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Abstract

We investigate the macroscopic behavior of the disordered harmonic chain of oscillators, through
energy diffusion. The Hamiltonian dynamics of the system is perturbed by a degenerate conservative
noise. After rescaling space and time diffusively, we prove that energy fluctuations in equilibrium evolve
according to a linear heat equation. The diffusion coefficient is obtained from the non-gradient Varad-
han’s approach, and is equivalently defined through the Green-Kubo formula. Since the perturbation
is very degenerate and the symmetric part of the generator does not have a spectral gap, the standard
non-gradient method is reviewed under new perspectives.

Acknowledgements. This problem was suggested by Cédric Bernardin, and I am grateful to him for helpful and
valuable remarks. I warmly thank Makiko Sasada and Stefano Olla for their interest and constructive discussions

on this work.

1 Introduction

In this paper we investigate diffusion problems in non homogeneous media for interacting particle
systems. More precisely, we adress the problem of energy fluctuations for chains of oscillators with
random defects. In the last fifty years, it has been recognized that introducing randomness in interacting
particle systems has a drastic effect on the conduction properties of the material. Mathematically the only
tractable model is the one dimensional system with harmonic interactions [1]. The aim of this paper is
to study the diffusive behavior of disordered harmonic chains perturbed by an energy conserving noise.
In some sense, the noise should simulate the non linearities effect, and the conductivity of the one-
dimensional chain should become finite and positive. We also expect that some homogenization effect
occurs and that the conductivity does not depend on the statistics of the disorder in the thermodynamic
limit.

The disorder effect has already been investigated for lattice gas dynamics, for example in [7, 8,
13, 15]. These papers share one main feature: the models are non-gradient due to the presence of
the environment. Non-gradient systems are usually solved by establishing a microscopic Fourier’s law
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up to a small fluctuating term, following the sophisticated method initially developed by Varadhan in
[19], and generalized to non-reversible dynamics [ 10]. The previous works mainly deal with symmetric
systems of particles that evolve according to an exclusion process in random environment: the particles
are attempting jumps to nearest neighbor sites at rates which depend on both their position and the
objective site, and the rates themselves come from a quenched random field. Different approaches are
adopted to tackle this non-gradient system: whereas the standard Varadhan’s method is helpful only in
dimension d > 3 [7], the “long jump” variation developed by Quastel in [15] is valid in all dimensions.

The study of disordered chains of oscillators perturbed by a conservative noise has appeared more
recently, see by instance [2, 3, 5]. In these papers, only the behavior of the thermal conductivity defined
by the Green-Kubo formula is investigated. Here, the diffusion coefficient is defined through hydrody-
namics.

In [18], we have obtained the diffusive scaling limit for a homogeneous chain of coupled harmonic
oscillators perturbed by a noise, which randomly flips the sign of the velocities, so that the energy is
conserved but not the momentum. We have derived a system of nonlinear hydrodynamic equations on
the only two conserved quantities: the energy and the total length of the chain, thanks to the relative
entropy method. One of the major ingredient is an exact fluctuation-dissipation equation (see for example
[12]), which reproduces at the microscopic level the Fourier law up to a small fluctuating term.

Our first motivation was to investigate the same chain of harmonic oscillators, still perturbed by the
velocity-flip noise, but now provided with i.i.d. random masses. This makes all previous computations
pointless: in particular, the fluctuation-dissipation equations are not directly computable any more. As a
consequence, the fluctuation-dissipation decomposition can only be approximated by a sequence of local
functions, in the sense that the difference has a small space-time variance with respect to the dynamics
in equilibrium. The main ingredients of the usual non-gradient method are: first, a spectral gap for the
symmetric part of the dynamics, and second, a sector condition for the total generator. The model has
then special features that enforce the Varadhan’s method to be considered with new perspectives. In
particular, the symmetric part of the generator is poorly ergodic, and does not have a spectral gap when
restricted to microcanonical manifolds. Moreover, due to the degeneracy of the noise, the asymmetric
part of the generator is difficult to control by its symmetric part (in technical terms, the sector condition
does not hold), with the only velocity-flip noise. Besides, let us remark that the energy current depends on
the disorder, and has to be approximated by a fluctuation-dissipation equation which takes into account
the fluctuations of the disorder itself.

Because of the high degeneracy of the velocity-flip noise, we add a second stochastic perturbation,
that exchanges velocities (divided by the square root of mass) and positions at random independent
Poissonian times, so that a kind of sector condition can be proved (see Proposition 5.7: we call it the
weak sector condition). However, the spectral gap estimate and the usual sector condition still do not hold
when adding the exchange noise, meaning that the stochastic perturbation is still very degenerate. The
harmonic chain has helpful features, in particular the generator of the dynamics preserves the degree
of polynomials, and even a degenerate noise is sufficient to apply Varadhan’s approach. The sector
condition and the non-gradient decomposition are only needed for a specific class of functions. The
stochastic noise still does not have a spectral gap, but it does make no harm. Contrary to the standard
Varadhan’s approach, we do not need to prove any general result concerning the so-called closed forms
(we refer to [17, 9] for the general theory). As far as we know, this is the first time that the non-gradient
method is used successfully without the spectral gap estimate nor the usual sector condition.

For the non-linear ordered chain investigated in [14], one need a less degenerate noise than ours,
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in particular both the spectral gap and the sector condition hold. The authors show that ideas from
Varadhan’s method can be used to prove a diffusive behavior of the energy: its fluctuations in equilibrium
evolve following an infinite Ornstein-Uhlenbeck process. The covariances characterizing this linearised
heat equation are given in terms of the diffusion coefficient, which is defined through a variational
formula.

We show that the diffusion coefficient can be equivalently defined by the Green-Kubo formula. More
precisely, the latter is the space-time variance of the current at equilibrium, which is only formal in
the sense that a double limit (in space and time) has to be taken. As in [2], we prove here that the
limit exists, and that the homogenization effect occurs for the Green-Kubo formula: for almost every
realization of the disorder, the thermal conductivity exists, is independent of the disorder, is positive and
finite. Finally, let us introduce y > 0 the intensity of the flip noise, and A > 0 the intensity of the exchange
noise. We denote the diffusion coefficient by D(A,y) when obtained through the variational formula in
the Varadhan’s method, and by D(A, y) when defined through the Green-Kubo formula. Then, we prove
that the two conductivities are equal: D(A,y) = D(A,7), when the two intensities A,y are positive. In
addition, we prove in Theorem 7.1 that the Green-Kubo formula remains well-defined when A = 0, that
is D(0, ) exists, is finite and positive. Finally, Theorem 7.4 states that D(A, y) tends to D(0,y) as A goes
to 0. The existence question for D(0,y) (the hydrodynamics diffusion coefficient) remains open.

Before ending the introduction, let us be more precise on the model and the convergence result.
We introduce the harmonic Hamiltonian system described by the sequence {p,, 7, },cz, where p, stands
for the momentum of the oscillator at site x, and r, represents the distance between oscillator x and
oscillator x + 1. Each atom x € Z has a mass M, > 0, the velocity of atom x is given by p,/M,. We
assume the disorder M := {M, }, to be a collection of real i.i.d. positive random variables such that

1
VxeZ, —=<M,<C,
C

for some finite constant C > 0. The equations of motions are given by
dp,
dt
drx o px+1 p_x

=Ty = Tx—1,

dt Mx+1 Mx.

The dynamics conserves the total energy

2 2
X€EZ X

To overcome the lack of ergodicity of deterministic chains, we add a stochastic perturbation to this new

dynamics, so that the convergence of the energy fluctuations distribution holds (Theorem 3.1). The noise

can be easily described: atindependently distributed random Poissonian times, the quantity p,./4/M,, and

the interdistance r, are exchanged, or the momentum p, is flipped into —p,.. This noise still conserves

the total energy &, and is very degenerate.

Even if Theorem 3.1 could be proved mutatis mutandis for this harmonic chain, for pedagogical
reasons we now focus on a simplified model (as in [4]), which has exactly the same features and involves
less painful computations. From now on, we study the dynamics on the new configurations {1, },cz
written as

mxdnx = (nx+1 - nx—l)dt’ M
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where m := {m,},c; is the new disorder with the same characteristics as before. It is notationally
convenient to change the variable 7, into w, := ,/m,n,, and the total energy reads

&= Z wi.
XEZ

Let us now introduce the corresponding stochastic energy conserving dynamics: the evolution is de-
scribed by (1) between random exponential times, and at each ring one of the following interactions can
happen:

a. Exchange noise — two nearest neighbour variables w, and w, ; are exchanged;

b. Flip noise — the variable w, at site x is flipped into —w,.

With these two perturbations, the dynamics conserves the total energy only, the other important
conservation laws of the Hamiltonian part being destroyed by the stochastic noises. As a result, the
following family {ug} g~ of grand-canonical Gibbs measures is invariant for the process:

pp(dw) := H 2ﬁ—n exp <gwi) dw,. 2

X€EZL

The index 3 stands for the inverse of the temperature. Notice that ug does not depend on the disorder,
and that the dynamics is not reversible with respect to the measure ug. We define eg as the thermody-
namical energy associated to 3, namely the expectaction of w(z) with respect to ug, and yx (f8) = 23 2 as
the variance of co% with respect to ug.

We consider the system starting with ug and we denote by Eg the expectation for the stochastic
dynamics starting with this invariant distribution. We prove a diffusive behavior for the energy: first,
define the distributions-valued energy fluctuation field

1
Wi= — ) 6, n{w?(0) —eg}.
\/N :;Z x/ { x ﬁ}
It is well-known that YN converges in distribution as N — oo towards a centered Gaussian field )V, which
satisfies )
Es[YE(G)] = 2(B) | PGy,

for good test functions F,G. In this paper we prove that these energy fluctuations evolve diffusively in
time (Theorem 3.1). More precisely, the following distribution

YN = % 3 6 {@?(EN?) — e}

XEZL

converges in law as N — oo to the solution of the linear Stochastic Partial Differential Equation (SPDE)

0,y = Daﬁydt + M@B(y, t),

where D is the diffusion coefficient which has explicit expressions, and B is the standard normalized
space-time white noise.

Finally, we could think of using the entropy method to derive the hydrodynamic equation. For that
purpose, the initial law is not the equilibrium measure ug, but a local equilibrium measure (Definition
?? above). We conjecture that this property of local equilibrium propagates in time. In other words, let
ey : T — R be a bounded function, where T denotes the torus [0, 1). The goal would be to show that the



2 THE HARMONIC CHAIN PERTURBED BY STOCHASTIC JUMP NOISES

empirical energy profile converges in the thermodynamic limit to the macroscopic profile e(¢t,-) : T — R

solution of
oe 0%

e

5(t,u):Dﬁ(t,u), t>0,ueT,
e(0,u) = ey(u).

Unfortunately, even if the diffusion coefficient is well-defined through the non-gradient approach, this

does not straightforwardly provide a method to derive the hydrodynamic limits.

Let us now give the plan of the paper. We start with Section 2, which is devoted to introduce the
model and all notations and definitions that are needed. The main point is to identify the diffusion term
D (Section 5), by adapting the method introduced in [19]. In Section 4, we derive the Boltzmann-Gibbs
principle. The convergence of the energy fluctuations field (in the sense of finite dimensional distribu-
tions) is proved in Section 3. Finally, Section 6 gives a precise description of the diffusion coefficient
through several variational formulas. In Section 8, we present a second disordered model, where the
interaction is described by a potential V. For this anharmonic chain, we need a very strong stochastic
perturbation, which has a spectral gap, and satisfies the sector condition. We conclude in Section ?? by
highlighting the step where the usual techniques for proving hydrodynamic limits fail. In Appendices,
technical points are detailed: in Appendix A, the space of square integrable functions w.r.t. the standard
Gaussian law is studied through its orthonormal basis of Hermite polynomials. In Appendix B, the weak
version of closed forms usual result is investigated. The sector condition is proved for a specific class of
functions in Appendix C. Appendix ?? is devoted to prove the convergence of the Green-Kubo formula.
In Appendix D, the tightness for the energy fluctuation field is investigated.

2 The harmonic chain perturbed by stochastic jump noises

2.1 Generator of the Markov process

We first describe the dynamics on the finite torus Ty := {0, ..., N}, meaning that boundary conditions
are periodic. The configuration {w,},cr, evolves according to a dynamics which can be divided into
two parts, a deterministic one and a stochastic one. The space of configurations of our system is given
by Qy = RN. We recall that the disorder is an i.i.d. sequence m = {m, }, ., which satisfies:

1
V X e Z, - < mx < C,
C
for some finite constant C > 0. The corresponding product and translation invariant measure on the

space Qp = [C1,C]% is denoted by P and its expectation is denoted by E. For a fixed disorder field
m = {m, },er,, We consider the system of ODE’s

Vmydw, = < Oxt1 _ Dx ) dt, t=>0,xeTy
\/ My 11 \/ My_1

and we superpose to this deterministic dynamics a stochastic perturbation described as follows: to each

atom x € Ty, and each bond {x,x + 1}, x € Ty is associated an exponential clock of rate one, such that

each clock is independent of each other. When the clock attached to x rings, w, is flipped into —w,,

and when the clock attached to the bond {x, x + 1} rings, the values w, and w,,; are exchanged. This

dynamics can be entirely defined by the generator of the Markov process {w,(t); x € Ty};>0, that is

LI — AT 4y SEP 4 AT
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where, for all functions f : Qp x Qy — R,

Aﬁf(m,w): Z( @xt1  Wx1 >5f (m, w),

xeTy \/mxmx+1 \/mx—lmx a(‘)x

ﬂllDfma) mew f(m,w),

xeTy

SeXChf m w Z f xx+1 f(m,co).

xeTy

Here, the configuration w™ is the configuration obtained from «w by flipping the momentum of particle

("), = {wz if z # x,

—w, ifz=x.

X:

The configuration «w***! is obtained from w by exchanging the momenta of particles x and x + 1:
W, ifz#x,x+1,
("), = w,y  ifz=x,
Wy ifz=x+1.

We denote the total generator of the noise by Sy := YSSIP + ASI’fI"Ch , Where v, A > 0 are two positive
parameters which regulate the respective strengths of noises.

One quantity is conserved: the total energy >, co)z(. The following translation invariant product Gibbs
measures ug on Q) are invariant for the process:

d,uﬁ H — exp <§wi) dw,.
x€Ty

In the following, the expectation of f with respect to ,ug is denoted by (f )s. The index 3 stands for
the inverse temperature, namely <a>(2)>/5 = 1/PB. Let us highlight the fact that the Gibbs measures do not
depend on the disorder m. This obvious remark will play further a crucial role. From the definition, our
model is not reversible with respect to the measure ,ulg. Precisely, Ay is an antisymmetric operator in
Lz(uﬁ) whereas Sy is symmetric.

We denote by Q the space of configurations in the infinite line, that is  := R%, and by up the product
Gibbs measure on RZ. Hereafter, for every 3 > 0, we denote by ]P’* the probability measure on Qp x Q2
defined by

We notice that IP’}*3 is translation invariant and we write IE;; for the corresponding expectation.

