPZ

�p�1qξx � 1
�
Fpξq.

Here, ξx ,y is obtained from ξ by exchanging ξx and ξy .

From this result we deduce:

COROLLARY A.2. For any f �°
ξPχ FpξqHξ P L2pµ1q, we have

Dp f ;µ1q �
@

f ,�S f
D

1 �
¸
ξPχ

"
λ

2

¸
xPZ

�
Fpξx ,x�1q � Fpξq�2 � γ

¸
xPZ

�p�1qξx � 1
�
F2pξq

*

Quadratic functions – In this paper, we deal with the set of quadratic functions f in L2pµ1q, namely
degree two functions that are homogeneous, i.e. satisfies the algebraic relation

@λ P R, f pλωq � λ2 f pωq, µ1 � a.s. (71)

We also assume that f has zero average with respect to µ1. Therefore, we could also rewrite every f as

f pωq �
¸
xPZ
ψpx , xqpω2

x �ω2
x�1q �

¸
x�y

ψpx , yqωxωy ,

for a suitable function ψ : Z2 Ñ R square summable and symmetric, and we recover the form given in
(3). We first restrict some variational formula to this class of functions, and then we study sequences of
functions that weakly converge in L2pµ1q.
PROPOSITION A.3. If f P L2pµ1q is quadratic in the sense above with zero average w.r.tµ1, then the following
variational formula

sup
gPL2pµ1q

 
2
@

f , g
D

1 �Dpg;µ1q
(

can be restricted over quadratic functions g of zero mean w.r.t µ1.
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Proof. This fact follows after decomposing g as
°
ξPχ GpξqHξ. Corollary A.2 and the orthogonality of

Hermite polynomials imply that we can restrict the supremum over functions g of degree two (70). As
a result, g writes as the sum of a quadratic function plus an additional constant term.

Then, notice that the constant term gives a zero contribution in the quantity to maximise: indeed,
the Dirichlet form does not change if we add a constant, and the function f is supposed to be centered,
so that

@
f
D

1 � 0. Therefore, we can assume that the supremum is taken over homogeneous functions
of degree two, and the same argument shows that g can also be taken with zero average.

PROPOSITION A.4. Let t fnun be a sequence of quadratic functions in L2pµ1q. Suppose that t fnu weakly
converges to f in L2pµ1q. Then, f is quadratic.

Proof. For all n P N, and ξ R χ2, the scalar product
@

fn,Hξ
D

1 vanishes (by definition). From the weak
convergence, we know that @

fn, Hξ
D

1 Ñ
@

f , Hξ
D

1,

as n goes to infinity, for all ξ P χ. This implies:
@

f ,Hξ
D

1 � 0 for all ξ R χ2.
Besides, the algebraic relation (71) is still valid after taking the weak limit in L2pµ1q, as well as the

zero-average property (with respect to µ1). This implies that the weak limit f P L2pµ1q is quadratic, and
of zero mean if every fn is centered.

Notice that the set denoted by Q and defined in Definition 2.2 is restricted to cylinder quadratic
functions. The conclusions of Propositions A.3 and A.4 can be restated as:

COROLLARY A.5. If f PQ, then the following variational formula

sup
gPL2pP�1q

 
2E�1r f , gs �E�Dpg;µ1q

�(
can be restricted over functions g in Q. Moreover, if t fnun is a sequence of functions in Q such that t fnu
weakly converges to f in L2pP�1q, then f belongs to Q.

B A weak version of closed forms results

In that section we prove a theorem that should be thought as a kind of closed forms results, as they
are stated in [26] or in [15] (Section A.3.4). We give the link between Theorem B.2 below and closed
forms at the end of this paragraph.

B.1 Decomposition of quadratic functions

First, we erase the dependence on the disorder m, and consider the functions to be defined on Ω, and
square integrable w.r.t. the Gibbs measure µ1. Then, we restate the same result for functions defined on
ΩD �Ω.

THEOREM B.1 (Decomposition in L2pµ1q). Let t fnunPN be a sequence of quadratic functions in L2pµ1q and
let us define

gn :�∇0

�
Γ fn

�
and hn :�∇0,1

�
Γ fn

�
.
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If tgnu, respectively thnu, weakly converges in L2pµ1q towards g, respectively h, then there exist a P R and
f quadratic function in L2pµ1q such that

gpωq �∇0pΓ f qpωq, (72)

hpωq � apω2
0 �ω2

1q �∇0,1pΓ f qpωq. (73)

In view of (72) and (73), and in order to generalize that result, we introduce the set:

Θ :�
#
pg, hq P L2pP�1q � L2pP�1q ; there exist a P R, f PQ, such that

#
g �∇0pΓ f q,
h � apω2

0 �ω2
1q �∇0,1pΓ f q.

