
HAL Id: hal-01065975
https://hal.science/hal-01065975

Submitted on 6 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A beam to 3D model switch in transient dynamic
analysis

Mikhael Tannous, Patrice Cartraud, David Dureisseix, Mohamed Torkhani

To cite this version:
Mikhael Tannous, Patrice Cartraud, David Dureisseix, Mohamed Torkhani. A beam to 3D model
switch in transient dynamic analysis. Finite Elements in Analysis and Design, 2014, 91, pp.95-107.
�10.1016/j.finel.2014.07.003�. �hal-01065975�

https://hal.science/hal-01065975
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


A beam to 3D model swit
h in transient dynami


analysis

Mikhael Tannous

a

, Patri
e Cartraud

a

, David Dureisseix

b

,

Mohamed Torkhani




a

GéM, E
ole Centrale de Nantes

b

Université de Lyon, LaMCos, INSA de Lyon, CNRS UMR 5259




LaMSID UMR EDF-CNRS-CEA 2832, EDF R&D, F-92141, Clamart Cedex, Fran
e

Abstra
t

Transient stru
tural dynami
 analyses often exhibit di�erent phases, whi
h

enables to use an adaptive modeling. Thus, a 3D model is required for

a better understanding of lo
al or non-linear e�e
ts, whereas a simpli�ed

beam model is su�
ient for simulating the linear phenomena o

urring for a

long period of time.

This paper proposes a method whi
h enables to swit
h from a beam to

a 3D model during a transient dynami
 analysis, and thus, allows to redu
e

the 
omputational 
ost while preserving a good a

ura
y.

The method is validated through 
omparisons with a 3D referen
e solu-

tion 
omputed during all the simulation.
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1. Introdu
tion

Many transient stru
tural dynami
 problems require a 3D model in order

to a

urately a

ount for lo
al e�e
ts, that o

ur along a small period of

time. However, a 3D model for the entire stru
ture used during the whole

simulation will result in an una�ordable 
omputational 
ost even on the best

nowadays 
omputational ma
hines and softwares. Sin
e a 3D model is re-

quired for a better understanding of lo
al or non-linear e�e
ts, whereas a

simpli�ed beam model is su�
ient for simulating the linear phenomena o
-


urring for a long period of time, an adaptive modeling te
hnique in whi
h a

3D and a beam model are used in di�erent phases of the transient dynami



al
ulations 
an redu
e the 
omputational 
ost while preserving a good a
-


ura
y. We, therefore, present a method that 
an redu
e dramati
ally the


omputational 
ost, for problems where the 3D non linearities are restri
ted

in spa
e and time.

To solve problems for whi
h non linearities are restri
ted in time, one


an use a time integration s
heme swit
hing te
hnique su
h as done by Noels

et al. [1℄ for a blade/
asing intera
tion simulation.

For phenomena that are restri
ted in spa
e, i.e. to a small part of the


omputational domain, a wide range of methods has been developed. These

approa
hes 
an be divided into exa
t (or dire
t) methods and iterative ones.

In the �rst group we mention the stati
 
ondensation te
hniques and the

exa
t stru
tural reanalysis methods, su
h those used in Hirai et al. [2℄, the

volume pat
hes te
hniques su
h as Arlequin (Ben Dhia [3℄) and the beam to

3D 
onne
tions or shell to 3D 
onne
tions, that enable to a

ount a

urately

for lo
al 3D phenomena, while the rest of the model is less 
omputationally
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expensive thanks to the beam or shell elements (Kettil and Wiberg [4℄).

The iterative domain de
omposition methods 
an be divided into overlap-

ping and non-overlapping domain de
omposition methods. In the �rst group,

one �nds the S
hwarz, semi-S
hwarz and semi-S
hwarz-Lagrange methods

(see Hager et al. [5℄). Multi-s
ale methods with pat
h, su
h as the �nite

element pat
hes (Glowinski et al. [6℄) and the harmoni
 pat
hes (He et al.

[7℄) enable to have a lo
al zoom on the global domain.