2.2 Energy current

Since the dynamics conserves the total energy, there exist instantaneous currents of energy j 1
such that £ (w?) = j, (M, @) — j,_1 (M, w). The quantity j, ., is the amount of energy between
the particles x and x + 1, and is equal to

2w, w
S x T xAl F A2, — w?)

x+1 x/*
A/ MMy 11

jx,x+1 (m5 w) =
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The energy conservation law can be read locally as

wi(t) - wazc (O) = Jx,x+1(t) - Jx—l,x(t))

where J, . 1(t) is the total energy current between x and x + 1 up to time t. This can be written as

t
Jx,x+1(t) = J;) jx,x+1(5) ds + Mx,x+1(t))

where M, ,,1(t) is a martingale which can be explicitely computed as It6 stochastic integral:

t

Meenn(©) = [ {020 02 (6700 DN~ 23]+ |

O [wi_l - wi] (s7)d [Ny_y o (s) — As],

. . . . . . A
where (N, ,1)yez are independent Poisson processes of intensity A. We also write j, ;1 = Jex+1 T
jf «41 Where j)‘? wp1 (resp. jf «41) Is the current associated to the antisymmetric (resp. symmetric) part
of the generator:
wa Wyt1
A/ My 1
2 2 )

ji,xﬂ(m’ w) = jixﬂ(co) = )L(coxﬂ — W)

j_f,x+]_ (m’ CL)) =

One can check that the current cannot be directly written as the gradient of a local function, neither by
an exact fluctuation-dissipation equation (in other words, the current is not the sum of a gradient and
a dissipative term of the form L3(7,h), where h is a local function of the system configuration). This
means that we are in the non-gradient case. We also define the static compressibility that is equal to

2

x(B) :=(wip —(wi)g = 2k

2.3 Cylinder functions

For every x € Z and f a measurable function on Q, x 2, we consider the translated function 7,.f,
which is the function on Q5 x Q defined by: 7, f(m, w) := f (7, m, 7, w), where 7, m and 7, w are the
disorder and particle configurations translated by x € Z, respectively:

(Txm)z =My, (wa)z = Wy 4z

If f is a measurable function on Qp x Q, the support of f, denoted by As, is the smallest subset of Z
such that f (m, w) only depends on {m,,w, ; x € A¢} and f is called a cylinder function if A, is finite.
For every cylinder function f : Qp X 2 — R, consider the formal sum

Iy = Z T f
X€EZ
which does not make sense but for which
vO(I_‘f) = I-‘f (1‘1’1, wO) - 1—‘f (m) C()),
Vo1 (Tp) :=Tf(m, 0>") — T (m, ).
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are well defined. Similarly, we define

(Vif)(m, w) := f (m, 0¥) — f (m, w),
(vx,x+1f)(m)w) ::f(m’ wx,x+1) _f(m)w)'

Let A € Z be a finite subset of Z, and denote by F, the o-algebra generated by {m,,w, ; x € A}. For a
fixed positive integer £, we define A, := {—/,...,£}. If the box is centered at site x € Z, we denote it by
Ag(x):={—L+x,..,0 +x}.

We denote by C the set of cylinder functions on 25 x £ with compact support and null average with
respect to ug (for P-almost every m € Qp). We also introduce the set of quadratic cylinder functions on
Qp x Q, denoted by Q = C, and defined as follows: f e Q if there exists a finite sequence (v; j(m)); jez
of real cylinder functions on 4, such that

w) = Zil)i,i(m)(wizﬂ —wf) + Z Pij(m)w;w;. (3)
i€Z i,jEZ
i#]

In other words, quadratic functions are homogeneous polynomials of degree two in the variable w, that
have null average with respect to ug for every m € Q5. An other definition through Hermite polynomials
is given in Appendix A.

For f € C, denote by s, the smallest positive integer s such that A contains the support of f and then
Ap = A, Hereafter, we consider operators £™, A™ and S acting on functions f € C as

LT = A"f + Sf, 4)

xEZ \/mx My 1 \/mxflmx a(‘)x

Amf(m, CL)) _ Z < Wy 41 . Wy_1 > af (m, (O),
Sf _ ')/Sﬂipf JrkSexchf,

SUf(m,w) = Y (Vo )(m,0) = Y f(m,e*) - f(m, o),

XEZL X€EZL
SRE (M, @) = Y (Vaeraf)(m, ) = Y f(m, ™) = f(m, ).
XEZL XEZL

We also denote S, = YV, + AV, ,,; for x € Z. For A, € Z defined as above, we denote by £“‘£, resp. Sy,
the restriction of the generator L™, resp. S, to the finite box A,, assuming periodic boundary conditions.
We are now ready to define two sets of functions that will play further a crucial role.

DEFINITION 2.1. Let Cy (respectively Q) be the set of cylinder (respectively quadratic cylinder) functions ¢
on Qp x Q such that there exists a finite subset A € Z, and cylinder functions {F,, G, }.cy, satisfying

© = > VilF) + Vi i1 (Gy)

X€EA

If ¢ belongs to Q,, we assume the cylinder functions F,, G, to be quadratic.

To conclude this section we introduce the quadratic form associated to the generator: for any x € Z
and cylinder functions f, g € C, let us define
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Dy(pp; f) = (LR ) =L (=Sa)f.F g = D5 {(=S)f.8)ps

XEA[

and notice that

((=8f.8)5 = S(f(m, %) = £ (m,©)) (g(m, &%) = g(m,w)) ),
20 m 0 — f(m, ) (30m, 0™ ) — g(m,0)) )y,

The symmetric form D, is called the Dirichlet form, and is well-defined on C. This is a random variable
with respect to the disorder m.

2.4 Semi-inner products and diffusion coefficient

For cylinder functions g,h € C, let

«gh»g = Z EplgTch] and  «g»p .= Z xEg(g w?] (5)

XEZL XEZL

which are well defined because g and h belong to C and therefore all but a finite number of terms vanish.
Notice that « -, »g , is an inner-product, since the following equality holds:

1
< f,g»p,=lim—E ,
f g >, /\ITZ |A| );\Txf );\Txg ,

Since « f —7,f,g »p .= 0 for all x € Z, this scalar product is only semidefinite. In the next proposition
we give explicit formulas for elements of C,.

PROPOSITION 2.1. If ¢ € Cy with

¥ = Z vy(Fy) + vy,y+1(Gy);

YEA
then
KPP = E<(wg — w?) Z TyGy>
YEA B
KP,g»p.= ]E<V0(Fg) Z T_F, +V1(T) Z T_yGy> forall geC.
YEA YEA B
Proof. The proof is straightforward. O

DEFINITION 2.2. We define the diffusion coefficient D(f) for 3 > 0 as

D(B):=A+ inf sup{« fi=8f »p . +2« jg"l —A"f,g»p ., —«g,—S5¢g >>,3’*}.

x(B) feQgeg
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The first term in the sum is only due to the exchange noise, whereas the second one comes from the
Hamiltonian part of the dynamics. Formally, this formula could be read as

1 ) 1 -
D(B)=A+ 705 &« ]él, (—L£™) 1]6\’1 > 4 6)

but the last term is ill-defined because jé\l is not in the range of £L™. More rigorously, we should define
< Joys (FL™) gy »p,e as
limsup <« j'y, (z = L™) 718 »p. -

z—0
The last expression is now well-defined, and the problem is reduced to prove convergence as z — 0.
From Hille-Yosida Theorem (see Proposition 2.1 in [6] by instance) (6) is equal to the infinite volume
Green-Kubo formula:

XEZ

1
D(ﬁ)=k+x(ﬁ)§r§E f D it (0,584 ( )>ﬁdt , 7

In Section 7.1, we prove that (7) converges, by inspiring the argument from [2], and we show that
the diffusion coefficient can be equivalently defined in the two ways. Assuming the convergence in the
Green-Kubo formula, one can easily see that D(f) does not depend on 8. We denote by L(z) the second
term of the right-hand side of (7), that is

1 +00 A A

Let L2(« -,- » p.«) be the Hilbert space generated by the set of bounded local functions and the inner
product « -,- »g ,, and h, := h,(m, w; ) be the solution of the resolvent equation in L?(« -, »p ) ie.

(Z - Em)hz = ](1)3:1

Then we have )

A A
« hz,]o,1 »p = B « hz,]o,1 Bk -

1
L(z) = —
x(B)
Observe that if w is distributed according to ug then BY2w is distributed according to uq. Since
h,(m,w;1) = h,(m, w; ) and jf +.1 is an homogeneous function of degree two in w, it follows that
the diffusion coefficient does not depend on f3.

3 Macroscopic fluctuations of energy

In this section we are interested in the fluctuations of the empirical energy, when the system is at equi-
librium. We prove that the limit fluctuation process is governed by a generalized Ornstein-Uhlenbeck
process, whose covariances are given in terms of the diffusion coefficient. We adapt the non-gradient
method introduced by Varadhan. In particular, we establish rigorously the variational formula that ap-
pears in the definition of the diffusion coefficient (Definition 2.2). Varadhan’s approach is investigated
in Sections 4, 5 and 6.

10



3 MACROSCOPIC FLUCTUATIONS OF ENERGY

3.1 Energy fluctuation field

Recall that we denote by e the thermodynamical energy associated to the inverse temperature § > 0,

N

namely eg = B L. We define the energy empirical distribution 7 .

o, on the torus T = [0, 1) as

1
() = = > 0} (0)8,n(du), t€[0,T], ueT,

xeTy

where &, states for the Dirac measure. We denote by {ew(t)},~o the Markov process generated by N>R
and by M the set of probability measures on T, endowed with the weak topology. The space of tra-
jectories in M, which are right-continuous and left-limited (i.e. the Skorokhod space) is denoted by
D ([0, T], M;). If the initial state of the dynamics is given by the equilibrium Gibbs measure ,ulg, then
nlt\{m weakly converges towards the deterministic measure on T, equal to {€gdu}. Our goal is to inves-
tigate the fluctuations of the empirical measure N with respect to this limit. Let us fix the disorder m,

and the inverse of temperature 3 > 0. Consider the system under the equilibrium measure ,ulg .

DEFINITION 3.1 (Empirical energy fluctuations). We denote by yflm the empirical energy fluctuation field
defined as
1 X
YL H) = —= > H(3) {e(0) —ep},
t,m \/N x;N N { X ﬂ }

where H: T — R is a smooth function.

We are going to prove that the distribution ytNm converges in law towards the solution of the linear

SPDE:
0y = Da}z,ydt-l— \/ZDX(ﬁ)ayB(y) t)

where B is a standard normalized space-time white noise, and D is the diffusion coefficient defined in
Theorem 5.9. Observe that there is no dependence on the disorder m in the limit process. In other
words, the latter is described by the stationary generalized Ornstein-Uhlenbeck process with zero mean
and covariances given by

_ )2
(Y, (H)Yo(G)) = j‘% deudvﬁ(u)a(v)exp (_(u4tD) >

for all t > 0 and smooth functions H,G : T — R. Here, H (resp. G) is the periodic extension to the real
line of H (resp. G).

We denote by YN the probability measure on D([0,T], M) induced by the energy fluctuation field
yﬁm and the Markov process {w(t)},~¢ generated by Nzﬁﬁ, starting from the equilibrium probability
measure ,ulg. Let 9) be the probability measure on the space D(|0, T], M;) corresponding to the gener-
alized Ornstein-Uhlenbeck process ;. The main result of this section is the following.

THEOREM 3.1. For almost all realization of the disorder m € Qp, the sequence {@i}N% weakly converges
in D([0,T|, M) to the probability measure ).

3.2 Strategy of the proof

We follow the lines of [14, Section 3]. The proof of Theorem 3.1 is divided into three steps. First,
we need to show that the sequence {@ﬁ}N;l is tight. This point follows a standard argument, given for
instance in [9, Section 11], and recalled in Appendix D for the sake of completeness. Then, we prove

11
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that the one-time marginal of any limit point 2)* of a convergent subsequence of {@ﬁ}NZl is the law of
a centered Gaussian field ) with covariances given by

YEYE) = 2(8) | dutiGw)
where H,G : T — R are smooth functions. This statement comes from the central limit theorem for

independent variables. Finally, we prove the main point in the next subsections: all limit points 2)* of
convergent subsequences of {@ﬁ}N% solve the martingale problems below.

Martingale problems — For each smooth function H: T — R,

(1) = 340~ o0) - [ D307, ®
and
9, (H) = (0, (H)) — 2t (B)D f H (u)du ©

are L!(9))-martingales.

3.3 Martingale decompositions

Let us fix a smooth function H: T — R. We rewrite YN (H) as

Pl = Vi) + [ VN 3 01 (5 Jaims) s+ A 80

xeTy

where /\/llt\]m is the martingale defined as

MY (H) _LN\/— ZVNH< ) (@2, = ©2)(5) [Ny i s) — 2],

Hereafter, (N, ,1)yez, (Ny)xez are independent Poisson processes of intensity (respectively) A and v,
and Vy stands for the discrete gradient:

i) -n[n(52) ()]

and the discrete Laplacian Ay is defined in a similar way:

AGH (%) — N2 [H <x;\;1) +H<x;1> _oH (%)]

To close the equation, we are going to replace the term involving the microscopic currents with a term

involving yi\fm. In other words, the most important part in the fluctuation field represented by

[ VN S 9t (2) e msas

xeTy

12



3 MACROSCOPIC FLUCTUATIONS OF ENERGY 13

is its projection over the conservation field yfm (recall that the total energy is the unique conserved
quantity of the system). The non-gradient approach consists in using the fluctuation-dissipation approx-
imation of the current j, ., ; given by Theorem 5.9 below as D( )2() +L™(7,f). For that purpose,
we rewrite, for any f € Q,

x+1

VL) = VL (H) + JDysm(ANH)der”le(H)+jflljlf( )+ My (H) + M0 (H),  (10)

where
ﬁirljlf f \/_x;r: VyH ( > []x x+1(m,s) — D(CO,%H —w?)(s) — Em(’rxf)(m,s)] ds,
ﬁ?fif f VN ; VNH< > "(Tyf)(m,s)ds,
% 8 = [ o 30 O (5) § [T (= )N a6 ]

mEN (1) = | ﬁ%w(g) Vo1 () 5) 4[N 1 (6) — 2]

The strategy of the proof is based on the two following results.
LEMMA 3.2. For every smooth function H: T — R, and every function f € Q,
tim £( sup (920 (1) + 22N (1)) =0
N—o0 OﬁtzT t’m>f t mf ﬁ o
THEOREM 3.3 (Boltzmann-Gibbs principle). There exists a sequence of functions {fi }ren € Q such that

(i) for every smooth function H: T — R,

. . 1,N 2
Jim Jim 2 o (310,00)°) =0 an
(ii) and moreover
2 2
lim E<A(vo,1(wérfk>) ) >ﬁ — 2Dy (B). (12)

As a result, the martingale N

o f, CONVerges in L2(]P’75), as N — oo and k — o0, to a martingale 91, (H)

of quadratic variation
260 (B) | W (w?
T
and the limit ), (H) of yi\fm(H) satisfies the equation

i) = Do(#0) + [ 4(DH) s+, ().