+

Before proving Theorem B.1, we restate it in L2pP�1q as:

THEOREM B.2 (Decomposition in L2pP�1q). Let t fnunPN be a sequence of quadratic functions in L2pP�1q. Let
us define

gn :�∇0

�
Γ fn

�
and hn :�∇0,1

�
Γ fn

�
.

If tgnu, respectively thnu, weakly converges in L2pP�1q towards g, respectively h, then pg, hq belongs to Θ.

Proof of Theorem B.1. From Proposition A.4, we already know that g and h are quadratic functions in
L2pµ1q. Hence, we look for g and h of the form

gpωq �
¸

x ,yPZ
ψ1px , yqωxωy (74)

hpωq �
¸

x ,yPZ
ψ2px , yqωxωy (75)

where ψ1,ψ2 : Z2 Ñ R are square integrable symmetric functions. We are now going to give a list or
equalities, being satisfied by the pair of sequences. Let us be more precise. We define, for a pair pf1, f2q
of two L2pµ1q functions, the following identities, stated in L2pµ1q sense:

(R1) pτx f1qpωq � pτx f1qpωxq � 0, for all x P Z.
(R2) pτx f2qpωq � pτx f2qpωx ,x�1q � 0, for all x P Z.
(R3) pτx f1qpωq � pτx f2qpωxq � pτx f2qpωq � pτx�1f1qpωx ,x�1q, for all x P Z,
It is straightforward to check that, for all n P N, the pair pgn, hnq satisfies identities (R1–R3). Easily,
one can show that the latter always take place after passing to the weak limit in L2pµ1q. Precisely, the
weak limit pg, hq of tgn, hnu also satisfy (R1–R3). This follows from the following easy lemma (which is
a consequence of the translation invariance of µ1):

LEMMA B.3. If tgnun weakly converges in L2pµ1q towards g, then, for all x P Z, 
gnpωxq(n weakly converges towards gpωxq, 
gnpωx ,x�1q(n weakly converges towards gpωx ,x�1q.

Notice that all equalities (R1–R3) – now stated for (g,h) – turn into identities forψ1 andψ2, defined
in (74) and (75). Namely, ψ1 and ψ2 have to satisfy

(R1)

#
ψ1px , yq � 0 if x � 0 and y � 0,

ψ1p0, 0q � 0.
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(R2)

#
ψ2px , yq � 0 if x R t0, 1u and y R t0, 1u,
ψ2px , xq �ψ2px � 1, x � 1q � 0 for all x P Z.

(R3)

#
2ψ2px , 0q �ψ1px � 1, 0q �ψ1px , 0q if x R t0, 1u,
ψ1p�1, 0q �ψ1p1, 0q.

The first two identities imply that g writes on the form

gpωq �
¸
x�0

ψ1px , 0qωxω0, (76)

and h rewrites as

hpωq �
¸

x�0,1

ψ2px , 0q�ω1ωx �ω0ωx
��ψ2p0,0qpω2

0 �ω2
1q, (77)

whereas the final equality makes a connection between g and h. In view of (72) and (73), we are going
to need the following straightforward lemma:

LEMMA B.4. Let f P L2pµ1q be of the form

f pωq �
¸

x ,yPZ
ϕpx , yqωxωy ,

where ϕ : Z2 Ñ R is a symmetric function. Then,

∇0pΓ f q � �4
¸
zPZ
x�0

ϕpx � z, zqω0ωx , (78)

∇0,1pΓ f q � 2
¸
zPZ

x�0,1

�
ϕpx � z, zq �ϕpx � z, z � 1q�pω1ωx �ω0ωxq. (79)

Confronting (78)–(79) with (76)–(77), and keeping in mind the expected result of Theorem B.2, we
are now looking for a symmetric function ϕ : Z2 Ñ R which is square-summable on Z2 and satisfies$''&''%

¸
zPZ
ϕpx � z, zq � �1

4
ψ1px , 0q for all x � 0,¸

zPZ

�
ϕpx � z, zq �ϕpx � z, z � 1q�� 1

2
ψ2px , 0q for all x R t0, 1u.