Non-overlapping domain de
omposition methods 
an be 
lassed into three

main 
ategories (Gosselet and Rey [8℄): the primal approa
hes (Mandel [9℄),

the dual approa
hes (FETI method Farhat and Roux [10℄), the hybrid or

mixed approa
hes su
h as FETI-DP whi
h is an improved version of the FETI

method that mixes dual and primal approa
hes (Farhat et al. [11℄). FETI

has also a multi-s
ale version su
h that used in Mobasher Amini et al. [12℄

for the 
omputation of ship stru
tures where windows are some 
entimeters

wide, whereas the stru
ture of the ship is hundred of meters long. For similar

appli
ations we also �nd the mi
ro-ma
ro approa
hes (Ladevèze et al. [13℄).

Regarding lo
al non-linear phenomena, FETI was enhan
ed to deal with

large number of subdomains and 
an take geometri
 non linearities into a
-


ount Farhat et al. [14℄, and was adapted for 
onta
t problems in Avery et al.

[15℄, Avery and Farhat [16℄, Dureisseix and Farhat [17℄. In Gendre [18℄, Gen-

dre et al. [19, 20℄, the authors developed an algorithm that enables to repla
e

the global mesh by a �nely meshed lo
al zone, in order to take lo
al non linear

e�e
ts into 
onsideration with low 
omputational e�ort.

For problems where non linearities are restri
ted both in spa
e and time,

a strategy that allows to use a beam model and a beam-3D mixed model

3



at di�erent stages of the transient analysis allows to redu
e the 
omputa-

tional 
ost while preserving a good a

ura
y as illustrated in Fig. 1. In fa
t,

the simulation starts at t = t0 with a beam model for a linear simulation,

and swit
hes at t = ts1 to a beam-3D mixed model when a non linear phe-

nomenon is to take pla
e. The simulation swit
hes ba
k at t = ts2 to the

beam model for of the rest of the simulation that ends at tf , if no more non

linear phenomenon is present.

PSfrag repla
ements

Beammodel

Beammodel

Switch one Switch two

ts1 ts2 tft0

Beam− 3D mixed model

linear simulation linear simulationnon linear simulation

Figure 1: Beam to 3D swit
h

This raises the problem of the swit
h from one model to another. This

paper presents a beam to 3D model swit
h, as well as a beam to a mixed

beam-3D model swit
h. The 3D to beam model swit
h is not the subje
t of

this resear
h work.

Sin
e the swit
h method enables to swit
h from a beam to a 3D model

when non-linear or lo
al phenomena are to take pla
e, then the swit
h instant


hoi
e depends on the non-linear problem itself. The main purpose of the

swit
h method in this arti
le is swit
hing from a linear transient dynami


problem without large rotations and with linear material behavior to a non-

linear dynami
 
onta
t problem. For 
onta
t problems, the swit
h instant is
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easily 
omputed. In fa
t, when a 
onta
t is dete
ted (the 
onta
t algorithm

returns 
onta
t=1), the swit
h instant is 
omputed by ts = t−n×∆t, where

t is the 
onta
t instant, ∆t the time step value and n a safety fa
tor (10

is su�
ient) that is taken in order to prevent the 3D 
omputations from

starting with an initial 
onta
t dete
ted. However, this arti
le is fo
used

on the swit
h pro
ess. Therefore, to demonstrate that the exa
titude of the

swit
h method is independent from the swit
h instant 
hoi
e, this later is


hosen arbitrary in the s
ope of our study 
ases.

2. Mathemati
al basi
s of the swit
h

A beam model simulation that started at t = 0 is to be swit
hed for a 3D

model simulation at t = ts. Starting with the 3D model at t = ts requires the


olle
tion of the beam model solution at ts and transforming this solution to

have a suitable 3D model initialization at the same moment.

The fundamental dynami
 equation of a beam at t = ts 
an be written

as:

MbÜb +CbU̇b +KbUb = fb (1)

where, Mb , Cb, and Kb are respe
tively the mass, damping and sti�ness

matri
es of the beam model. fb is the external loading at t = ts, Ub, U̇b,

and Üb denote, respe
tively, the beam displa
ements (in
luding rotations),

velo
ities and a

elerations at the same instant.

The 3D model at t = ts 
an be des
ribed by:

M3DÜ3D +C3DU̇3D +K3DU3D = f3D (2)
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where, M3D , C3D, and K3D are respe
tively the mass, damping and

sti�ness matri
es of the 3D model. f3D is the external loading at t = ts

on the 3D model, U3D, U̇3D, and Ü3D denote, respe
tively, the 3D model

displa
ements, velo
ities and a

elerations at the same instant.