We have proved that the limit solves the martingale problems (8) and (9), which uniquely characterized
the generalized Ornstein-Uhlenbeck process ),. The proof of Lemma 3.2 is the content of the next
subsection. The proof of Theorem 3.3 is more challenging, and Sections 4, 5 and 6 are devoted to it.
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3.4 Proof of Lemma 3.2

In this paragraph we give a proof of Lemma 3.2. We define
XN t 23 N}1< ) Txf(nht)
mf xeT

As before, we can rewrite

Ty (H )+93Ttmf( ) =Xpn s () = X5 £ (0)

i 2 e ({2 v () o (2 1) tmto

0 xeTy zeTy

N\/_Jxeqr ({ZVNH< ) } VNH< )rf>( 5)d[Ny(s) — As].

zeTy

Therefore,

(92010 + 9 (1)) <3 (X3, (0) ~ X3, (0))

3 <ﬁ Lt D Vs ({ > VNH( ) } VyH (;) Ff) (m,s)d[Ny 11(s) — P\S]>2

3<ﬁ£%} <{ZTVNH<) } VNH<N)Ff> (m,s)d[Nx(s)As]> (13)

On the one hand,
E<<X§1’f>2>ﬁ NgxyZET VNH( )vNH(f\'I)E<rxf,ryf>ﬁ.

This last quantity is of order 1/N?, because f is a local function of zero average, and H is smooth. On
the other hand, let us define

ZVNH< ) T.f — VNH< )ZTZf.

z€Ty
Then, the expectation of the second term of (13) is equal to

312 th
E< xx+4, >ﬁ.

x€eTy

Again, since f is local and H is smooth, this quantity is of order 1/N2. Indeed, in the expression
V,.x+1(Yy), there is a sum over z € Z, but in which only terms with |z — x| < 2 remain. The same
holds for the third term of (13).

4 Central limit theorem variances at equilibrium

In this section we are going to identify the diffusion coefficient D that appears in (10). Roughly
speaking, D can be viewed as the asymptotic component of the energy current j, ., in the direction of

14



4 CENTRAL LIMIT THEOREM VARIANCES AT EQUILIBRIUM

the gradient wi — o))zc, and makes the expression below vanish:

+1

. 2
f Z [exs1r — D(o))z(Jrl —w?) - Lim(ﬂ:xf)]ds) , foranyf >0.

0 xeTy

inf lim sup lim su ! E%:
inf 1i i —
f p ptN B

€Q N> t—w

Let us start by giving well-known tools that will help understand the forthcoming results.

4.1 An insight through additive functionals of Markov processes

Consider a continuous time Markov process {Y;};~o on a complete and separable metric space E,
which has an invariant and ergodic measure 7. We denote by (-), the inner product in L?(7t) and by
L the infinitesimal generator of the process. The adjoint of £ in L?(7) is denoted by £*. Fix a function
V: E — R in L?(7) such that (V), = 0. Theorem 2.7 in [11] gives conditions on V which guarantee a

central limit theorem for
= [vena
— | V(Y;)ds
Vit Jo

and shows that the limiting variance equals

o?(V,m) = Zzli_r)r(l) V,(z — E)_1V>T[.
z>0

Let the generator £ be decomposed as £ = S + A, where S = (£ + £*)/2 and A = (£ — L*)/2 denote,
respectively, the symmetric and antisymmetric parts of £. Let 7, be the completion of L? (1) with respect
to the semi-norm || - ||; defined as:

IF 13 = (=0 ) = o (=) )

Let H_; be the dual space of #; with respect to L?>(), in other words, the Hilbert space generated by
local functions and the norm | - | _; defined by

IFI2 = Slglp{2<f,g>n —|gl?},

where the supremum is carried over all local functions g. Formally, ||f |_; can also be thought as
F(=8) )
Notice the difference with the variance o?(V, ) which formally reads
2V, (=£)7 V) =2V [(=£) V) .-
Hereafter, B, represents the symmetric part of the operator B. We can write, at least formally, that
([(—0) 1)} ' = =8+ A (=8) s = =5,

where A* stands for the adjoint of A. We have therefore that [ (—£) ™|, < (—=S) ™. The following result
is a rigorous estimate of the time variance in terms of the H_; norm, which is proved in [11, Lemma
2.4].

LEMMA 4.1. Given T > 0 and a mean zero function V in L2(1) n H_4,

t 2
E, [ sup (j V(s)ds> ] < 24T|V|2,. (14)
0<t<T 0

15
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If we compare the previous left-hand side to the Boltzmann-Gibbs principle (12), the next step should
be to take V proportional to

Z [jx,erl - D(wgzc+1 - w)zc) - £m(Txf)]

xeTy
and then take the limit as N goes to oo. In the right-hand side of (14) we will obtain a variance that
depends on N, and the main task will be to show that this variance converges: this is studied in more
details in what follows. Precisely, we prove that the limit of the variance results in a semi-norm, which
is denoted by ||| - |||s and defined in (21). We are going to see that (21) involves a variational formula,
which formally reads

WP =< £, (=5)1f w325 < f .

The final step consists in minimizing this semi-norm on a well-chosen subspace in order to get the
Boltzmann-Gibbs principle, through orthogonal projections in Hilbert spaces. The hard point is that
|[|-]]|g only depends on the symmetric part of the generator S, and the latter is really degenerate, since
it does not have a spectral gap.

In Subsection 4.2, we investigate the variance (f, (—S) "1 f »p» and prove its well-posedness for every
function f in Cy,. In Subsection 4.3, we relate the previous limiting variance (taking the limit as N
goes to infinity) to the suitable semi-norm. Subsection 4.4 is devoted to prove the Boltzmann-Gibbs
principle inspired from Lemma 4.1. Then, in Section 5 we investigate the Hilbert space generated by the
semi-norm, and prove some decompositions into direct sums. Finally, Section 6 focuses on the diffusion
coefficient and its different expressions.

4.2 Microcanonical measures and integration by part
4.2.1 Decomposition on microcanonical measures

The thermodynamic ensemble which is naturally associated with a Hamiltonian dynamics is the mi-
crocanonical ensemble, which describes the system at fixed energy. It is possible to devise a probability
measure on the configurations w € Q) with constant energy 3! > 0 such that the measure is stationary
with respect to the Hamiltonian flow. The corresponding probability measure denoted by ,u;“ﬁ is the
normalized uniform probability measure on the sphere

Sy 1= {weQN; Z wizﬁl}.

xeTy

Now, for B! > 0 fixed, we disintegrate the microcanonical measure ,uﬁcﬁ on Sy . Let G be the group
generated by the following matrices: the permutation matrices P, defined for any permutation o of

{1,..,N} by
1 ifi=o0(j),
(Pa)iJ = .
0 otherwise,

and the sign matrices Sy, defined for k € {1,...,N} by
1 ifi=jandi #k,
(Skij=4 -1 ifi=j=k

0 otherwise.

16
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The group G acts on Gy 5. For x € Gy g, we denote by gﬁ’ P the orbit of x = (X1, ...,Xy) under the action
of G. More precisely,

gﬁ"ﬁ = {co €Gyp; Vie{l,.,N}, w;e{+x;;--- ;ixN}},
and each orbit is finite, with cardinality 2¥™N*1)/2_ This group action defines a projection

T GN,/B — QN,ﬁ

onto the quotient space Qy g := Sy p/G. We can define the pushforward measure vy g := 7 % ,ul’l}cﬁ
on Qy . Then, the disintegration of ,ul’l}cﬁ with respect to 7 writes as follows: for all test functions

f:&yp — R, the measure uy’ (-]x) with support on Gy P satisfies
flo @) = [ [ () aug o) dnp
Sn,p On,s YO

. o ) . . . NS .
It is not difficult to see that uy g«(-) := uﬁfﬁ(o|x) is the uniform measure on the orbit G, ™", since its
support is invariant under a subgroup of rotations (of the total sphere). Let us denote by {-)yp the
corresponding expectation. We obtain that, for all test functions f : Sy 5 — R,

<f>N,[5,X = N(N+1) /2 Z f
yegy”

To conclude, let us fix the energy 3! > 0, take x in the microcanonical sphere Sy p, and look at the
dynamics generated by Ly restricted on the orbit Q,I:I P Then, observe that the kernel of Sy in the Hilbert
space L2 (un,px) has dimension 1. As a result, the range of Sy in LZ(MN,/},X) has codimension 1, and is
equal to the mean-zero functions.

In the sequel, we give some properties of the two spaces Cy and Q,: for instance, the energy current
is among the elements of Q, (Proposition 4.2). We also prove an integration by parts formula for the
functions of C, (Proposition 4.3).

4.2.2 Properties of C, and Q,
PROPOSITION 4.2. Every @ € Cy has zero mean with respect to Us, Ex:
<"0>SWE’X = 0, for all disorder m, for allE >0, and X € &;_g.
Moreover; the following elements belong to Q:
(@) Jor» Jou-
(b) L£™f, Sf and A™f, forallfeQ.

Proof. The first statement is straightforward as a consequence of the definition. Besides, (a) is directly
obtain from the following identities: for x € Z, and k > 1

C‘):2<+1 - w}z{ = Vix+1 ( 2) (15)

W, W W, w
wxwx+k=sx< "“) Zsﬁe( "”“). (16)

17



4 CENTRAL LIMIT THEOREM VARIANCES AT EQUILIBRIUM 18

Then, if f € Q, it is easy to see that (15) and (16) are sufficient to prove (b). For instance,

2 o wz
Wy Wy 2 Wy 1Wx_1 x+1 X

\/mx+1mx+2 \/mxmxfl \/mxmx+1

—dyw,wy g+ )\'(wx+2 - wx+1)wx + A'("‘)x—l - wx)wx+1~

w

£m(wxwx+1) =

O

Conversely, let us now consider a function ¢ € C,. From the previous subsection together with
Proposition 4.2, we can write the cylinder function ¢ as ¢ = (—SAW)(—SAW)_lnp for some mean-zero
function (—SAw)*lcp, measurable with respect to the variables {mx, Wy ; XE Aq,}. The reversibility of
the measure y, g x implies that the following decomposition holds in Lz(,uw’x):

with

The following proposition is a direct consequence of these comments.

PROPOSITION 4.3 (Integration by parts formula). Let ¢ be a cylinder function in Cy. There exists a family
of cylinder functions {Ff ,G?: xe Asa} measurable with respect to F, Ay such that

<“P’g>e,/5,x = Z <Ff’vxg>e,/5,x + <Gf’vx,x+1g>e,/5,x a7)

xe/\w

for all rectangles Ay that contain A, for all § > 0, and for all functions g € Lz(ue,ﬂ,x). Forall y e Z,

TyEY = F;(rif”
7,G¢ =G
Moreover,
2
<(p) g>f,/5,x < C(SO) ﬁ,X) <g5 <_8Aw) g>€,ﬁ,x (18)

where C(y, 3,x) is equal to

Cle, B,x) := 2<so, (_SA¢>71 90>e o

By reintegration of the desintegrated measure g g x the same result (17) may be restated with microcanon-
ical measures Uy g x replaced by ug and IP’}*3 and (18) becomes:

{p,8)p <Cu(w) <g, <_SA¢) g>[5 (19)
E(p,8)p < Cz(cp)E<g, (_SA¢> g> 5 (20)

for some constants Cy, C, which can be written in terms of variances and do not depend on f3.
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Proof. Inequalities (18) and (19) follow from Cauchy-Schwarz inequality applied to (17). Let us notice
that the last inequality (20) uses the translation invariance of the measure IP’E. O

PROPOSITION 4.4 (Variance of quadratic functions). If ¢ € Q,, then
(o, (=8r,) o)p = Sup{2<so g5 — Ds, (kg3 g)}

This result can be restated with ug replaced with IP’;; as
ECe, (=86a,) " ¢)p =sup {280,805 —E[D,, (13 2)] |
ge

Proof. This follows from the decomposition of every function in LZ(,uﬁ) over the Hermite polynomials
basis: see Proposition A.3 in Section A. O

4.3 Limiting variance and semi-norm

We now assume 3 = 1. All statements are valid for any 8 > 0, and the same argument can be easily
written. In the following, we deliberately keep the notation y (1), even if the latter could be replaced
with its exact value. We are going to obtain a variational formula for the variance

(2£)1E< SAe Z TxP> Z Tx®
|x|<t, |x|<t,

where ¢ € Qp and £, = £ —s, — 1. We first introduce a semi-norm on Q. For any cylinder function ¢
in Q,, let us define

2
2 K€Y > A 2 Y 2
2 5 * *
=sup+ 2K ,g>>*+——f—JE[V r ]f—]E[VF ] 21
elll3 gEQ{ ¥ Ly T 7(1) 91 ( 0,1 g) 91 ( Og)
= sup {2 KP,g P, t2a < 9>, —E [DO (,ul;acog + Fg)] } (22)
geQ
aeR

As we previously noticed, this formula can be restated as

lel|Z =< ¢, (=8) 1o »1, + &P >>i** ) (23)

2
Ax(1)
Since ¢ belongs to Q,, the results of Subsection 4.2 are valid, namely: the first term in the right-hand
side of (23) is well-defined (Proposition 4.3), and the supremum in the variational formula (21) can be

restricted over functions in Q (Proposition 4.4). We are now in position to state the main result of this
subsection.

THEOREM 4.5. Consider a quadratic cylinder function ¢ € Q. Then
Elij.lo(%)_l]E< =8,) 7 D) e X T ) = lllell3
x|<t,, |x|<t,

Here, £, stands for { —s,, — 1 so that the support of T, is included in A, for every x € Ay,

19



4 CENTRAL LIMIT THEOREM VARIANCES AT EQUILIBRIUM 20

This theorem is the key of the standard non-gradient Varadhan’s method. As usual, the proof is
done in two steps that we separate as two different lemmas for the sake of clarity. First, we bound the
variance of a cylinder function ¢ € Q,, with respect to the canonical measure u;, by the semi-norm
|l¢[|? (Lemma 4.6). In the second step, a lower bound for the variance can be easily deduced from the
variational formula which expresses the variance as a supremum (Lemma 4.7).

LEMMA 4.6. Under the assumptions of Theorem 4.5,

1imsup(2€)_1]E< —Sp,)” Z Tx¥, Z T ) < |llelllf.

t—a0 Ix|<t, |x|<t,

In this step, one need to know the weak limits of some particular sequences in Q,. In the typical
approach, these weak limits are viewed as germs of closed forms, but for the harmonic chain, this way of
thinking is not necessary.