Such a function ϕ exists if and only if, for all x R t0, 1u,

2ψ2px , 0q �ψ1px � 1,0q �ψ1px , 0q.

This last equality is true according to (R3), and the result is proved, with a �ψ2p0,0q and f PQ defined
as

f pωq �
¸

x ,yPZ
ϕpx , yqωxωy .

Proof of Theorem B.2. Every result that involves the Gibbs measure µ1 can be translated into the same
result involving the product measure P�1. If f P L2pP�1q is homogeneous of degree two, it rewrites

f pm,ωq �
¸

x ,yPZ
ϕpm, x , yqωxωy ,
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where, for all m P ΩD, ϕpm, �, �q is a symmetric function on Z2. Moreover, the translation operator τx

that is involved in identities (R1-R3) also translates the disorder, as it is defined at the beginning of
Subsection 2.3. The crucial point here it that P�1 is space translation invariant.

Following line to line the previous proof, one can show that there exists apmq P L2pPq and f PQ such
that the following decompositions hold in L2pP�1q:

gpm,ωq �∇0pΓ f qpm,ωq,
hpm,ωq � apmqpω2

0 �ω2
1q �∇0,1pΓ f qpm,ωq.

The conclusion of Theorem B.2 follows from the following lemma:

LEMMA B.5. Let ξ P L2pP�1q defined on ΩD�Ω as ξpm,ωq :� apmqpω2
1�ω2

0q, for some function a P L2pPq.
Then, for any f PQ, the pair �

∇0pΓ f q,ξ�∇0,1pΓ f q
�

belongs to Θ.

Let us prove this lemma, which has been inspired by [11, Lemma 7.7]. By substracting the function
Eraspω2

1 �ω2
0q, we can assume Eras � 0. We first define for any x P Z the function gx P L2pPq as

gxpmq �
x�1̧

k�0

τkapmq,

with the convention g0pmq � 0. One can check that, for any n P N, for any z P Z such that tz; z�1u � Λn,
we have

τzξpm,ωq �∇z,z�1phnq, with hnpm,ωq � �
¸

xPΛn

gxpmqω2
x .

Let us define
ξn �

1
2n
∇0,1

�
Γhn

�
.

We are going to show that ξn converges to ξ in L2pP�1q. Since ∇0phnq � 0 for every n P N, this will prove
the convergence

�
∇0pΓ f�hn

q,∇0,1pΓ f�hn
q� L2pP�1q�L2pP�1qÝÝÝÝÝÝÝÑ

nÑ8

�
∇0pΓ f q,ξ�∇0,1pΓ f q

�
,

and since
�
∇0pΓ f�hn

q,∇0,1pΓ f�hn
q� belongs to Θ, we got exactly the conclusion of Lemma B.5. After

basic computations, one can check that

ξn �
2n� 1

2n
ξ� 1

2n
τ�n

!
gnpmqpω2

n �ω2
n�1q

)
� 1

2n
τn�1

!
g�n�1pmqpω2

�n�1 �ω2
�nq

)
.

Therefore, from Cauchy-Schwarz inequality and translation invariance of P, it is enough to show that

E
�
g2

n

�
n2

� 1
n2
E
�� n�1̧

k�0

τkapmq

2�

ÝÝÑ
nÑ8

0,

and that the same holds for E
�
g2
�n�1

�{n2. This convergence is a standard consequence of the translation
invariance of P. More precisely, let us fix a positive integer ` and introduce for any x P Z the conditional
expectation rap`qx � E

�
τx apmq

�� my ; y P Λ`pxq
�
.
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From our assumptions, notice that rap`qx � τxrap`q0 and E
�rap`qx

�� 0. As a result,

1
n2
E
�� n�1̧

k�0

τkapmq

2�

¤ 2
n2
E
�� n�1̧

k�0

!
τkapmq � rap`qk

)
2�
� 2

n2
E
�� n�1̧

k�0

rap`qk


2�
¤ 2E

�!
apmq � rap`q0

)2�
� Cp`q

n
.

The last inequality comes from the fact that
°rap`qk is a sum of identically distributed variables (because

of the translation invariance of P), for which we have a good control of its variance. Lemma B.5 is proved
by letting n go to infinity and then ` go to infinity.