Suppose that we start with the beam model at t = 0 and that we want to

swit
h to the 3D model at the swit
h moment (t = ts). We have to 
onstru
t

the 3D solution U3D from the beam solution. This is performed �rst by de-


omposing the 3D displa
ement into a 
ross-se
tion rigid body displa
ement


orresponding to the 
lassi
al Timoshenko kinemati
al assumption PUb, and

a 3D 
orre
tion U3Dc whi
h a

ounts for 
ross-se
tion deformation:

U3D = U3Dc +PUb (3)

We therefore need to generate PUb and to 
ompute U3Dc in order to


onstru
t the 3D model displa
ement at ts.

2.1. Generating PUb

PUb is obtained through a proje
tor matrixP whi
h transforms the beam

displa
ement ve
tor into a 3D rigid body displa
ement per beam se
tion. It

is noteworthy to say that the 3D mesh and the beam mesh 
an not be totally

dis
onne
ted in order for the swit
h to be done. To be able to 
onstru
t the

displa
ement of a node on the 3D mesh, we should have the displa
ements

and rotations of the beam node that has the same position along the beam.

In other words, the beam model should be a proje
tion of the 3D mesh on

its neutral axis. However, it is not easy to build P be
ause it depends on the

relationship between the beam mesh and the 3D mesh, whi
h may 
hange

from one 
ross-se
tion to another. Instead, we will generate PUb as a whole.
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Let Nij a node that belongs to the ith 
ross-se
tion of the 3D model,

PU
ij
b is the displa
ement of Nij 
omputed for a 
ross-se
tion rigid body

displa
ement. The 
ross-se
tion to whi
h belongs Nij has Gi on its neutral

axis. The ith beam node, whi
h has the same 
oordinates as Gi, has a

displa
ement U
i
b and a rotational displa
ement θib. We, then, 
ompute PU

ij
b

as follows:

PU
ij
b = U

i
b +NijGi ∧ θib (4)

where, NijGi is a ve
tor oriented from Nij to Gi.

2.2. Computing U3Dc

Due to the de
omposition of the 3D displa
ement a

ording to Eq. (3),

the 3D model initialization will be performed through the 3D 
orre
tion

U3Dc. Thus, inserting Eq. (3) in Eq. (2) at (t = ts) gives:

M3D
¨(U

3Dc + P̈Ub) + C3D(U̇3Dc + ˙PUb) (5)

+ K3D(U3Dc +PUb) = f3D

Sin
e we have one equation with three unknowns, then the following as-

sumptions are added:

U̇3Dc = 0

Ü3Dc = 0 (6)

They result in a displa
ement 
orre
tion U3Dc that 
orresponds to a stati



omputation for the 3D model, at t = ts, and that is the solution of the

following equation:
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K3DU3Dc = f3D −M3DP̈Ub −C3D
˙PUb −K3DPUb (7)

The 
omputations of PU̇b and PÜb 
an be done in the same way as PUb

by deriving Eq. (4) with respe
t to time.

Now that we have in hand the 3D displa
ements at the swit
h instant


orresponding to Eq. (3) , we 
an initialize the 3D model at t = ts by:

U3D = U3Dc +PUb

U̇3D = PU̇b

Ü3D = PÜb (8)

Eq. (6) and Eq. (8) are 
onsistent with Eq. (5), and thus allow to initialize

the 3D model without violating its fundamental equation of motion at the

swit
h instant.

However, sin
e an integration s
heme is used to solve the fundamental dy-

nami
 equation, then the initialization depends also on this time integration

s
heme, and that makes the subje
t of Se
tion 3.

3. Initializing the 3D solution

In order to solve a dynami
 problem, one needs to have in hand the ini-

tial displa
ements and velo
ities. The initial a

elerations are therefore the

solution of the fundamental equation of motion solved at the initial instant.