Proof. We follow the proof given in [14], Lemma 4.3 and we assume first that ¢ = V,(F) + V1(G),
for two quadratic cylinder functions F,G. Then, the general case follows by linearity. We write the
variational formula

(25)1E< SAz Z T, ¥, Z TP —sup 2]E<cp, Y, Z T,h —%E[Dg(ul;h)]

|x|<L, [x]<ty, |x|<L, 1

1 1 1
= sup 2IE<FV0 5% > Teh | +GVg, % D Tk > —ﬂE[Dg(,ul;h)]

heC lx|<€, [x|<€, 1

Since ¢ is quadratic, we can restrict the supremum in the class of quadratic functions h that are localized
in A, (the proof of that statement is detailed in Proposition A.3). It turns out that we can also restrict
the supremum to functions h such that E [D,(u;h)] < CL. This follows from the fact that the first term
can be bounded as follows (according Proposition 4.3 in addition to the convexity of the Dirichlet form):

¥, Z Tyh <C;/2 <E[D£(M1;h)]>1/2.
Ix|<t, )

Recall that C,, is a constant that depends on ¢. Next, we want to replace the sums over Ay, with the

same sums over Ay (recall that {, = { —s, — 1 < {). For that purpose, we denote

12

)=V | = S nh], ) =Vo [= 3 wh). 24)

2 |x|<t lx|<t

First of all, from Cauchy-Schwarz inequality, we have

E<§[C€(h)]2 + %[C‘{(h)]2> < iE[Dﬂ(Ml;h)]'

Then, we also can write as before

2ok 3 )| det eloamon))

lo<x<t



4 CENTRAL LIMIT THEOREM VARIANCES AT EQUILIBRIUM

These last two inequalities give the upper bound

(2£)1E< SA[ Z Tx®> Z Tx®

x|<t,, |x|<t,

< sgp{2E<F§€(h) +GC§(h)>1 _E<§[C€(h)]2 n %[C‘i(h)]2>1} . %

Let us choose a sequence {h,} satisfying E[D;(u1;hy)] < CL. Then, the sequence {}(hy), ! ()} is
uniformly bounded in LZ(IPI), and this implies the existence of a weakly convergent subsequence. We
denote by ({o,{;) a weak limit and assume that the sequence {Z(hy), ¢ (hy)} weakly converges to
(£9,¢1). The conclusion is now based on the weak version of closed forms result that we prove in
Appendix B, Theorem B.1: the pair (o, ;) can be written in L*(P}) as

(Volg, a(wi — @f) + Vo Ty),
with g € Q and a € R. We have obtained that

(ze>—1E< P REDNE NN YN <sup{zﬂa<m+cc1>lgna;[cg]gﬁq[m}

Ix|<t, x| <ty S0

1
A
:sup{2E<FVOF + G (a(wd — w?) + Vo T, > —Z )2]—E;[(a(w§w§)+v01rg)2]}
g€Q 1 2 2 ’
aeR

The inequality above is a consequence of the following fact: the L2-norm may only decrease along weakly
convergent subsequences. The result follows, after recalling (22). O

We now turn to the upper bound.
LEMMA 4.7. Under the assumptions of Theorem 4.5,
limsup(Zf)_11E< —S0) D) e X T ) = llell2
t—a0 |x|<€, [x|<€,

Proof. We define, for f € Q,

Jp = Z Tng,l, H{z Z S(tyf).

Y,y+1en, ly|<l—s;—1

The following limits hold:

lim (2£)1E< SA@ Z TXLP)J€> = K@ 2 (25)
{—o0 >
[x|<€,
lim (2¢)'E SA[ Z Txcp,Hf = <o, f >,
{—0 x1<t, ’

1

Jim (20) 1IE< ~8y,) (an+H£>,an+H£>
A

ZE; [(a(} - @) + VouL)*| + LE1 | (Vorp)? -

21
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We only prove (25), the other relations can be obtained in a similar way. As previously, we assume for
the sake of simplicity that ¢ = V(F) + V; ;(G). We recall the elementary identity

Sh, (Z Xw ) = Jy(w). (26)

.X‘EA[
Therefore,

<2‘>‘1E< =57 X Tx%Jf> ——2o7 ) ) yEilee] ]

[x|<t, Y.y+1eh |x|<L,

—207" > D) YE[GVo ()]

y.y+1eh |x|<e,

= —(20)7" Y xE}[GV1(wd)] + (x + 1)E;[G Vo1 (e?)]

[x]<t,

= (20)71 (2L, + 1) E}[G, wj — w3] TP P

The last limit comes from Proposition 2.1 and the fact that £, = £ —s, — 1. Then, we obtain from the
variational formula written with h = (=S,,) ™! (aJ, + H{ ):

.. 1
herglorolf(%) ]E< —Sy,) Z Tx¥> Z Tx§p

lx|<€, |x|<€,

o . -1 -1

> liminf(2¢) ™! 2]E<(SA8) D Tep,al; +H{> —JE<(—SAE) (an +H§> ,al, +H§>1
lx|<€, 1

=2< @, f >, F2a <o »,, —E [Do(ul;awg + Ff)] .

The result follows after taking the supremum on f € Q, and recalling (22).

4.4 Proof of Theorem 3.3

In this paragraph, we start the proof of Theorem 3.3 by using the central limit theorem variances
given in Theorem 4.5. First, we show how to relate (11) to such variances. Recall that we have assumed
p =1, but the same argument remains in force for any 3 > 0.

PROPOSITION 4.8. Let 1) € Cy, with s, <N. Then

<02£T {fotw(S)ds]2> < 24T<1’b (=Sn) " 27)

The previous result is proved for example in [11, Section 2, Lemma 2.4]. We are going to use this
bound for functions of type >, G(x/N)7, ¢, where ¢ belongs to Q,. The main result of this subsection
is the following.
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THEOREM 4.9. Let ¢ € Q, and G a smooth function on T. Then,

2
limsupE( sup \/_f > T,p(m,s)ds < CTH\cpHﬁf G (u)du. (28)
N—o0 0<t<T XET 1 T

Proof. From Proposition 4.8, the left-hand side of (28) is bounded by

24TE( VN ) 6(5) Ta(m), (-N%8y) (fZG(—)rxso<m>>>l,

xeTy xeTy

that can be written with the variational formula as

24Tsup{fZG(—) [f Txon1] - NZE[DN(.U’I;f)]}'

fec x€TyN

Since ¢ € Q, from Proposition A.3 we can restrict the supremum over f € Q. Proposition 4.3 gives

1/2
<f Tx‘10>1 < C<p<77xf) (_SA¢)(fof)>1
and by Cauchy-Schwarz inequality,

5 1/2
WRo(F)men= (3 R oR)) neisont

xeTy €Ty

The supremum on f can be explicitely computed, and gives the final bound

<021£T [\/—f xcp(m,s)ds] > <cT (% 3 G<§>2> 29)

x€eTy x€Ty
We are now going to show that the constant on the right-hand side is proportional to |||¢|||?. For that

purpose, we average on microscopic boxes: for k « N, we denote

Py = Z Ty®,

YEAL
and we want to substitute
VN Y G ( ) Ty
x€eTy
with JN
N X
G (—) T, Q.
2k +1 X;IN N/ Fx Pk

The error term that appears is estimated by

2o [ 5 s (0(Z)-o(3)mwtman] )

x,y€Tn
[x—y|<k 1

From (29), the expression above is bounded by Ck/N, and then vanishes as N — co. We are reduced to

2
W[t o
E<oilt12T [2k +1 Z G <ﬁ> Ty Py (m,s)ds 1,

0 x€Ty

estimate
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By the same argument, this is bounded by

s 3 s VNG () B[ mBi] - 5Bl oS (-50) 7 o]

2k +1 xeTy feQ
PJZ

< ZkCI 1 x;r:leclelg {C(“p)\/ﬁG (%) E [<T—Xf’ (78Ak)(T—xf)>1]1/2 2k + 1}E [<T_Xf’ (781\'() T_Xf>1]}

The supremum on f can be explicitely computed, and gives the final bound

clort (3 33 6 (%)) (T (-5,

xeTy

Taking the limit as N — oo and then k — o0, we obtain (28) from the central limit theorem for variances
at equilibrium (Theorem 4.5).
O

~1,N

We apply Theorem 4.9 to J, mf(H), and we get

N—oo 0<t<T

2
limsup]E< sup <31§1f (H)) > < CT|[jo1 — D(w? — w?) — gmfm%fqr H' (u)?du.
1

To conclude the proof of Theorem 3.3, we show in Section 5 that there exists a sequence of local functions

{fi} € Q such that

o1 — D(w? — w?) — L™ ——0
’H]O,l (wl wo) ka’l PR

and Section 6 is devoted to prove the second statement of Theorem 3.3.

5 Hilbert space and projections

We now focus on the semi-norm ||| - |||; that was introduced in the previous section by (21). We can
easily define from |||-|||; a semi-inner product on C, through polarization. Denote by A/ the kernel of the
semi-norm ||| -|||; on Cy. Then, the completion of Q|- denoted by #; is a Hilbert space. Let us explain
how the well-known Varadhan’s approach is modified. Usually, the Hilbert space on which orthogonal
projections are performed is the completion of Cy|,, in other words it involves all local functions. Then,
the standard procedure aims at proving that each element of that Hilbert space can be approximated by
a sequence of functions in the range of the generator plus an additional term which is proportional to the
current. The crucial steps for obtaining this decomposition consist in: first, controlling the antisymmetric
part of the generator by the symmetric one for every cylinder function, and second, proving a strong result
on germs of closed forms (see Appendix B). These two key points are not satisfied in our model, but they
can be proved when restricted to quadratic functions. It turns out that these weak versions are sufficient,
since we are looking for a fluctuation-dissipation approximation that involves quadratic functions only.

In Subsection 5.1, we show that #; is the completion of SOQ|,r + { jg’l}. In other words, all elements
of H; can be approximated by a jgl + Sg for some a € R and g € Q. This is not irrelevant since the
symmetric part of the generator préserves the degree of polynomial functions. Moreover, the sum of the
two subspaces { jg’l} and SQ| is orthogonal, and we denote it by

@’N @)L {j(il }
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Nevertheless, this decomposition is not satisfactory, because we want the fluctuating term to be on the
form £™(f;), and not S(fi). In order to make this replacement, we need to prove the weak sector
condition, that gives a control of |||.A™g|||; by |||Sg|||1, when g is a quadratic function. The argument
is explained is Subsection 5.2 and 5.3, and the weak sector condition is proved in Appendix C. The
only trouble is that this new decomposition is not orthogonal any more, so that we can not express the
diffusion coefficient as a variational formula, like (35). This problem is solved in Section 6.

5.1 Decomposition according to the symmetric part
We begin this subsection with a table of calculus, very useful in the sequel.

PROPOSITION 5.1. Forall g€ Qy,he Q,

«h,Sg>»; = —<«h,g»,
<Khjs,» = —<h»,,
<js,Sh»; = 0
. lIF = A%z (D).
Proof. The first two identities are direct consequences of Theorem 4.5 and of Equality (26). The last two
ones follow directly. O

COROLLARY 5.2. Forallae R and g € Q,

. A Y o
H\an,l + ngi = azl){(l) + E]E1 [(vo,lrg)z] + E]E1 [(Vorg)z] .

In particular, the variational formula for |||h|||1, h € Q, writes

1 .
R[] = PP <h,jo, >3 +21€15{—2 «h,Sg > —|||Sgl|3}- (30)

PROPOSITION 5.3. We denote by SQ the space {Sh ; h € Q}. Then,
My =Sy @ {i5,)

Proof. We divide the proof into two steps.

(a) The space is well generated - The inclusion SQ| + { jgl} C H, is obvious. Moreover, from the
variational formula (30) we know that: if h € H; satisfies « h, jgl »;=0and « h,Sg »;= 0 for all
g € Q, then |||h]l], =o.

(b) The sum is orthogonal — This follows directly from the previous proposition and from the fact
that: « j5,Sh»;=0forallhe Q.
O
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5 HILBERT SPACE AND PROJECTIONS 26

5.2 Replacement of S with £

In this subsection, we prove identities which mix the antisymmetric and the symmetric part of the
generator, which will be used to get the weak sector condition (Proposition 5.7).

LEMMA 5.4. For all g,h € Q,
«Sg, Ah » = — <« A™g,Sh > .

Proof. This easily follows from the first identity of Proposition 5.1 and from the invariance by translations
of the measure PP}:

«Sg,A™h » = — < g, AMh >, = — Z E}[t.g, A™h| = Z E}[A™(7,&),h]

XEZ XEZ

= Z E}[t, (A™g),h]| = Z Ej[A™g,T_ch| = Z E}[A™g, T h] = — « A™g,Sh »; .

X€EZL X€EZL XEZL

O

LEMMA 5.5. Forall g € Q,
& Sg,jOA,1 »i=— < Amg,jg,1 > .

Proof. By the first identity of Proposition 5.1,

« Sg,j(lil »1=—X g}j(ji1 >>1,*: - Z ]EI[Txg;j(jiJ = - Z ]Ez[g,jf,erl]

XEZ XEZ

=~ VxE[g A~ A ] = D) XE g, A (w?)]

XEZL XEZ

= Z XEj[A™g, 0] = — « Ag, jo, »1 .

XEZL

O
Then, these two lemmas together with the second identity of Proposition 5.1 imply the following:
COROLLARY 5.6. ForallaeR, g € Q,
« ajg,1 + Sg,ajé1 + A™g »;=0.
We are now in position to state the main result of this subsection.

PROPOSITION 5.7 (Weak sector condition). (i) There exists two constants Cy := C(y,A) and C; :=
C(y,A) such that the following inequalities hold for all f,g € Q:

|« A%, Sf »1| < ColllSFIIL [1ISgllh- G

1
|« ARg, Sf | < Gill[Sglllr + SlISf - (32)

(ii) There exists a positive constant C such that, for all g € Q,

1A% |l < Cll[Sgll]s-

Proof. The proof is technical because made of explicit computations for quadratic functions. For that
reason, we report it to Appendix C. O
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5.3 Decomposition of the Hilbert space
We now deduce from the previous two subsections the expected decomposition of H;.
PROPOSITION 5.8. We denote by L™Q the space {L™g ; g € Q}. Then,
Hy =Ly @ {1 }-
Proof. We first prove that 7{; can be written as the sum of the two subspaces. Then, we show that the

sum is direct.

(a) The space is well generated -  The inclusion L™ Q) N +{ jg 1} © M, follows from Proposition 4.2.
To prove the converse inclusion, let h € #H; so that < h Jo , »1=0and « h,LM™g »;=0forall g e Q.
From Corollary 5.3, h can be written as
h = lim Sgi
k—o0
for some sequence {g;} € Q. More precisely, since « Sgi, A™g; »1= 0 by Lemma 5.4,

|||R]|] = hm < 88k, Sgk »1= hm K881, LG > -
Moreover, we also have by assumption that « h,Sg; »;= 0 for all k, and from Proposition 5.7,

sup|[|£%gx |l < (C+ 1) sup |l Sgx[ll =: Gy

is finite. Therefore,

IR = lim < Sge,£7gi 1= im < Sgy —h,L7g 1 < lim G|z — |y = .
—00 k—o0 k—o0

(b) The sum is direct - Let {g;} € Q be a sequence such that, for some a € R,
. .S .
khﬁrr;O LU =ajy, inHy,
By a similar argument,

limsup « Sgi,Sgx »1=limsup « L™gy,Sg » = limsup « LM g — aJO S8 »1=0,
k—0 k—o0 k—0

where the last equality comes from the fact that « jgl,Sgk »,= 0 for all k. On the other hand, by
Proposition 5.7, ||[£™g||l1 < (C+ 1)|||Sgx|||?. Then, a = 0. This concludes the proof. O

Recall that j3 | (m, w) = A(w? — w?). We have obtained the following result.