B.2 Connection with closed forms results

Let us briefly explain the connection between Theorem B.1 and the closed forms as they are defined
for example in [26]. For that purpose, we are going to reformulate identities (R1–R3). First, interpret
f1
xpωq, respectively f2

xpωq, as the price to change the configurationω P Ω intoωx , respectively to change
ω into ωx ,x�1. In particular,

• the price to flip ωx when the configuration is ω should be equal to �f1
xpωxq : this is (R1),

• the price to exchangeωx andωx�1 when the configuration isω should also be equal to�f2
xpωx ,x�1q

: this is (R2).

In the context of interacting particle systems, closed forms are expected to give the same price for any
2-step path with equal end points. In our setting, the last equality (R3) can be translated into: “The
quantity at site x is flipped, and then exchanged with the quantity at site x � 1. Equally, the quantities
at site x and x � 1 are exchanged first, and then the quantity at site x � 1 is flipped.” There are three
other such paths, that we do not need to prove our statement:

• two quantities are exchanged at sites x , x�1, and also independently at sites y, y�1, with tx , x�
1uX ty, y � 1u �H,

• two quantities are flipped independently at sites x and y , with x � y ,

• the quantity at site x is flipped, and then the quantities at sites y and y � 1 are exchanged, for
y R tx , x � 1u, and the converse is also possible.

Recall that we have defined Ω :� RZ. We denote by B the space of real-valued functions

B :� t f : ΩÑ Ru. (80)

We are now interested in the space of forms, which are defined as pf1
x , f2

xqxPZ where f1
x P B, and f2

x P B,
for every x P Z. To each function F : ΩÑ R is associated a form:

DEFINITION B.1. A form f � pf1
x , f2

xqxPZ is an exact form if there exists a continuous function F : ΩÑ R
such that

@ x P Z, @ ω P Ω,

#
f1
xpωq � Fpωxq � Fpωq,

f2
xpωq � Fpωx ,x�1q � Fpωq. (81)

Easily, one can prove that all exact forms are closed forms. We now present two examples of closed
forms that play a central role.
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EXAMPLE B.1. We denote by a� pa1,a1q the closed form defined by#
a1

xpωq � 0,

a2
xpωq �ω2

x �ω2
x�1,

for all x P Z and configurations ω P Ω. This closed form corresponds to the formal function Fpωq �°
x xω2

x , but this is not an exact form.

EXAMPLE B.2. Let h be a cylinder function. Let us recall that we denote by Γh the formal sum
°

x τxh,
and define uh � pu1

h,u2
hq as #

pu1
hqxpωq � Γhpωxq � Γhpωq,

pu2
hqxpωq � Γhpωx ,x�1q � Γhpωq,

for all x P Z, and configurations ω P Ω. Though
°

x τxh is a formal sum, these two equalities are well
defined. Let us notice that uh is a closed form that is not exact, unless h is constant.

These two examples show that closed forms on Ω are not always exact forms. Let us introduce the
notion of a germ of a closed form.

DEFINITION B.2. A pair of continuous functions f � p f 1, f 2q, where f i : ΩÑ R, is a germ of closed form
if f� pτx f qxPZ is a closed form.

Examples B.1 and B.2 provide two types of germs of closed forms. Consider the cylinder function
Apωq � p0,ω2

0 � ω2
1q. The collection pτxAqxPZ is the closed form a of Example B.1. For a cylinder

function h, the collection p∇xΓh,∇x ,x�1ΓhqxPZ obtained through translations of the cylinder function
p∇0Γh,∇0,1Γhq is the closed from of Example B.2. For a pair of L2pP�1q-functions f � p f 1, f 2q, we called
it a germ of closed form if f� pτx f qxPZ satisfies all of conditions as a closed form in L2pP�1q-sense. Usually,
Theorem B.2 is replaced with a similar result that concerns every germ of closed form in L2pP�1q: see [26,
Theorem 5.1] or [15, Theorem A.3.4.14].

C Proof of the weak sector condition

In this section we prove Proposition 5.7 that we recall here for the sake of clarity.

PROPOSITION C.1 (Weak Sector condition). (i) There exists two constants C0pγ,λq and C1pγ,λq such
that the following inequality hold for all f , g PQ:��| !Amg,S f "β

�� | ¤ C0|||S f |||β |||S g|||β .��| !Amg,S f "β
�� | ¤ C1|||S g|||β �

1
2
|||S f |||β .