However, when this equation is solved numeri
ally via a time integration

s
heme, the required initial 
onditions in that 
ase depend on the time inte-

gration s
heme being used. For an expli
it integration s
heme, not initializing
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the initial a

elerations will lead the �nite element software in question (it

is the 
ase of most softwares) to 
onsider zero initial a

elerations, while for

an impli
it integration s
heme to 
orre
tly 
ompute the initial a

elerations

that satisfy the fundamental equation of motion at that instant. Therefore,

for an expli
it integration s
heme initializing the a

elerations is mandatory

to avoid an artifa
t transient phenomenon that may lead the integration

s
heme to diverge shortly after swit
hing. However, in the examples shown

in this paper, we are using an impli
it integration s
heme namely, a New-

mark integration s
heme that does not require initial a

elerations sin
e the

software, Code_Aster or Abaqus, 
omputes automati
ally the initial a

el-

erations having in hand the initial displa
ements and velo
ities, as indi
ated

in Rixen [21℄.

However, it is noteworthy to mention that with the 
hoi
e of Eq. (8) only

the displa
ements are di�erent from the 
ross-se
tion rigid-body assumption

at the swit
h instant. The initial velo
ities (as well as the initial a

elera-

tions) remain those 
onstru
ted from the beam model, and they are around

5% di�erent from the 3D referen
e velo
ities and a

elerations for most 
ases

of study shown later in this paper. This di�eren
e seems quite small, but is

still strong enough for the problems we have solved and may 
ause an artifa
t

transient phenomenon depi
ted by high frequen
y os
illations in the a

eler-

ations and velo
ities values. These high frequen
y os
illations may lead the

solution to diverge. In order to vanish these os
illations, one 
an insert a

numeri
al damping or 
hange the velo
ities and a

elerations 
orre
tions as

detailed in below.
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3.1. Numeri
al damping (HHT integration te
hnique)

A numeri
al damping in the integration s
heme 
an �lter these high fre-

quen
y os
illations without any other in�uen
e on the solution. The HHT

integration s
heme has been used in this study to �lter the numeri
al os
illa-

tions. This numeri
al damping needs to be maintained on several time steps

following the swit
h in order for the high frequen
y os
illations to vanish, as

shown in the results in the following. However, a more attra
tive method

does exist and 
an redu
e the high frequen
y os
illations that appear after

swit
hing 
onsiderably and is detailed in Se
tion 3.2.

3.2. A triple stati
 swit
h pro
edure

As Eq. (8) shows, the high frequen
y os
illations are generated by a poor

initialization of the velo
ities and a

elerations, sin
e these are later gen-

erated from the beam solution and are not 
ompletely adapted to the 3D

model. The hypothesis taken in Eq. (6) is too strong and therefore gener-

ates high frequen
y os
illations. However, assuming that the displa
ement

initialization is adapted to the 3D model, then a strategy enabling a better

initialization of the velo
ities (and a

elerations if needed for the integration

s
heme) based on the displa
ement 
orre
tion 
an be built with the integra-

tion s
heme and thus eliminates the high frequen
y transient phenomenon

that o

urs after swit
hing.

We therefore �rst 
he
k the displa
ement 
orre
tion on a stati
 problem

to prove its e�
ien
y and then, a

ording to the integration s
heme being

used, 
onstru
t velo
ity and a

eleration initializations.
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3.2.1. The swit
h for stati
 problems

The swit
h for a stati
 problem may be seen as a parti
ular 
ase of the

dynami
 one. It is investigated here to test if the 3D displa
ements after

swit
hing are 
lose to a referen
e 3D stati
 solution. The beam fundamental

equation for a stati
 problem is:

KUb = fb (9)

The 3D fundamental equation is:

K3DU3D = f3D (10)

The 3D displa
ement 
an be divided as explained earlier in Eq. (3), and

leads to de�ne U3Dc as the solution of:

K3DU3Dc = f3D −K3DPUp (11)

This stati
 
orre
tion U3Dc summed with PUb is 
ompared to a refer-

en
e solution for the same 3D model mesh, 
omputed by solving Eq. (10).

This has been performed on several mesh types, 
ross-se
tions shapes and

boundary 
onditions, and di�eren
e between the 
omputed displa
ements

and the referen
e solution has been found to be negligible, indi
ating that

the displa
ements are well 
orre
ted by this swit
h method

3.2.2. Basi
s of the triple stati
 swit
h pro
edure

Sin
e a stati
 swit
h provides an a

urate 
orre
tion of the 3D displa
e-

ments, then a 
orre
tion of the velo
ities and a

elerations 
an be built using

three stati
 swit
h pro
edures at three 
onse
utive time steps. In fa
t, the
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displa
ement 
orre
tion proposed in Se
tion 2.2 takes the 
ross-se
tion defor-

mation into a

ount. But the velo
ities and a

elerations proposed in Eq. (8)

are for a rigid body 
ross-se
tion assumption. Sin
e, we are using a Newmark

integration s
heme, then there is no need to initialize the a

elerations but

we need to improve the velo
ities initialization. This 
an be a
hieved if the

stati
 swit
h is applied on three 
onse
utive time steps, the swit
h instant ts,

the pre
eding step ts−1 and the following one ts+1. Then based on the three

su

essive displa
ements, one 
an inspire from the �nite di�eren
e method a

better initialization of the velo
ities as following:

U̇3D =
1

2×∆T
([PUb +U3Dc]ts+1

− [PUb +U3Dc]ts−1
) (12)

This velo
ity initialization 
ombined with the displa
ement initialization

will lead the Newmark integration s
heme to 
ompute the initial a

elerations

as the solution of:

M3DÜ3D = (f3D −C3DU̇3D −K3DU3D) (13)

This initialization te
hnique proved to be simple and very e�
ient, in

the appli
ation examples shown in this arti
le and on several others. It is


ompletely 
onsistent with the Newmark integration s
heme, and therefore, is

proposed as a proper beam to 3D model swit
hing te
hnique in our resear
h

work.

Note that the triple stati
 swit
h pro
edure does not require a numeri
al

damping. Therefore, all the following swit
h examples solved by a triple

stati
 swit
h method are not damped.

Most of our 
ases of study are solved with a Newmark integration s
heme.
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However, if one wishes to use an expli
it integration s
heme, and as dis
ussed

earlier in this arti
le, initializing the a

elerations is mandatory. For the


entral di�eren
e integration s
heme, the �nite di�eren
e method leads to

the following initial a

elerations:

Ü3D =
1

∆T 2
([PUb +U3Dc]ts+1

(14)

− 2× [PUb +U3Dc]ts + [PUb +U3Dc]ts−1
)

This a

eleration initialization proved to work on several 
ases of study

not shown in this resear
h work.

4. Energy 
onsisten
y of the swit
h

To validate the 
on
ept of the swit
h for transient dynami
 appli
ations,

we 
ompare the 3D solution after swit
hing with a 3D referen
e solution

obtained by performing the same 
omputation on the whole simulation pe-

riod. Another way to 
he
k the validity of the swit
h method on transient

dynami
 problems is to 
he
k whether the swit
h removes or inserts parasite

energy in the system at the swit
h instant, whi
h 
an lead to non physi
al

simulations. Su
h solution pre
ision analyses are widely used in the litera-

ture su
h as in Noels et al. [1, 22, 23℄, where this analysis te
hnique served

to demonstrate the stability and 
onsisten
y of an impli
it and expli
it time

integration s
hemes swit
h method.

If we have a me
hani
al system subje
ted to an external for
e F, with a

mass M, and a sti�ness K, and if the displa
ements at a given instant t are

denoted by U and the velo
ities at the same instant by U̇, the kineti
 energy


an then be written:
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Wc =
1

2
U̇

T
MU̇ (15)

The strain energy reads:

Wd =
1

2
U

T
KU (16)

The work of the external for
es Wf is 
omputed by:

Wf = F
T
U (17)

We noteWdiss the work of dissipative for
es (fri
tion, damping, et
.). The

kineti
 energy theorem gives:

d

dt
Wc =

d

dt
Wf +

d

dt
(Wdiss −Wd) (18)

In our 
ases of study, the dissipative for
es are negligible, then:

Wc +Wd = Wf + cst (19)

where cst is a 
onstant that depends on the problem being solved.

We distinguish three main 
ases:

� F = 0 : the total energy Wt = Wc +Wd is a 
onstant.

� F is a 
onstant: the total energy is a time dependent fun
tion (but

Wc +Wd −Wf is a 
onstant).