THEOREM 5.9. For every g € Q,, there exists a unique constant a € R, such that
g+a(w?—w))elmQ inH. (33)

In particular, this theorem states that there exists a unique number D, and a sequence of cylinder
functions {f; } € Q such that

[ljo1 — D(w? — wo) E“‘kah P 0 (34)

Let us notice that this convergence also holds with the same constant D and the same sequence f; if we
replace the semi-norm ||| - [|[; with ||| - ||| for any 8 > O (as a consequence of a standard change of
variables argument). This concludes the first statement of Theorem 3.3. We prove the second statement
(12) in Proposition 6.5 in Section 6.
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6 ON THE DIFFUSION COEFFICIENT 28

6 On the diffusion coefficient

The main goal of this section is to express the diffusion coefficient in several variational formulas.
We also prove the second statement of Theorem 3.3. First, recall Definition 2.2, which can be written as

D=2+ inf supE [Do(ul; Tp) + 2{joy — A™f,Tg )1 — Do (a3 rg)] . (35)

1 (1) feQgeo
From Theorem 5.9, there exists a unique number D such that
jo1 —D(w? —wi) e LMQ in Hj.

We are going to obtain a more explicit formula for that D, and relate it to (35), by following the argument
in [14]. In Subsection ??, we first rewrite the decomposition of the Hilbert space given in Proposition 5.8,
by replacing jgl with jj ;. This new statement is based on Corollary 5.6, which gives an orthogonality
relation. The second step is to find an other orthogonal decomposition (see (36) below), which will
enable us to prove the variational formula (35) for D.

Hereafter, we denote by £™* := S — A™ the adjoint of the generator in L?(u, ), and

. =S A
Jo,1 = Jo1 ~ Jo,1-

LEMMA 6.1. The following decompositions hold
Hi=LmQ|\ @ {Jo1} = L™* Qv @ {Jg,}-

Proof. We only sketch the proof of the first decomposition, since it is done in [14]. Let us recall from
Proposition 5.8 that £mQ has a complementary subspace in ; which is one-dimensional. Therefore, it is
sufficient to prove that 7{; is generated by £mQ and the total current. Let h € H; such that « h, Joq »1=0
and « h,L™g »,= 0 for all g € Q. By Corollary 5.3, h can be written as

. .S
h= khi& S8k +ajg,
for some sequence {g;} € Q, and a € R, and from Corollary 5.6,
[[R][[F = lim <« ajg, + S8k ajon + L™k >1 -

Moreover, from Proposition 5.7,

sup [[ajo,y + L™ gkllIF < 2a([joa |I]] +2(C+ 1) sup|||Sgll[] =: Cy

keN keN
is finite. Therefore,

[R][F = lim <« ajg, +Sgk —h,ajor + L7gk »1
< limsupCh|Haj(i1 +Sg—hl||?=0.
k—0o0

The same arguments apply to the second decomposition. O

We define bounded linear operators T, T* : H; — H; as

T(ajos +L™f) := ajg,l +Sf,
T*(ajj, + £™f) 1= ajg, + Sf.



ON THE DIFFUSION COEFFICIENT

From the following identity
llajo,n + £™FIIIF = Majg, + L™ FIIT = lllajg, +SFIIT+ Majgy + A,
we can easily see that T* is the adjoint operator of T and we also have the relations
« Tjg,l;j(;J > =K T*jg,pjo,l »1= k%(l)
& Tjgl,ﬁm’*f » =< T*jgl,ﬁmf »;=0, forall f € Q.

In particular,
Hy = Lm0l @ {T)S, ) (36)
and there exists a unique number Q such that
jo1—QTjs, € L™*Q  inHy.
We are going to show that D = AQ.

LEMMA 6.2. )
X 1 o

TR inf |||jg , — £™f|I3- 37)
TGS, I1E Ax(1) Fee 70t 1

Proof. The first identity follows from the fact that

Q

< Tj515Jgq — QTis, »1= Ax (1) = Ql[[Tjg, |17 = 0.
The second identity is obtained from the following statement

. o .S * -
fH€1£|||J0,1 - QT]()’l - £m f|||1 =0. (38)

After an easy computation, we can also prove that « Tg,g »;=« Tg,Tg »; for all g € H;. Since

jg,l —T 13,1 is orthogonal to T jg,p we have:

Jor —Tis, € L™*Q.
By the fact we obtain the variational formula for |||Tj§ ||

PROPOSITION 6.3.

11 Tioq 11 = figglllfg,l — L™ fI15. (39

Proof. With a similar argument (in the proof of the previous proposition), we have
inf |||jg, —Tjo, — £™flllL =0,
feQ ’ ’

and
: -S :S % 2 -S % 2 : -S 2
flggmjo,l _T]o,l _ﬁm f\Hl _}gg‘”]o,l _ﬁm f\Hl _}gngJo,lmp

which concludes the proof. O
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6 ON THE DIFFUSION COEFFICIENT

THEOREM 6.4.
x(1)

4infreq |[[j5, — Lm*fII13°

1
D — . f .k _ﬁm,* 2 —
7 Ao llljo. FIIR

Proof. By the definition, jj; —D jg /A € LmQ and therefore
. s D .. D ..
K Jo,1 *Jg,lx,T 13,1 »1=2Ax(1)— X|||Tlg1|||% =0.
So, D = AQ, and the variational formula for D can be deduced from the one for Q.

REMARK 6.1. We can rewrite the variational formula for D as:

: -S 2 2 A 2

D = s inf {113 1+ IS + 1133, — 411
1

= + i f{ S 2+ A 7Am 2}
5 mf ISR + 1175, — AmF 1
1

=A+ infsul’{ SFIIF -2« jo, —A™f,Sg » —|||Sg 2}
) A sup Ak 01 L= llIsgllf2

1
=A+— ingsup{« fr=Sf »1,+2« jgl —A"f,g», —«g,—S5¢ >>1’*}

x(1) feQgeo

inf su ]E[D T +2<‘A A ,F> —Dy(uy:T ]
X(l)fEQgeg O(.u'l f) ]0,1 f 1 O(Ul g)

A+

30

(40)

(41)

(42)

(43)

(44)

We use the fact that in (42), we can restrict the infimum on functions f satisfying « jg‘l —A™f, jg 1 »1=0.

Let us notice that (43) and (44) recover the variational formula (35).

We are now in position to prove the remaining statement of Theorem 3.3:

PROPOSITION 6.5. For any sequence {f;} € Q such that
lim |[[jo1 —D(w; — wg) — L™ fi|lly =0
k—o0

we have

klgralo]E</1 (vo,l(wg - rfk))2 + y(vo(rfk)>2>l — 2Dy(1).

Proof. By assumption,
dim [|IT(jo; —D(e} — ) —£™f) [l = 0
and therefore

lim 178, — S£llI2 = D?|[T(? - 2|2

Then, the result follows from

x(1)
D=AQ =
IIT(wf = )3

and

) 2 2
1581~ Al = 5 (03 - 0t - Vou1) ) + I (wolr)”)

(45)
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7 Green-Kubo formulas

In this section, we study the convergence of the Green-Kubo formula given in (7), and then, we
investigate its behavior when the intensity of the exchange noise vanishes.

7.1 Convergence of Green-Kubo formula

Linear response theory predicts that the diffusion coefficient is given by the homogenized Green-Kubo
formula. Let us define

_ 1 (" . .
K(z) = A+ Efo dt e « iy (m, 1), jo; (m,0) >,

where « - », is the inner product defined by (5). The Laplace transform is defined and is smooth on
(0,+0), and can be rewritten:

— 1 . 1.
K(z) =2+ 5 « J(j)\,v (z—L™) 1]6\’1 > (46)
THEOREM 7.1. The following limit
D := lim x(z) 47)
z—0
z>0

exists, and is finite.
Proof. We investigate the existence of the limit

. A —1:A
,é:h—r% < Joa> (z—L™) Joa P1x- (48)

z>0

The Hilbert space generated by the set of local functions and the inner product « -,- >, , is denoted by
L?. We define h, := h,(m, w; 1) as the solution of the resolvent equation in L

(2= L™)h, = joy- (49)

Then we have to prove that

1
L(Z) = E < hz’j(l?l 2 1%

converges as z goes to 0, and that the limit is finite and non-negative. Then, from (46) it will follow that
D > A > 0 and D is positive. We denote by || - ||; the semi-norm corresponding to the symmetric part of
the generator due to the flip noise

HfH% =< f)(_YSﬂip)f 21,%

and H, is the Hilbert space obtained by the completion of Lf w.r.t. that semi-norm. We multiply (49) by
h, and integrate with respect to « - >»; , and we get:

2 < hy,hy >, +H|[h 24 < by, (ASTMh, », =« hz,j("i1 1k

Let us notice that (—yS™P)( jé\l) = 2y jé*l. As a consequence, the Cauchy-Schwarz inequality for the
scalar product « -, (—ySTiP). »1 . on the right-hand side gives

1R < C
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7 GREEN-KUBO FORMULAS

for some positive constant C. Since {h,}, is a bounded sequence in #;, we can extract a weakly con-
verging subsequence in #;. We continue to denote this subsequence by {h,}, and we denote by h, the
limit.

Now we are going to show that the convergence is stronger (see (iv) in Lemma 7.2 below) and that the
limit is independent of the subsequence. Since the generator L™ conserves the degree of homogeneous
polynomial functions, we know that the solution of the resolvent equation is expected to be on the form

h,(w) = Z goz(x,y)wxwy,
x,y€Z?

where ¢, : Z? — R is a square-summable symmetric function. Let h, = h; + hj be the decomposition
of h, according to the two subspaces Q= and Q”, where Q= is generated by {co)z(,x € Z} and Q7 is
generated by {w,w,,x # y}. The main point in the following argument is that all gradient terms
vanish in Lf.
First of all, one can easily see how the spaces Q= and Q7 are mapped by the generators:
Am: QT > Q7 A™:Q7 -0
s:o=— {0} sM:9* - 0"
SeXCh . Q: N Q: Sexch . Q?ﬁ N Q?ﬁ
Moreover, if f € Q~, then A™(f) is a gradient in Q7, and S®*(f) is a gradient in Q=. With all these
considerations, (49) rewrites in L? as
{zh; —AS=N(hZ) =0
h fli A
gh? — A8 (h]) —yS"™P(h]) — A™(hT) = Joa-

The first equation means that h = 0 in Lf and therefore the solution h, of the resolvent equation is an
element of Q7. As a consequence, we can write (—yS™P)(h,) = 2yh,, and this remark is one of the key
points in the following argument.

LEMMA 7.2. All the properties below are satisfied:

6] Zli_r)r(l)z & hy,hy »,=0

(ii) {h,} weakly converges as z goes to 0 towards h in Lf
(i) < jg1.h0 »1,0 =< ho, (=S)hg »1.,
(iv) « (hy —hg), (=S)(h,; —hg) »1 . vanishes as z goes to 0
(v) the weak limit of {h,} does not depend on the subsequence.
We briefly prove the five points: (i) and (i) come from the fact that « h,, h, »; , equals 2y||h,|[7. To
get (iii), we multiply (49) by h,, and integrate:
2 <Ry hy >, 4+ <Ry, (=8)hy »1, + < Ry, (—A™)hy >, =< hz,,jgtl 1 (50)

We first take the limit as 2 — 0 and then as z — 0, and we use (i) and (ii) to obtain (iii). In the same
way, multiplying (49) by h, gives

2 & hy,hy >, 4+ <hy, (=8)hy >, =< hy, iy »1.

32
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The first term of the left-hand side vanishes as z goes to 0, and the right-hand side converges to «
hg, (=S)hg »1 .. This implies (iv), that is

& (hy — hg), (=8)(h, — hg) >>1,*§ 0.

The uniqueness of the limit follows by a standard argument with the same idea of (50). We have proved
the first part: the limit (48) exists. To obtain its finiteness, we are going to give an upper bound, using
the following variational formula:

e = M) iy ae = {2 iy s I~ AT

where the supremum is carried over local functions and the two norms || - ||, , are defined by

2 +1
fll5, =<f.(z=8)"f »1..
For the upper bound, we neglect the term coming from the antisymmetric part A™f, that gives
A —1:A A 1A
< Jo1s (z —L£™) Jo1 P 1 << gy (z—8) Jo1 1 -

In the right-hand side we can also neglect the part coming from the exchange symmetric part S*, and
remind that STP( j§1) =-2 jé*l. This gives an explicit finite upper bound. Then, we have from Lemma
7.2, Property (iii) that the limit

: A m\—1_-A A
le)rgo o1 (B =L™) g »1. =< Jg1,ho »1. =< ho, (=S)hg »1,, =0,

and the positiveness is proved. O

7.2 Equivalence of the Definitions

In this subsection we rigorously prove the equality between the variational formula for the diffusion
coefficient and the Green-Kubo formula (see the end of Subsection 2.4).

THEOREM 7.3. For every A > 0 and y > 0,

= 1. . 1.
D:=A+ Ezlg% & Jél, (z—L™) 1]6\’1 1 4

z>0

coincides with the diffusion coefficient D defined in Subsection 6.

Proof. From Subsection 6, we know that the diffusion coefficient can be written different ways. For

instance, one can easily check that
2

IT(e0} = )13

By definition of D, there exists a sequence {f, },-( of functions in Q such that
8e = j(;,l - D(w% - wg) - Em’*(fe)

satisfies || g.[|1 — O as € goes to 0. By substitution in the equality above, we get

_ 1 . .
D T= ﬁ « ](11 - Em,*fa - ga)T*(]a’l - Em,*fs - gs) 21
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recalling that « Tg,Tg »=<« g,T*g »; for all g € H,. Therefore,
1 . . .
D= E < ]0’1 - L™ fe - gs)]g’l - st — 81
1 % * .
= 5 < JO,l - L™ fg,]g,l - st 1 +Ra
where R, is bounded by C||g, |2, and then vanishes as ¢ goes to 0. Finally, from Proposition 5.1, we can

write 1
D=A+-lim < f,,(—=S)fs »1 -
2 0 >

The problem is now reduced to prove that

. : A —1:A
61_5% < fs’ (_S)fe 1= Zlg%) < ]0’1) (Z - Em) ]0’1 21k (51
2>

For every z > 0 and ¢ > 0, we have by definition above and (49),
Joq =2hy — L™h, (52)
j(;,l = D(w% - wg) + &+ Em,*fe" (53)

First, multiply (53) by f, and integrate with respect to « - »1 ,, keeping in mind that all gradients give
no contribution. We get

A
— < ]0,1’f€ P =K fa’ 8e P15 — K fg, (*S)fa 21 %
and using (52),
« ‘thz,fs >>1,* —z<L hz,fs >>1,* =<K fs’ 8¢ >>1,* — < fg; (*S)fs >>1,* J

First, let z go to 0, and observe that z < h,, f, »1 , vanishes, from the Cauchy-Schwarz inequality together
with Statement (i) of Lemma 7.2. The limit of « £L™h,, f, »1 , exists from the weak convergence of {h, },.
Then, take the limit as ¢ goes to 0, and observe that

_ 1/2 _ 1/2
« fw 8e >>1,* =< fe, (*S)(*S) 1ge >>1,* <L fs5(*8)fs >>1’/* « gw(*‘s) 1fs >>1’/*

<Cllgell —o.