(ii) There exists a positive constant Cpβq such that, for all g PQ,

|||Amg|||β ¤ Cpβq|||S g|||β .
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Proof. We prove (i). We assume that

gpm,ωq �
¸
xPZ
ψx ,0pmqpω2

x�1 �ω2
xq �

¸
xPZ
k¥1

ψx ,kpmqωxωx�k

f pm,ωq �
¸
xPZ
ϕx ,0pmqpω2

x�1 �ω2
xq �

¸
xPZ
k¥1

ϕx ,kpmqωxωx�k.

We denote by ∇mψ the discrete Laplacian in the variable m, that is

∇mψpmq � 2ψpmq �ψpτ1mq �ψpτ�1mq,

and τx∇m is the operator defined as

pτx∇mqψpmq :�∇mψpτxmq.

Straightforward computations show that

|||S g|||2β �
γ

2
E�β

��
∇0Γg

�2
�
� λ

2
E�β

��
∇0,1Γg

�2
�

� 4γ
β2

¸
xPZ
k¥1

Erψ2
x ,ks �

2λ
β2

¸
xPZ
E
��¸

xPZ
τx

�
∇mψx ,0

�
2�

� λ

β2

¸
k¥2

E
��¸

xPZ

�
τ�xpψx ,kq �τ1�xpψx ,kq

�
2�
,

|||S f |||2β ¥ |||Sflip f |||2β �
γ

2
E�β

��
2
¸
zPZ
k¥1

ϕz,kpmqω0ωk


2�
� 2γ
β2

¸
k¥1

E
��¸

zPZ
ϕz,kpmq


2�
. (82)

Now we deal with !Amg,S f "β . From Proposition 5.1, and by definition,

!Amg,S f "β ��
¸
zPZ
E�β r f ,τzpAmgqs

� �
¸

x ,zPZ
E
�
ϕx ,0pmqxω2

x�1 �ω2
x ,τzpAmgqyβ

�
�

¸
x ,zPZ
k¥1

E
�
ϕx ,kpmqxωxωx�k,τzpAmgqyβ

�

� 2
β2

¸
xPZ
E
�
τxp∇mψx ,0q?

mx mx�1

¸
zPZ
τ�zpϕz,1q

�
� 1
β2

¸
xPZ
E
��

τ1ψx ,1?
mx mx�1

� ψx ,1?
mx�1mx�2


¸
zPZ
τ�zpϕz,2q

�
� 1
β2

¸
k¥2

¸
xPZ
E
��

τ1ψx ,k?
mx mx�1

� ψx ,k?
mx�kmx�k�1


¸
zPZ
τ�zpϕz,k�1q

�
� 1
β2

¸
k¥2

¸
xPZ
E
��

τ�1ψx ,k?
mx mx�1

� ψx ,k?
mx�kmx�k�1


¸
zPZ
τ�zpϕz,k�1q

�
.
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From Cauchy-Schwarz inequality, and recalling 1{?m0m1 ¤ C (P-a.s.), we obtain the following bound:

|| !Amg,S f "β || ¤
2C
β2
E
��¸

xPZ
τxp∇mψx ,0q


2�1{2

E
��¸

zPZ
τ�zϕz,1


2�1{2

(83)

� 3C
β2
E
��¸

xPZ
τ1ψx ,1 �ψx ,1


2�1{2

E
��¸

zPZ
τ�zϕz,2


2�1{2

(84)

� 3C
β2

¸
k¥2

E
��¸

xPZ
τ1ψx ,k �ψx ,k


2�1{2

E
��¸

zPZ
τ�zϕz,k�1


2�1{2

(85)

� 3C
β2

¸
k¥2

E
��¸

xPZ
τ�1ψx ,k �ψx ,k


2�1{2

E
��¸

zPZ
τ�zϕz,k�1


2�1{2

. (86)

Now we are going to use two times the trivial inequality
?

ab ¤ a{ε � εb{2 for a particular choice of
ε ¡ 0: in (83) we take ε � γ{C and in (84) we take ε � 2γ{p3Cq. This trick gives the final bound

|| !Amg,S f "β || ¤
2C2

γβ2
E
��¸

xPZ
τx

�
∇mψx ,0

�
2�
� 2γ
β2

¸
k¥1

E
��¸

zPZ
ϕz,kpτ�zmq


2�

� 9C2

γβ2

¸
k¥2

E
��¸

xPZ
τ1ψx ,k �ψx ,k


2�
.