� F evolves in time (whi
h is the 
ase of all the appli
ation examples of

this arti
le): the total energy, is a time dependent fun
tion.
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To illustrated Eq. (19), let us 
onsider a spring-mass system example. A

mass M is hold by a spring having a sti�ness k and subje
ted to an external

for
e F. The motion o

urs along the x-axis. The displa
ement solution is:

x = Acos(ωt) +Bsin(ωt) +
F

k
(20)

where ω =

√

k

M
. The 
orresponding kineti
 energy is:

Wc =
1

2
Mẋ2 =

1

2
k(A2 sin2(ωt) +B2 cos2(ωt)− AB sin(2ωt)) (21)

Therefore, the kineti
 energy involves only the angular frequen
y 2ω,

while the strain energy involves both ω and 2ω. In fa
t:

Wd =
1

2
kx2 =

1

2
k(A2 cos2(ωt) +B2 sin2(ωt)+

F 2

k2

+ 2ABsin(ωt)cos(ωt) + 2A
F

k
cos(ωt) + 2B

F

k
sin(ωt) (22)

Therefore, the strain and kineti
 energy do not have the same angular

frequen
y.

If F = 0, Wc +Wd =
1

2
k(A2 +B2) = cte.

If F = cst 6= 0:

Wc +Wd =
1

2
k(A2 +B2) +

1

2
(
F 2

k
+ 2AFcos(ωt) + 2BFsin(ωt)) = cte+Wf

(23)

If F = cst, Wt = Wc +Wd = Wf + cst.

In this arti
le, the energy 
onsisten
y of the swit
h is veri�ed if the energy

(is it the kineti
 or strain energy) value of the 3D solution after swit
hing is

15




lose to its 
orresponding value for the 3D referen
e solution. This 
an prove

that the swit
h does not remove nor insert energy in the 3D solution after

swit
hing. A 
omparison will be set between the evolution of the kineti
,

strain and total energy of the beam model, 3D referen
e model and the 3D

swit
h model to prove that the swit
h method is energeti
ally sound.

5. Appli
ation examples

In this se
tion, we present a simple numeri
al example that illustrates the

e�
ien
y of the beam to 3D model swit
h for dynami
 
ases.

P

P

PSfrag repla
ements

f(t)

Figure 2: The 3D model under study

In fa
t, the method has been validated on more 
omplex 
ases, for dif-

ferent 
ross-se
tion shapes, loadings and boundary 
onditions. In the 
ase


onsidered here, the beam model is a Timoshenko beam model, with a re
t-

angular 
ross-se
tion, having the following dimensions: width 0.012 m, height

0.01 m and a length of 0.1m. The beam is made with a steel material with

density ρ = 7800 kg/m3
, Young modulus E = 2.1 × 1011N/m2

and Poisson


oe�
ient ν = 0.3. One side of the beam is �xed, the other one is subje
ted

to a transverse load equal to f(t) = 100 × t³ × e−1.1t
at its surfa
e 
enter.

Fig. 2 illustrates the 3D model. The 3D model is quadrati
ally meshed with
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approximately one thousand nodes. The swit
h instant is ts = 1.5 s, at whi
h

the beam simulation is swit
hed to the 3D model, with the same boundary


onditions and loading. The 3D solution after swit
hing is 
ompared to a

referen
e solution, whi
h is a 3D solution obtained on the same 3D model

for a simulation that starts at t = 0 and last three se
onds.

The swit
h from the beam model to the 3D model is performed �rst

using the approa
h des
ribed in se
tion Se
tion 2.2 (stati
 
orre
tion with

numeri
al damping) and se
ond with the initialization built from the 3D

displa
ements 
omputed at three di�erent time steps (see Se
tion 3.2.2).
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Figure 3: Displa
ement results: the numeri
al damping method and the triple stati
 swit
h

lead to the same results

We 
ompare the displa
ements, velo
ities and a

elerations of node P

where the load is exerted, that belongs to the 3D model as shown on Fig. 2,
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and the 
orresponding point that belongs to the beam model.

Fig. 3 shows the displa
ement results. First we 
an see a di�eren
e be-

tween the beam solution and the 3D referen
e solution. This di�eren
e is

very small, but still noti
eable if we make a zoom. Immediately after swit
h-

ing, the 3D solution turns out to be very a

urate and is very 
lose to the

referen
e one. Both swit
h methods exhibit pra
ti
ally the same pre
ision

regarding the displa
ements.

However, as shown on Fig. 4, whi
h represent a velo
ity 
omparison,

or Fig. 5 whi
h represents an a

eleration 
omparison, immediately after

swit
hing, high frequen
y os
illations with large amplitude o

ur in the 
ase

where there is only the stati
 
orre
tion. If a numeri
al damping is used to

�lter out these os
illations, then, they will be present only several time steps

after swit
hing. For a HHT integration s
heme with α = 0.25, in our 
ase

35 time steps (0.05 s) were su�
ient for the 3D solution to 
onverge to the

referen
e one. If a triple stati
 swit
h pro
edure is performed, the velo
ities

do not present any os
illations; however, very small os
illations o

ur on the

a

elerations and vanish very shortly after swit
hing.