The first equality is justified by the fact that g, belongs to Q,, and the last inequality comes from the
definition of the semi-norm || - [|; given in (21). As a consequence, we have obtained

lim « f,,(=8)f, »1, = lim lim « —L™h,, f, >, .
e—0 £e—02z—0

In the same way, multiply (53) by h, and integrate with respect to « - »g , so that
-« j‘&l,hz P10 =< geshy 1, + < L™ fo by >,

If we send first z to 0, then « g, h, »; , converges to « g.,hy »1 , from the weak convergence of {h, },.
With the same argument as before, we write

« gs’hO >>1,*< CH‘gsml > 0.
e—0
Therefore,
lim « jo ,hy »1, = lim lim « —C™*f,,h, >,
z—0 ’ e—>02—0

= lllT(l) « f(;‘) (_S)fe‘ >>1,*
£e—

and the claim is proved. ] O
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7.3 Vanishing exchange noise

With the same ideas of the previous subsection, it can be easily shown that the homogenized Green-
Kubo formula also converges if the strength A of the exchange noise vanishes. The aim of this paragraph
is to study the limit of (47) as A goes to 0. First, we turn (46) into a new definition that highlights
the dependence on A > 0. For that purpose we introduce new notations: we denote S, = yS™P, S, =
S + A8 and then

{cg‘ A, e

and Jy(m)(w) = — A (m,w).
L:gl = Am + Sk = Egl + ASeXCh O( )( ) m0m1 JO,l( )

Let us introduce the homogenized Green-Kubo formula for both noises:

K(A,2) :=« Jo(m), (z — L) " 1Jp(m) »,, (54)
and the homogenized Green-Kubo formula for flip noise only:

Ko(2) :=« Jo(m), (z — L5) 1Jo(m) >, . (55)

According to the previous paragraph, we already know that the Green-Kubo formulas (54) and (55)
converge as z goes to 0. Then, the following diffusion coefficients are well defined, for all A > 0,

D(A):= A+ lirr(l)?()k,z),
Z—>
Dy := limxy(2).
z—0
The main result of this subsection is stated in the following theorem.

THEOREM 7.4. The function A — D(A) is continuous at 0. More precisely,

lim D(X) = D,,.
Ali%() 0

Let us remark that the theorem above does not imply the existence of the hydrodynamics diffusion
coefficient D(0, y). This question remains open.

Proof. The proof is divided into two steps. For the sake of readability, we erase the notation m in Jy(m),
and keep in mind its dependence on the disorder.

Step 1 - Convergence of the diffusion coefficient. Let usdenote by h, o and HZ, » the two solutions
of the following resolvent equations in L?:
(Z - ‘Cgl)hz,() = JO)
(z - £;1’*)hz,l = Jo.
We look at the following difference, for A,z > 0 fixed,

«Jo, (2= L) Mo »1. — < Jo, (2 — L) Mg »1.4

= ’ < Jo, (2= L) o »1., — <Jo,hyo >4
=<0, (2= 1) (2 = Lo — (2 — LDV | 51|
= A« Jo, (2 — C?)*lsex‘:h(hz’o) 14

=A< (2 — L5) 0, SF N (R, 0) »1.4]-
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To complete the proof, we are reduced to show that A |« HZ’ 5, Sexh (hs0) »1,.| vanishes when we first let

%z — 0 and then A — 0. For that purpose, we need more precise information on the two solutions HZ, , and
h, o. Since the generator L7 (resp. L") conserves the degree of homogeneous polynomial functions, we
know that the solution of the resolvent equation h, ; (resp. h, () has to be homogeneous polynomial of
degree two, precisely:

hz,k(w): Z ‘pz,k(m)x’y)wxwy)
X,YEZL

where @, 5 (m,,-) : 72 — R is a square integrable symmetric function. As before, we decompose every
degree two function h as h = h= + h”, where h= belongs to Q= and h” belongs to Q7. We have seen in
the proof of Theorem 7.1 that the part belonging to Q= vanishes for the two solutions, in other words,
Hz,)t and h, , are elements of Q7. As a consequence,

< hZ’A,SeXCh(hZ’O) >, =< hZ’A,Se"Ch(hZ’O) >1w

which is bounded by

\/« Hz,)t: (_SeXCh)(hz,l) » 1,% \/« hz,O: (_SeXCh)(hz,O) » 1,%

according to the Cauchy-Schwarz inequality for the scalar product « -, (—Sh). »1,. We treat sepa-
rately the two terms into the two lemmas below. We prove that the first term is bounded by C/ VA, and
the second one is uniformly bounded for A,z > 0. Here we state the two lemmas:

LEMMA 7.5. There exists a constant C > 0 such that, for all z, A > 0,

C

« Hz,?b (_SeXCh)(Ez,k) >>1,* < X

LEMMA 7.6. There exists a constant C > 0 such that, for all z > 0,
< hy g, (8% (h, ) »1, <C.
From these statements we deduce
A< by 5, 8T N (hy 5) 1, | < CoVA

where C, does not depend on A,z > 0, and Theorem 7.4 follows.

Step 2 - Proofs of the two lemmas. We begin with the proof of Lemma 7.5. We recall the resolvent
equation in L%:
zh, ) — (ASTM + Sy — A™)h,, ; = Jo. (56)

We multiply (56) by h, ; and integrate with respect to « - > ,, in order to get

Z L HZ’A,hM TR Hz,)b (—80)(52’,1) 1. FA K Hz,)b (—SeXCh)(EZ,;L) > =<K Jo,ﬂz,k > -

The right-hand side rewrites as
(2Y)_1 < (_80)(J0))hz,0 >>1,* .

Cauchy-Schwarz inequality for the scalar product « -, (—Sy)- > , on the right-hand side gives

z < hyj,h, 5 >, <C
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with C := (2y) 12« Jo, Jo >>i/*2 and then
AL HM, (fSEXCh)(HZ,A) »1, <C.

We now turn to Lemma 7.6. We prove a general result, precisely: there exists a constant C > 0 such that,
for all g € 97,

exch )

« g, (=8 g»1.<CKg,g»,. (57)

This fact is proved through explicit computations. Let us write g € Q7 in the form

C()) = Z ¢x,k(m)wxwx+k'

PSS
A straightforward computation gives that
2
« g, (—8*M)g P = %EI [(vo,1rg)2] = Z E <Z ¢ (T — ¢ x(T1- zm)>
k=2 2€7.

k=2 Z€Z

<Yk (2 ¢z,k<m>)

In the last inequality, we use the fact that the measure P on the disorder is translation invariant and that
(a — b)? < 2(a® + b?) for all a, b € R. Besides, one can also check that

KE & P14+ = Z E [ Z szk ¢xk ] Z E <Z ¢z,k(m)> >

k=1 X,2€7Z k>1 2€E7Z

thanks to the translation invariance of P. The bound (57) follows directly, with C = 4. To prove Lemma
7.6, it remains to show that « h, o, h, o »; , is uniformly bounded in z. We recall the resolvent equation
in L2:

zh, o — (Sp + A™)h, o = Jo. (58)

Notice that we can write Sy(h, ) = —2yh, . We multiply (58) by h, ; and integrate with respect to
« - »7, in order to get

z K hyo,hy 014 27 Khyo,hy, 0210 =< Jo,hy 0 14

As previously, Cauchy-Schwarz inequality for the scalar product « -, (—S8p)- »7 , on the right-hand side
gives
«hyo,hy0»1. <G,

with C := (2y) 7! « Jy, Jo >>i/*2 . O

8 The anharmonic chain perturbed by a diffusive noise

In this last main section we say a few words about the anharmonic chain, meaning that the interaction
between atoms are non linear, and given by a potential V. As in [14], we assume that the function
V:R — R, satisfies the following properties:
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9 HYDRODYNAMIC LIMITS

(i) V(-) is a smooth symmetric function,
(ii) there exist 5_ and &, suchthat0 <&_ <V’(:) <&, < +00,
(i) 6_/6, > (3/4)V/16,
Using the same notations as in the introduction, the configuration {p,, r, } now evolve according to

dp,
dt
dre _ Px  Px1
dt M, M, ;

(59)

We define 7, := p,/+/M,, and the dynamics on {7,,r,} rewrites:

dm, 1 / /
dr = \/NTx[V (rx-l-l)_v(rx)])

(60)

The total energy

is conserved. The flip and exchange noises have poor ergodicity properties, and can be used for harmonic
chains only. For the anharmonic case, we introduce a stronger stochastic perturbation. Now, the total
generator of the dynamics writes L™ = A™ + vS, where

Am ::Zx: \/rln_x Xy —Yeeq1), Si= %ijxi +Y2 (61)
where Y, , = nxé’ry -V (ry)0r,, and X, =Y, . For this anharmonic case, the two needed ingredients
can be proved directly from [14]. First, notice that the symmetric part of the generator does not depend
on the disorder and is exactly the same as in [14]: the proof of the spectral gap is done in Section 12 of
this paper. The sector condition can also be proved by inspiring from [14]. After taking into account the
random environment and its fluctuation, the same argument of Lemma 8.2, Section 8 can be applied.
Indeed, it is mainly based on the fact that the antisymmetric part of the generator can be written in terms
of the symmetric one.

9 Hydrodynamic limits

We briefly enlighten the failure in the derivation of the hydrodynamic limits. Let us assume that the
initial law for the Markov process {(t)},o (still generated by N*£R), is not the equilibrium measure
,ulg, but a local equilibrium measure (see (63) below). The main goal would be to prove that this property
of local equilibrium propagates in time: in other words hydrodynamics limits hold, with an energy profile
solution of the diffusion equation with constant coefficient D.

9.1 Statement of the Hydrodynamic Limits Conjecture

The distribution at time t of the Markov chain on Ty with the generator NZEI’\‘I‘ and the initial prob-
ability measure uy is denoted by IP’E‘N .- The measure induced by ]P’E‘N . on D([0,T],Qy) is denoted by
IP)III

N
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9 HYDRODYNAMIC LIMITS

Recall that we denote by M the set of probability measures on T, endowed with the weak topol-
ogy and by D ([0, T], M;) the Skorokhod space of trajectories in M;. The measure induced by PY on
D ([0,T], M, ) is denoted by OF := P o (TEN)il , where

——Zw(‘i_.

xeTN

CONJECTURE 9.1. Let T > 0 be a time-horizon. Let {uN}y be a sequence of probability measures on Sy
Under suitable conditions on the initial law uN, for almost every realization of the random environment m,
the measure QY weakly converges in D ([0,T], M) to the probability measure concentrated on the path
{e(t,u)du}c(o 1), where e is the unique weak solution of the system

@(t u) —D&
ot 2

e(0,u) =eq(u).

What we expect as for “suitable assumptions” on the initial law are the common ones in the literature

(t,u), t>0,ueT

of hydrodynamic limits, when dealing with non compact spaces. The first one is natural and related on
the relative entropy:

ASSUMPTION 9.2. We suppose that there exists a positive constant K such that the relative entropy H(uN|ulY)
of uN with respect to a reference measure uY is bounded by K,N

H(uN[p)) < KoN. (62)
For instance, if uN is defined as a Gibbs local equilibrium state:

Po(x/N)
I /50 . /N exp <OT°°’2‘> dewy (63)

x€eTy

for some continuous function f; : T — R, then (62) is satisfied. The second one is related to energy
boundness, that has already been a major concern in [18]. More precisely,

ASSUMPTION 9.3. We assume there exists a positive constant E such that

1
limsup,uN{ﬁ Z wi] < E,. (64)

N—c0 x€Ty

In the derivation of hydrodynamic limits with the usual entropy method, we need the following two
estimates: first, there exists a positive constant C such that, for any t > 0

EPW[% > wi(t)] <C. (65)

xeTy

This can be easily established using (64) and the Cauchy-Schwarz inequality. The second control that

we need is
lim Epm
N}»Q) PN [J‘

If uN is a convex combination of Gibbs local equilibrium states, then the same argument of [18] shows

)ds] —0. (66)

xeT

that the law of the process remains a convex combination of Gaussian measures, and that (66) holds.

39



9 HYDRODYNAMIC LIMITS 40

Contrary to the velocity-flip model, we do not need to assume a good control of every energy moment
if we expect the usual entropy method to work. This technical need was only due to the relative entropy
method.

With Assumptions 9.2 and 9.3 we could try to prove Theorem 9.1 by using the entropy method,
which permits to consider more general initial profiles (for example, the profile 3, can be assumed
only bounded, not smooth). The usual technical points of this well-known procedure are the one and
two-blocks estimates, as well as tightness. In this model, they are somehow easy to prove because the
diffusion coefficient is constant, and there is no need to prove its regularity.

9.2 Replacement of the Current by a Gradient

In this subsection we recall the main steps of the usual entropy method, and explain which ones can
be proved for our system. We fix the disorder m = {m, },.r, and T > 0. For t € [0, T], we denote by
2N the empirical energy field defined as

where H: T — R is a smooth function. We rewrite Z)\ _(H) as
N N ' X N
2N (H) = Z), (H) + fo D UNH () Jiest (m, ) (5)ds + D, (1),
x€Ty

where Dﬁlt\lm(H) is a martingale. The strategy consists in replacing the current j, ., by the linear com-
bination given in Theorem 5.9. For that purpose, for any f € Q we rewrite

t
~1,N ~2,N
2N (H) = 250 (H) + fo DZ, (ANH)ds + 3,7 £ (H) + 300 (H) + My o (H),

where

3000 = [ 3 vt (2) | tm@)s) - D2, — 26~ (5 m )0 a5,

xeTy

3PN (H) :Lt 3 VNH(g)EE(Txf)(m,w)(s)ds.

xeTy

Theorem 9.1 would follow from the three lemmas below.

LEMMA 9.4. For every smooth function H: T — R and every 6 > 0,

. N
ngréo]P’g [[S(}l%)] ‘Smt’m(H)’ > 5] =0.
LEMMA 9.5. For every f € Q and every smooth function H: T — R,
. ~2,N _
llglj;pE]pﬁl ["‘t,m,f (H)’] =0.

LEMMA 9.6. There exists a sequence of functions { fi }ren € Q such that, for every smooth function H: T — R,

lim lim E [EP‘;; [‘3;2&(1{)’” =0

k—o00 N—o0
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Lemma 9.4 and Lemma 9.5 can be proved, following the same standard arguments given for example
in [9, Section 7]. We need the energy moment estimate (66) in Lemma 9.4, in the computation of the
quadratic variation of the martingale. The next subsection is devoted to highlight what fails in Lemma
9.6, which should be related to the results of Sections 4, 6 and 5.