Recalling (82), we obtain

|| !Amg,S f "β || ¤
9C2

γλ
|||S g|||2β �

1
2
|||S f |||2β .

If we use the Cauchy-Schwarz inequality, we get:

!Amg,S f "2
β ¤

18C2

γλ
|||S g|||2β |||S f |||2β .

We have proved (i) with C0 �
a

18C2{pγλq and C1 � 9C2{pγλq. Now we turn to (ii). From Lemma 5.5
and Statement (i),

!Amg, jS0,1 "β � ! S g, jA0,1 "β ¤ |||S g|||β ||| jA0,1|||β .

Moreover, from Statement (i), we also get, for all f PQ0,

�2!Amg,S f "β ¤ |||S f |||2β �
2C
γλ

|||S g|||2β .

As a result, the variational formula (26) for |||Amg|||2
β

gives:

|||Amg|||2β ¤ 1
λχpβq !Amg, jS0,1 "2

β �
9C2

γλ
|||S g|||2β ¤

� ||| jA0,1|||2β
λχpβq � 9C2

γλ

�
|||S g|||2β .

The result is proved.
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D Tightness

In this section we prove the tightness of the sequence tYN
muN¥1, by using standard arguments. First,

let us recall that the space M1 is equipped with the norm defined as

||Y||2�k �
¸
n¥1

pπnq�2k
��Ypenq

��2.

THEOREM D.1. For almost all realization of the disorder m P ΩD, the sequence tYN
muN¥1 is tight in

Cpr0,Ts,H�kq.
Proof. The tightness of the sequence tYN

mu follows from two conditions (see [15], page 299):

lim
AÑ8

limsup
NÑ8

PµN
β

�
sup

0¤t¤T
||YN

t,m||�k ¡ A

�
� 0 (87)

(88)

lim
δÑ0

limsup
NÑ8

PµN
β

�
wpYN

m,δq ¡ ε
�
� 0, for all ε ¡ 0, (89)

where the modulus of continuity wpY,δq is defined by

wpY,δq � sup
||t�s|| δ
0¤s¤t¤T

||Yt �Ys||�k.

Let us remind the decomposition of YN
t,m given in (13):

YN
t,mpHq � YN

0,mpHq �
» t

0
DYs,mp∆NHqds�M

1,N
t,m, fk

pHq � ZN
t,m, fk

pHq,

where M
1,N
t,m, fk

pHq is the martingale defined in Subsection 3.3, and ZN
t,m, fk

pHq is defined as the sum of the
remaining terms in the decomposition. On the first hand,

EµN
β

�
sup

0¤t¤T

�
ZN

t,m, fk
pHq

	2
�

can be estimated by the proof of Lemma 3.2 and Theorem 3.3. On the other hand,

EµN
β

��
M

1,N
t,m, fk

pHq
	2
�

can be computed explicitly.

References

[1] O. Ajanki and F. Huveneers, Rigorous scaling law for the heat current in disordered harmonic chain,
Comm. Math. Phys. 301 (2011), no. 3, 841–883.

[2] G. Basile, C. Bernardin, and S. Olla, Thermal conductivity for a momentum conservative model,
Communications in Mathematical Physics, 287 (2009), no. 1, 67–98.

[3] C. Bernardin,Thermal conductivity for a noisy disordered harmonic chain, J. Stat. Phys. 133 (2008),
no. 3, 417–433.



REFERENCES 56

[4] C. Bernardin and F. Huveneers, Small perturbation of a disordered harmonic chain by a noise and an
anharmonic potential, Probab. Theory Related Fields 157 (2013), no. 1-2, 301–331.

[5] C. Bernardin, and S. Olla, Fourier’s law for a microscopic model of heat conduction, Journal of Sta-
tistical Physics, 121 (2005), no. 3-4, 271–289.

[6] C. Bernardin and G. Stoltz, Anomalous diffusion for a class of systems with two conserved quantities,
Nonlinearity 25 (2012), no. 4, 1099–1133.

[7] F. Bonetto, J. L. Lebowitz, and J. Lukkarinen, Fourier’s law for a harmonic crystal with self-consistent
stochastic reservoirs, Journal of Statistical Physics, 116 (2004), no. 1-4, 783–813.

[8] A. Casher and J. L. Lebowitz, Heat flow in regular and disordered harmonic chains, Journal of Math-
ematical Physics, 12 (1971), no. 8, 1701–1711.