The results show that both methods work, but the triple stati
 swit
h

appears to be more a

urate while easy to implement. The beam to 3D model

swit
h a

elerates the dynami
 simulation of a 3D model while preserving a

good a

ura
y.

Energy analysis 
on�rms the e�
ien
y of the swit
h . In fa
t, the swit
h

does not remove nor insert parasite energy in the solution

Fig. 6 sets a 
omparison between the kineti
 and strain energies of the

beam model, the 3D referen
e model and the 3D swit
h model. Is it the
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(a) Numeri
al damping method
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(b) Triple stati
 swit
h pro
edure

Figure 4: Beam to 3D swit
h: velo
ity analysis
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(a) Numeri
al damping method
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(b) Triple stati
 swit
h pro
edure

Figure 5: Beam to 3D swit
h: a

eleration analysis
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triple stati
 swit
h or the simple swit
h stabilized by numeri
al damping,

the same strain energy 
urve is obtained. However, if the simple swit
h is

performed and is stabilized with numeri
al damping, os
illations are observed

on the kineti
 energy 
urve on several time steps following the swit
h instant

before it 
onverges to its stable value. A small di�eren
e exists between the

strain energy of the 3D referen
e model and that of the beam model. That

is due to modeling di�eren
es, su
h as the di�eren
e in the shape fun
tions,

between the beam and the 3D models. After swit
hing, there remains a small

di�eren
e between the 3D model strain energy and the 3D referen
e model

strain energy, but it appears that the swit
h does not 
ause a disturban
e on

the value of the strain.
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Figure 6: The kineti
 (Wc) and the strain (Wd) energies

This same 
on
lusion is also obtained on the kineti
 energy on
e this later

is stable. The triple stati
 swit
h pro
edure is a more elegant swit
hing te
h-
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nique that do not need numeri
al damping and do not lead to any energy

perturbation even on the few time steps following the swit
h instant. How-

ever, in many industrial 
ases, the 3D model is required for a small interval

of time, but also for a small area. It is therefore more appropriate to swit
h

from a beam model to a mixed beam-3D model. The 3D zone is limited to

the zone where lo
al phenomena are to take pla
e as shown in Fig. 7.

PSfrag repla
ements

Beam modelBeam model

Beam to 3D
connexion

3D model

Figure 7: Beam-3D mixed model

This raises the question of the beam to 3D 
onne
tion and makes the

subje
t of Se
tion 6.

6. Beam to 3D 
onne
tion

As previously mentioned in the introdu
tion, when lo
al phenomena are

restri
ted in spa
e and time, a beam to a beam-3D mixed model swit
h

enables to preserve a good modeling a

ura
y while de
reasing the 
om-

putational 
ost. In the following, a beam to 3D 
onne
tion, available in

Code_Aster (see Pellet [24℄), is presented and will be used in this resear
h

work. This beam to 3D 
onne
tion satis�es the 
onsisten
y of the beam

and 3D displa
ements (kinemati
 stability), as well as a suitable e�ort trans-

mission from the beam to the 3D (stati
 stability) that does not generate

parasite strains and stresses in the 
onne
tion area.
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This beam to 3D 
onne
tion is a non-overlapping one. The 
onne
tion

o

urs between a beam node P and a 3D 
ross-se
tion S of area A at the

gravity 
enter G of S.

6.1. Kinemati
 stability

The 3D displa
ements U3D is the sum of a rigid-body 
ross-se
tion dis-

pla
ement U3Db and a 
ross se
tion deformation ve
tor Us. The beam dis-

pla
ement and rotation ve
tors at point P are denoted, respe
tively, Ub and

θb. The kinemati
 
onne
tion 
ondition between P and arbitrary node M

that belongs to se
tion S reads: U3Db = Ub + θb ∧GM.