REMARK 9.1. Conditioned to proving Lemma 9.6, Theorem 9.1 would follow: recall that QY is the
distribution on the path space D ([0,T], M;) of the process nlt\l. Following the same argument as for
the generalized exclusion process in [9, Section 7.6], we can show that the sequence {Qm,N > 1} is
weakly relatively compact. It remains to prove that every limit point Q' is concentrated on absolutely
continuous paths e(t,du) = e(t,u)du whose densities are solutions of the hydrodynamic equations given
in Theorem 9.1. It could be seen from Lemma 9.6 by following the proof of [9, Theorem 7.0.1].

9.3 Failed Variance Estimate

In this paragraph we fix the disorder m, and we erase it whenever no confusion arises. We are going

to recall here the usual main steps of the entropy method. We rewrite J ifi f (H) as
LN
JimyH f Z T (m, w)(s)ds,

x€Ty

where
cp(m,a)) ::jO,l(m)w) _D(w% - wo) Em(f)(m)w)

o(2) - wun (%)

Entropy inequality — In Lemma 9.6, note that the expectation with respect to the law of the process
PPy is taken. There is a priori no hope to get any estimate of this expectation, apart from the well-known
entropy inequality. More precisely, let us denote by XfN(co) the following quantity:

X{\I(a)) = Z G <§> Top(w).

From the entropy inequality, we obtain

Ee HLTXJ;( H H(PR|ul) + —logE N {exp (aNU X/ (e )d.sm,

for all @ > 0. Since the entropy is decreasing in time, we know that, for all disorder field m, H(PY'| ,ulg)
is bounded. From the arbitrariness of a, we are reduced to investigate the convergence of the second
term in the previous right-hand side.

Feynman-Kac formula - Usually, the purpose is to reduce the dynamics problem to the study of the
largest eigenvalue for a small perturbation of the generator N2Sy. This reduction relies on Feynman-Kac
formula and on a variational formula for the largest eigenvalue of a symmetric operator. By Feynman-Kac

B, [exp {NLTXfN(w)(s) ds}] <exp UOT An(s) ds}

formula,

41



9 HYDRODYNAMIC LIMITS

where Ay (s) is the largest eigenvalue of the symmetric operator N2Sy(+) +NX{\I (w). From the variational
formula for the largest eigenvalue of an operator in a Hilbert space, we also know that

An(s) < sup {ONK( () 8~ NDx (i V8)

where the supremum is taken over all measurable functions g which are densities with respect to ,ug. In
particular,

Liogz,y [erw { [ ()0 a5} < [ sup {(Xh0) (@), - NDAgi v .

0 g

Reduction to microscopic blocks — With the same spirit of the one-block estimate presented in
[18], it is then crucial to replace microscopic quantities with their spatial averages. Here, with the same
ideas of [9], we can replace

) . 1 .
Joq  with YA Z Jx,x+1

XEA[

1

2 . 2

wy with Z w

20+ 1 e, x
1

LR(F)(w)  with DL (vif)
26y +1 xény, SpF

where £y = { —s; — 1 so that Esfﬂ(ﬂ:yf) is F,,-mesurable for every y € Ay, Let us introduce the
following notation

1 1 1 1
wht = — E j D 2_ 2 - E L 67
ZE/ +1 Jy,y+1+ 2[ +1 Z wX 2£ +1 Z wx 2£f +1 sf+1(Tyf) ( )

YeEAy x| <e lx—1]<? YEA,

with £ = ¢ — 1. Finally, thanks to the regularity of the function G and the fact that D is constant, we are
able to reduce Lemma 9.6 to Lemma 9.7 below. We also need to perform a cut-off in order to control
high energy values, and this is valid thanks to (66).

LEMMA 9.7. For all 6 > 0,

inf lim sup lim sup sup {<Y{1£(w) g(w)> — 6NDy(up; \/E)} <0, (68)
feQ {—o0 N—o0 g ’ ﬂ
where
V(@)= Y 6(%) maW (o)
x€Ty
Reduction to a variance estimate — Then, the challenge is to reduce the proof of Lemma 9.7 to
the following result:
inf lim 20 x E | { (~5,,) T WH,WHO) | =0 69
flggeg{}o % [ ( A‘) B (69

This convergence holds, since it is equivalent to the conclusion of Theorem 5.9, where the diffusion
coefficient D is defined through the non gradient approach. Here is the main obstacle. If we follow
the strategy given in [9, Section 7.3], we can bound the supremum in (68) by the largest eigenvalue of
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9 HYDRODYNAMIC LIMITS 43

Sp, + bW/ where b is a small constant. In order to estimate this largest eigenvalue, we usually use a
perturbation method which provides a bound on the largest eigenvalue in terms of the variance of W/,
This can not be proved, and suggests that the entropy inequality together with the Feynman-Kac formula
are not the good tools to prove the hydrodynamic limits for systems which do not have a spectral gap
(see the last concluded section).

We conclude this section by explaining why the perturbation theory does not work. Let us try to
prove Lemma 9.7. Since ug is translation invariant, we may rewrite <Y£’€ () g() p as

§N<G( )W) _g(@))

Since the Dirichlet form is convex, the supremum in (68) is bounded from above by

SN
20 2 S {b<W” £)p —Dz(u/s;\/E)}, (70)

2 xeTy

where the constant b = b(x, ¢, 5, N) satisfies

x\ 20 20
bl= o () 25| <161 2

Let us denote by Ay ¢ ¢ this last supremum inside the sum (70), which does not depend on x. We consider
a sequence {g; }xey that approaches this supremum, such that

Jim, (VB (S +BW) VL = e

The idea of the perturbation theory is to expand /g, around the constant value 1. We write

(Ve (58, +DW) VE ) = (W), 4 20WH (g = 1)y + W (VB = 1)) ) — Dol VEL):

(71)
We know that (W/ 4 > 5 =0 and we use the Cauchy-Schwarz inequality for the scalar product (-, (=S,,)-)p
in the second term. We obtain that (71) is bounded, for every A > 0, by

b (£<Wf,f’ (—SAZ)*IWN%3 + %De (‘uﬁ;\/gk)> +b<Wf’f(\/§k _ 1)2>/3 — Dy(piv/Zy)-

It remains to bound the third term in the expression above. This could be done if we had the following
lemma.

LEMMA 9.8. There exists a constant C := C({, f, B, v, A) such that, for every g =0,

(W (g~ 1)%), < CDy (p; v/3). (72)

As before, we could try to use the fact that W/ is a quadratic function. Even this fact is not helpful,
and we give now a counter-example to this last lemma. We denote by H,, the normalized one-variable
Hermite polynomial of degree n > 3 (see Appendix A). Let us consider

{ V(@) = [Hy(wo)|

Wf’e(a)) = Hz(C()O) = C()% — 1.
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Let us notice that (H2)g = 1, and (H,)p = 0, so that the two test functions g and W/t satisfy all expected
conditions. By using the recursive relation

H, 11 (wo) = woH,(wg) —nH,_1(wy),

we get for the left-hand side of (72),

<H2(‘Hn‘ - 1)2>ﬁ = <w% Hrzl(wo)>p - <Hr21>p - 2<H2’Hn‘>/5 + <H2>p
= (HY, | +2nH,  Hyyq +0°HY Dy —1—2(H,[H, ),
=1+n* —1-2(H,y[H,[ ), >n* - 2.

Above the last equality comes from the orthonormality of the polynomial basis, and the last inequality
is a consequence of the Cauchy-Schwarz inequality <H2|Hn|>/23 < (H3)p(H2)s = 1. Let us assume that
there exists a constant C > 0 which does not depend on n such that

n? — 2 < (Hy([H,| — 1)), < CDy (s [Hy ).
From the convexity of the Dirichlet form, we have

Dy(up; Hp|) < Dy (up; Hy).

In the case where n is an even positive integer, the flip noise gives a zero contribution to the Dirichlet
form, and then, for all n even, we have

DE (,u[j;Hn) = %<(Hn(wl) - Hn(wo))2>ﬁ = 2'<Hi>ﬁ - 2'<Hn("‘)O)Hn(c‘)l)>ﬂ = A

In the last equality, we use the fact that H,, is unitary, and that H,, (wq)H, (w1 ) constitutes another element
of the Hermite polynomial basis, then is orthogonal to the constant polynomial 1. Letting n go to infinity,
we obtain a contradiction to (72).

Ergodic decomposition — Another idea would be to use the ergodic decomposition described in
Subsection 4.2. The generator S, restricted to finite boxes does not have a spectral gap, but it be-
comes ergodic when restricted to each orbit Q,I:I P However, this approach fails, because the space is
not compact, and we need to disintegrate the measure ug with respect to all energy levels in (0, +c0).
This enforces us to introduce a cut-off in the variational formula giving the largest eigenvalue. In other
words, an indicator function 1{|w,| < E,} will appear in front of W/*{. Finally, we will have to deal with
functions of the configurations that are not quadratic any more, and we do not know how to prove the
convergence result (69) for general functions.

9.4 Conclusion

Even if the non-gradient method can be applied in some cases when the spectral gap does not hold,
(and then the diffusion coefficient is well-defined), this does not straightforwardly imply the hydrody-
namic limits.

In order to derive the hydrodynamic theorem, we would need to bypass the entropy inequality to-
gether with the Feynman-Kac formula. The entropy inequality is however a convenient mean to trans-
form the averages w.r.t. the unknown law ,ult\I into equilibrium averages w.r.t. ,ulg, which are more easily
tractable. The same problem would arise in the relative entropy method, because of the entropy inequal-

ity.
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A Hermite polynomials and quadratic functions

In the whole section we assume 3 = 1. Every result can be restated for the general case after multi-
plying the process by /2.

A.1 Hermite polynomials on R”

Let y be the set of positive integer-valued functions & : Z — N, such that £, vanish for all but a finite
number of x € Z. The length of £, denoted by ||, is defined as

HEDIR*

XEZ

For & € y, we define the polynomial function on Q

He(w) = [ [he, (o),

XEZ

where {h,},cy are the normalized Hermite polynomials w.r.t. the centered one-dimensional Gaussian
law with variance 1. The sequence {H¢}:c, forms an orthonormal basis of the Hilbert space L*(u,),
where u, is the infinite product Gibbs measure defined by (2). As a result, every function f € L?(u;) can
be decomposed in the form

flw) =D F(&)He(w).

gex
Moreover, we can compute the scalar product (f, g); for f = > F(§)He and g = >, G(£)H as

(f-801 =), F(E)G(E).
gex

DEFINITION A.1. We denote by y, < x the subset sequences of length n, i.e. y,:={€y; |§|=n}.A
function f € L?(u,) is of degree n if its decomposition

f =) F(&H;
Eey

satisfies: F(&) =0 for all & ¢ y,,.

In the next paragraph we focus on degree 2 functions, which are by definition on the form

ZW(X,X)(w§*1)+ Z So(x5y)wxwy (73)

XEZ X#Yy

where ¢ : Z2 — R is a square summable symmetric function.

Local functions — On the set of n-tuples x := (xq,...,x,) of Z", we introduce the equivalence
relation x ~ y if there exists a permutation o on {1,...,n} such that x, ;) = y; foralli € {1,...,n}. The
class of x for the relation ~ is denoted by [x] and its cardinal by c(x). Then the set of configurations of
xn can be identified with the set of n-tuples classes for ~ by the one-to-one application:

2%~ =
[xX] = [(x1,.--,x,)] — g[x]
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where for any y € Z, (& [X])y =2 1,_,. We identify & € y, with the occupation numbers of a

configuration with n particles, and [x]| corresponds to the positions of those n particles. A function
F: y, — R is nothing but a symmetric function F : Z" — R through the identification of £ with [x]. We
denote (with some abuse of notations) by {-,-) the scalar product on ®L?(y,,), each y, being equipped
with the counting measure. Hence, for two functions F,G : y — R, we have

<F)G> = Z Z Fn(g Z Z X);
n=0&ey, n>0X€Z”

with F,, G, the restrictions of F,G to y,,.

Dirichlet form — It is not hard to check the following proposition, which is a direct consequence of
the fact that h,, has the same parity of the integer n.

PROPOSITION A.1. If a local function f € 1?(u,) is written in the form f = Yuze, F(E)He, then
Sf(w) = ), (SF)(§)He (w),
gex
where & is the operator acting on functions F: y — R as
=24 [FE™ ) —FE)] +7 2, (15~ 1)F(E).
XEZ XEZ

Here, £ is obtained from & by exchanging &, and & .
From this result we deduce:

COROLLARY A.2. For any f = Y., F(§)He € L?(u), we have

D(f;u1>=<f,—8f>1=2{%2( (E ) —F@) +71 3 (- FZ(g)}

Eey XEZ XEZ

Quadratic functions — In this paper, we deal with the set of quadratic functions f in L?(u; ), namely
degree two functions that are homogeneous, i.e. satisfies the algebraic relation

VAER, f(Aw)=2A%*(w), U, — a.s. (74)

We also assume that f has zero average with respect to u,. Therefore, we could also rewrite every f as

2
W)ZZW(X,X)(COX x+1 Zw X y xWy>
XEZ X#Yy
for a suitable function 1) : Z? — R square summable and symmetric, and we recover the form given in
(3). We first restrict some variational formula to this class of functions, and then we study sequences of
functions that weakly converge in L?(uy).

PROPOSITION A.3. If f € L?(u, ) is quadratic in the sense above with zero average w.r.t i, then the following
variational formula

sup {2{f,g), —D(g;u1)}

g€L?(uq)
can be restricted over quadratic functions g of zero mean w.r.t .
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B A WEAK VERSION OF CLOSED FORMS RESULTS

Proof. This fact follows after decomposing g as del G(&)H¢. Corollary A.2 and the orthogonality of
Hermite polynomials imply that we can restrict the supremum over functions g of degree two (73). As
a result, g writes as the sum of a quadratic function plus an additional constant term.

Then, notice that the constant term gives a zero contribution in the quantity to maximise: indeed,
the Dirichlet form does not change if we add a constant, and the function f is supposed to be centered,
so that < f >1 = 0. Therefore, we can assume that the supremum is taken over homogeneous functions
of degree two, and the same argument shows that g can also be taken with zero average. O

PROPOSITION A.4. Let {f,}, be a sequence of quadratic functions in L?(u). Suppose that {f,} weakly
converges to f € L?(uq). Then, f is quadratic.

Proof. For alln € N, and & ¢ y,, the scalar product < fn,H€>1 vanishes (by definition). From the weak
convergence, we know that

{fasHe )y = (f-He )1,

as n goes to infinity, for all £ € . This implies: {f,Hg ), =0 for all & ¢ y,.

Besides, the algebraic relation (74) is still valid after taking the weak limit in L?(u, ), as well as the
zero-average property (with respect to u;). This implies that the weak limit f € L?(u,) is quadratic, and
of zero mean if every f, is centered. O

REMARK A.1. The set denoted by Q is restricted to local quadratic functions. The conclusions of Propo-
sitions A.3 and A.4 remain valid if we replace the quadratic functions in L2(u, ) by elements of Q.