[9] A. Dhar, V. Kannan, and J. L. Lebowitz, Heat conduction in disordered harmonic lattices with energy
conserving noise, Phys. Rev. E 83 (2011), no. 021108.

[10] S. N. Ethier and T. G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statis-
tics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1986, Characteri-
zation and convergence.

[11] A. Faggionato and F. Martinelli, Hydrodynamic limit of a disordered lattice gas, Probab. Theory Re-
lated Fields 127 (2003), no. 4, 535–608.

[12] J. Fritz, Hydrodynamics in a symmetric random medium, Communications in Mathematical Physics,
125 (1989), no. 1, 13–25.

[13] J. Fritz, T. Funaki and J. L. Lebowitz, Stationary states of random Hamiltonian systems, Probab.
Theory Related Fields, 99 (1994), no. 2, 211–236.

[14] M. Jara and C. Landim, Quenched non-equilibrium central limit theorem for a tagged particle in
the exclusion process with bond disorder, Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 2,
341–361.

[15] C. Kipnis and C. Landim, Scaling limits of interacting particle systems, Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320, Springer-
Verlag, Berlin, 1999.

[16] K. Komoriya, Hydrodynamic limit for asymmetric mean zero exclusion processes with speed change,
Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), no. 6, 767–797.

[17] T. Komorowski, C. Landim, and S. Olla, Fluctuations in Markov processes, Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 345, Springer,
Heidelberg, 2012, Time symmetry and martingale approximation.

[18] C. Landim and H. T. Yau, Fluctuation-dissipation equation of asymmetric simple exclusion processes,
Probab. Theory Related Fields 108 (1997), no. 3, 321–356.

[19] J. L. Lebowitz, E. Lieb and Z. Rieder, Properties of harmonic crystal in a stationary non-equilibrium
state, J. Math. Phys., 8 (1967), 1073–1078.

[20] M. Mourragui and E. Orlandi, Lattice gas model in random medium and open boundaries: hydrody-
namic and relaxation to the steady state, J. Stat. Phys. 136 (2009), no. 4, 685–714.

[21] S. Olla and M. Sasada, Macroscopic energy diffusion for a chain of anharmonic oscillators,
arXiv:1109.5297v3 (2013).



REFERENCES 57

[22] R. E. Peierls, Zur kinetischen Theorie der Wärmeleitung in Kristallen, Annalen des Physik, 395
(1929), no. 8, 1055–1101.

[23] R. E. Peierls, Quantum Theory of Solids, Oxford University Press, London, 1955.

[24] J. Quastel, Bulk diffusion in a system with site disorder, Ann. Probab. 34 (2006), no. 5, 1990–2036.

[25] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Academic
Press, New York, 1972.

[26] M. Sasada, Hydrodynamic limit for exclusion processes with velocity, Markov Process. Related Fields
17 (2011), no. 3, 391–428.

[27] M. Simon Hydrodynamic limit for the velocity-flip model, Stochastic Processes and their Applications
123 (2013), 3623–3662.

[28] S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions. II, Asymp-
totic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto,
1990), Pitman Res. Notes Math. Ser., vol. 283, Longman Sci. Tech., Harlow, 1993, pp. 75–128.


	Introduction
	The harmonic chain perturbed by stochastic jump noises
	Generator of the Markov process 
	Energy current
	Cylinder functions
	Properties of C0 and Q0
	Semi-inner products and diffusion coefficient 

	Macroscopic fluctuations of energy
	Energy fluctuation field
	Strategy of the proof
	Martingale decompositions
	Proof of Lemma 3.2

	CLT variances at equilibrium
	An insight through additive functionals of Markov processes
	Limiting variance and semi-norm
	Proof of Theorem 3.3 

	Hilbert space and projections
	Decomposition according to the symmetric part
	Replacement of S with L 
	Decomposition of the Hilbert space 

	On the diffusion coefficient
	Green-Kubo formulas
	Convergence of Green-Kubo formula
	Equivalence of the definitions
	Vanishing exchange noise 

	The anharmonic chain perturbed by a diffusive noise
	Hydrodynamic limits
	Statement of the hydrodynamic limits conjecture
	Replacement of the current by a gradient
	Failed variance estimate 
	Conclusion

	Hermite polynomials and quadratic functions
	Hermite polynomials on RZ

	A weak version of closed forms results 
	Decomposition of quadratic functions
	Connection with closed forms results

	Proof of the weak sector condition 
	Tightness 