B A weak version of closed forms results

In that section we prove a theorem that should be thought as a kind of closed forms results, as they
are stated in [17] or in [9] (Section A.3.4). We give the link between Theorem B.1 below and closed
forms at the end of this paragraph.

B.1 Decomposition of quadratic functions

For the sake of clarity, we erase the dependence on the disorder m, and consider that the functions
are defined on 2, and square integrable w.r.t. the Gibbs measure ;. We explain how to restate the same
result for functions defined on Q, x Q in Remark B.1.

THEOREM B.1. Let {f,}en a sequence of quadratic functions in L?(u,). Let us define
g.:=V, (an) and h,:=Vg; (an) .

If {g,}, respectively {h,,}, weakly converges in L?(u,) towards g, respectively h, then there exist a € R and
f € Q such that

g(w) = Vy(Tf)(w), (75)
h(w) = a(wy — w3) + Vo1 (TF) (). (76)

This result remains in force if u is replaced with the product measure P} = P ® u,, where P is the law of
the disorder. (see Remark B.1)

47



B A WEAK VERSION OF CLOSED FORMS RESULTS

Proof. From Proposition A.4, we already know that g and h are quadratic functions in L?(u;). Hence,
we look for g and h of the form

g(w) = Z 1/)1(X,J’)wxwy (77)
X,YEZL

h(w): Z ¢2(X;y)wxwy (78)
X,YEZ

where 1),%), : Z?> — R are square integrable symmetric functions. We are now going to give a list or
equalities, being satisfied by the pair of sequences. Let us be more precise. We define, for a pair (f!,f?)
of two L2(u,) functions, the following identities, stated in L?(u;) sense:

(R1) (1,61 (w) + (1,f1)(w*) =0, for all x € Z.
(R2) (1,f3)(w) + (7,F2)(w*T1) =0, for all x € Z.
(R3) (T f1) (@) + (Tf2) (™) = (T, f2)(w) + (Tyy1 1) (w0**TT), for all x € Z,

It is straightforward to check that, for all n € N, the pair (g,,h,) satisfies identities (R1-R3). Easily,
one can show that the latter always take place after passing to the weak limit in L?(u;). Precisely, the
weak limit (g, h) of {g,,h,} also satisfy (R1-R3). This follows from the following easy lemma (which is
a consequence of the translation invariance of u):

LEMMA B.2. If {g,}, weakly converges in 1?(u;) towards g, then, for all x € Z,

{gn(w")}n weakly converges towards g(w™),

{gn(w

x,x+1 x,x+1).

)}n weakly converges towards g(w

Notice that all equalities (R1-R3) — now stated for (g,h) — turn into identities for ¢; and 15, defined
in (77) and (78). Namely, v¢; and 1, have to satisfy

®1) {wl(x,y)=0 ifx#0and y #0,
Y1(0,0) = 0.
®2) {wz<x,y> =0 if x ¢ {0,1} and y ¢ {0,1},

Yo(x,x)+Yo(x+1,x+1)=0 forall xeZ.

®3) {zwz(x,O):wl(x1,0)¢1(x,0> if x ¢ {0, 1},
Y1(—1,0) =11(1,0).

The first two identities imply that g writes on the form

g(&)) = Z 1/)1()5,0)‘0:(‘00: (79)
x#0
and h rewrites as
h(w) = D Pa(x,0)[w0, — wow, ] +1P2(0,0)(w] — w?), (80)

x#0,1

whereas the final equality makes a connection between g and h. In view of (75) and (76), we are going
to need the following straightforward lemma:
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B A WEAK VERSION OF CLOSED FORMS RESULTS

LEMMA B.3. Let f € L2(u,) be of the form

flw)= Y] ¢lx,y)ww

X,YEZ

where ¢ : Z? — R is a symmetric function. Then,

= —42 (x +2,2)wowy, (81)

2€Z
x#0

Vo(T) =2 Z (x +2,2) —¢(x +2,2+1)](w 0, — wow,). (82)

2€EZL
x#0,1

Confronting (81)-(82) with (79)-(80), and keeping in mind the expected result of Theorem B.1, we
are now looking for a symmetric function ¢ : Z? — R which is square-summable on Z? and satisfies

1
Zcp(x—i—z,z):——"gbl(x,o) for all x # 0,
2E€ZL 4 1
Z [o(x +2,2) —p(x+2,2+1)] = Eq,bz(x,o) for all x ¢ {0,1}.
2EZL

Such a function ¢ exists if and only if, for all x ¢ {0, 1},

21/)2(3(’0) = 1/)1(x - 1’0) - 'l,bl(x,O).

This last equality is true according to (R3), and the result is proved, with a = ¢,(0,0) and f € Q defined
as

flo)= 2, ¢lxy)wcw

X,YEZL
O

REMARK B.1. In the whole section, every result that involves the Gibbs measure u; can be translated into
the same result involving the product measure P]. By instance, the decomposition in the Hilbert space
turns into the following: every f € L*(PP¥) can be written as

f(m,w) = > F(m,&)He (w).

354

If f is quadratic, it rewrites
f(m,w) = Z @(m,x,y)w,w,,
X,YEZ
where, for all m € Qp, (m, -, -) is a symmetric function on Z?, square summable and integrable w.r.t. PP.
Moreover, the translation operator 7, that is involved in identities (R1-R3) should translate also the
disorder environment, as it is defined at the beginning of Subsection 2.3. The result follows since P is
space translation invariant.

B.2 Connection with closed forms results

Let us briefly explain the connection between Theorem B.1 and the closed forms as they are defined
for example in [17]. For that purpose, we are going to reformulate identities (R1-R3). First, interprete
f}c (w), respectively fi (w), as the price to change the configuration w € Q into w™, respectively to change
w into w***1, In particular,
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B A WEAK VERSION OF CLOSED FORMS RESULTS

e the price to flip w, when the configuration is «w should be equal to —f}c(wx ) : this is (R1),

e the price to exchange w, and w,,; when the configuration is w should also be equal to —fi (o*+1)
: this is (R2).

In the context of interacting particle systems, closed forms are expected to give the same price for any
2-step path with equal end points. In our setting, the last equality (R3) can be translated into: “The
quantity at site x is flipped, and then exchanged with the quantity at site x + 1. Equally, the quantities
at site x and x + 1 are exchanged first, and then the quantity at site x + 1 is flipped.” There are three
other such paths, that we do not need to prove our statement:

e two quantities are exchanged at sites x, x + 1, and also independently at sites y, y + 1, with {x, x +
Bofyy+1}=¢,
e two quantities are flipped independently at sites x and y, with x # y,

e the quantity at site x is flipped, and then the quantities at sites y and y + 1 are exchanged, for
¥ ¢ {x,x + 1}, and the converse is also possible.

Recall that we have defined Q := R%. We denote by B the space of real-valued functions
B:={f:Q—R}. (83)

We are now interested in the space of forms, which are defined as (fL,£2),.; where f. € B, and f> € 5,
for every x € Z. To each function F : Q — R is associated a form:

DEFINITION B.1. A form f = (f}c,fi)xez is an exact form if there exists a continuous function F : 2 — R

such that
fl (w) = F(w") — F(w),

£2(w) = F(w™*!) — F(w). ©4

VxeZ,Vwe, {

Easily, one can prove that all exact forms are closed forms. We now present two examples of closed
forms that play a central role.

EXAMPLE B.1. We denote by a = (a!,a') the closed form defined by

{ a}((w) =0,

0 (w) =0l —wl g,
for all x € Z and configurations w € Q. This closed form corresponds to the formal function F(w) =
> xw?2, but this is not an exact form.

EXAMPLE B.2. Let h be a cylinder function. Let us recall that we denote by I}, the formal sum ), 7,.h,
and define uy, = (u},u7) as
{ (up)x (@) = Ty (@*) = T (w),
(up)x (@) = Tp(™* 1) — Ty(w),
for all x € Z, and configurations w € Q. Though ), 7,h is a formal sum, these two equalities are well

defined. Let us notice that uy is a closed form that is not exact, unless h is constant.

These two examples show that closed forms on € are not always exact forms. Let us introduce the
notion of a germ of a closed form.

DEFINITION B.2. A pair of continuous functions f = (f1, f2), where f: Q — R, is a germ of closed form
if f=(T,f)xez is a closed form.
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C PROOF OF THE WEAK SECTOR CONDITION

Examples B.1 and B.2 provide two types of germs of closed forms. Consider the cylinder function
A(w) = (0,w) — w?). The collection (7,2A),cz is the closed form a of Example B.1. For a cylinder
function h, the collection (V,I},V, ,1T}) ez obtained through translations of the cylinder function
(VoI Vo.1I}) is the closed from of Example B.2. For a pair of L?(P})-functions f = (f?, f?), we called
it a germ of closed form if f = (7, f ), satisfies all of conditions as a closed form in Lz(PI)-sense. Usually,
Theorem B.1 is replaced with a similar result that concerns every germ of closed form in Lz(]P”l*): see[17,
Theorem 5.1] or [9, Theorem A.3.4.14].

C Proof of the weak sector condition

In this section we prove Proposition 5.7 that we recall here for the sake of clarity.

PROPOSITION C.1 (Weak Sector condition). (i) There exists two constants Cy(y,A) and C;(y,A) such
that the following inequality hold for all f, g € Q:

| <« A™g, Sf »p|| < ColllSFIllp [11Sg]llg-

1
| « A™g,Sf »p|| < Cl[Sglllp + S HSFllp-

(ii) There exists a positive constant C(f3) such that, for all g € Q,

11A™¢lllp < C(B)IlISelllp-

Proof. We prove (i). We assume that

g(m, w) = Z wx,O(m)(wgz(+1 - w}z() + Z 1:bx,k(l‘n)"‘)x"‘)erk

XEZL X€EZL

k>1
f(m’w) = Z pr,O(m)(wgz(+1 - w}z() + Z ‘Px,k(m)wxwark-
XEZL I)<C§Zl

We denote by V™ the discrete Laplacian in the variable m, that is

V™ (m) = 2¢(m) — 1) (t;m) — Y (t_;m),

and 7, V™ is the operator defined as

(TmeW (m) = V) (Txm)'
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Straightforward computations show that

Y * 2 A’ * 2
lisgll3 = EE,j [(vory) ] + 78 | (Voury)’]
2
N ZE[(Z (v wxo)”
XEZ XEZ XEZ
k=1
2
Z E [ <Z —x(wx,k) - Tl—x(wx,k)]> ] ]
k=2 X€EZ
(85)
2
1ISFI = 115 f 13 = %E}E (2 > soz,k(m)wowk> 2V [(Z soz,k(m)> ] . (86)
2€Z k=1 2€Z
k=1
Now we deal with « A™g,Sf »g. From Proposition 5.1, and by definition,
< .Amg)Sf >>/3 = ZEZ; [f’ TZ(‘Amg)]
2€Z
= 2 Elprom)l ) — 0, m (A7) | = Y E[grr(m) (oo i 7 (A"))]
X,2€Z X,2€7Z

2 Tx(vmwx,o)
= 52 erE [ﬁ ZE% TZ(%,1)]

n % Z E [( T1¥s B Yy > Z Tz(%,z)]
2€Z

ez, VMg g1 /My 1My

2T Te| ()5 )
2€7Z

k>2 xeZ VMM /M, My ey

ZZ mex,k Pk >ZT %“]

k>2x€Z VMMyep1 /My kMyik—1 ) 225

From Cauchy-Schwarz inequality, and recalling 1/,/mym; < C (P-a.s.), we obtain the following bound:

271/2 57 1/2
| « A™g,Sf >4 || < ﬂz [(Zr v wx())” E[(Zfzwm)] (87)
XEZL 2€7

57 1/2 57 1/2
+ _ZE Z lex 1 wx 1 E Z T_2Pz,2 (88)
ﬁ XEZ 2€EZ

i 27 1/2 571/2
+ % Z E <Z Tﬂ’bx’k - wX,k> ] E |: <Z T—ztpz,k+1> } (89)

XEZ 2€Z

1/2 1/2

2
E [(Z Tz@z,kl) ] : (90)
2€ZL

2
+ % Z E <Z Tflwx,k - 11bx,k> }

XEZL



D TIGHTNESS

Now we are going to use two times the trivial inequality vVab < a/e + €b/2 for a particular choice of
€ > 0: in (87) we take ¢ = y/C and in (88) we take ¢ = 2y/(3C). This trick gives the final bound

| « AMg,Sf »p || < ﬁzﬂ*: <er(vmwx,o)> TSE (sz,m_zm))

XEZL k=1 2€Z

9 2
i;z YE (Z T1Ysk — 1/)x,k>

k=2 XEZ

Recalling (86), we obtain
|« Amg,SF g1l < 2 |5gll2 + 2illsf 1B
&> Bl A 8llip 5 B*
If we use the Cauchy-Schwarz inequality, we get:
m , _ 18C? 2 2
« A", 5 »5 < —IlISgllf ISF .

We have proved (i) with C; = 4/18C2/(yA) and C; = 9C?/(yA). Now we turn to (ii). From Lemma 5.5
and Statement (i),

< Ag, jo, »p = < Sg,Jo1 »p <|lISglllplligalllp-

Moreover, from Statement (i), we also get, for all f € Q,
2« AT, Sf »p < |||Sf|||ﬁ+—|||8g|||,5

As a result, the variational formula (30) for |\|Amg|\|% gives:

Ax(B) Ax(B)

The result is proved. 0

A

1 9¢? Ilioalllz ~oc?
m 2 m -S 2 2 > 2
IlA™glll < < ATgJoa >+ lIselllp < (— lISgllls-

D Tightness

In this section we prove the tightness of the sequence {@ﬁ}Nzl- First, let us recall that the space M/
is equipped with the norm defined as

VIl := sup |[¥(H)[],

H]loo<1

where the supremum is taken over all smooth functions H : T — R bounded by 1.

THEOREM D.1. For almost all realization of the disorder m € Qp, the sequence {@ﬁ}N% is tight in
D([0,T], My).
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Proof. The tightness of the sequence {2)11\1]1} follows from two conditions (see [9], page 299):

All_r)lgohl{lnsup]P’ ¥ [Oiug) Hythl >A] =0 on
(92)
lim lim sup P N|: (yrljl, 6) > s] =0, forall ¢ > 0, (93)

6—0 N-w

where the modulus of continuity w(), §) is defined by

w,6) = sup ||V — V-
[[t—s||<&
0<s<t<T

Let us remind the decomposition of y n given in (10):

t
V(1) = W (1) + || DY, BH)S + I (1) + 2o (),

where Smifi fk(H) is the martingale defined in Subsection 3.3, and Z\ £ (H) is defined as the sum of the
remaining terms in the decomposition. On the first hand,

2
E (zN H)
“y [OZI:ZT tmf"( ) ]

can be estimated by the proof of Lemma 3.2 and Theorem 3.3. On the other hand,

can be computed explicitely. O
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