The kinemati
 stability of the 
onne
tion is ful�lled if the orthogonality of

ve
tors U3Db and Us is satis�ed. This ensures that the 3D 
ross-se
tion has

no in�uen
e on the displa
ement of the beam nodes. This 
an be expressed

by the following equations:

Ub =
1

A

ˆ

s

U3DdS (24)

θb = I−1

(
ˆ

s

GM ∧U3DdS

)

(25)

6.2. Stati
 stability

In order to avoid artifa
t strains on the 
onne
tion interfa
e between

the 3D model and the beam model, a suitable transmission of the loading

between the beam and the 3D model is ne
essary. It 
an be a
hieved if

the proje
tion of se
tion S stresses on node P result in beam loading and is

expressed by:
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ˆ

s

σ.n.U3DdS = FpUb +Tpθb (26)

where Fp is a loading ve
tor on node P and Tp is a torque ve
tor on node

P that 
an be dedu
ed from Eq. (26) by solving an optimization problem:

Fp =

ˆ

s

σ.ndS (27)

Tp =

ˆ

s

GM ∧ σ.ndS (28)

The following se
tion present a beam to a mixed beam-3D model swit
h

in transient dynami
 analysis.

7. A beam to mixed beam-3D model swit
h example

In this example, we take a beam with a 
ir
ular 
ross-se
tion of radius

0.005m and a 0.25m length, simply supported from both sides, and that

has the following material properties: ρ = 7800 kg/m³, Poisson 
oe�
ient

ν = 0.3 and a Young modulus E = 2.1×1011Pa. At 0.12m from one side it is

subje
ted to a load of the form f(t) = −100×sin(ω×t), where ω = 6.4 rad/s,

for a 3s long simulation starting at t = 0s. An impli
it integration s
heme is

used with 2000 time steps. The swit
h instant is �xed at t = 2s. For a better

presentation of the results, the displa
ements, velo
ities and a

elerations

are presented in the following illustrations in the interval t ∈ [1, 3] s.

The displa
ement, velo
ities and a

elerations are registered with respe
t

to time at a node DN as illustrated in Fig. 8. The later shows the dimen-

sions of the model in question. The same physi
al model is modeled by a

beam model, a whole 3D model and a model that 
ombines beam and 3D

elements. The referen
e solution is the one 
omputed using the 3D referen
e
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model. The beam to mixed beam-3D model swit
h is performed using the

PSfrag repla
ements

f(t)
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f(t)
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3D reference model

Beam− 3D mixed model
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0.14m

0.12m

Figure 8: Beam model, beam-3D mixed model, and 3D referen
e model

two initialization methods dis
ussed earlier, namely, a numeri
al damping

method (HHT integration s
heme) with α = 0.25 and a three stati
 swit
h

pro
edure. The displa
ements, velo
ities and a

elerations of the beam-3D

mixed model after swit
hing are 
ompared with the beam model solution,

the mixed beam-3D model solution and a 3D model referen
e solution, three

of them for the same loading, starting at t = 0 s and lasting 3 s.

If a numeri
al damping is used to stabilize the solution after swit
hing, a

transient stage is initiated and 
an be seen on the a

elerations, see Fig. 10a,

while being less noti
eable on the velo
ities, see Fig. 9a and absent on the

displa
ements, see Fig. 9b.

By 
ontrast, if a triple stati
 swit
h pro
edure is performed, no transient
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al damping method and the triple stati
 swit
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ements results.
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Figure 9: Displa
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ities analysis
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stage is observed, see Fig. 9 and Fig. 10b. It is noteworthy to say that a

di�eren
e exists between the displa
ements of the 3D referen
e model, the

beam one and the beam-3D mixed model as shown on Fig. 9a. The beam-3D

mixed model is 
loser to the beam solution, sin
e the 3D zone is one �fth

the length of the beam-3D mixed model. This 
on
lusion is the same for the

velo
ities and a

elerations as shown in Fig. 9b and Fig. 10 respe
tively.

Both swit
hing te
hniques prove to be e�
ient. The triple stati
 swit
h

is more elegant while easy to implement.

We now 
he
k the energy 
onsisten
y of the swit
h for this appli
ation

example.
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Figure 11: strain and kineti
 energy sum

Fig. 11 shows the sum of the kineti
 and strain energy for the beammodel,

the mixed beam-3D model 
omputed along the whole simulation time and
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the mixed beam-3D swit
h model. We avoid to present the energy 
urves


orresponding to the 3D referen
e model sin
e they do not provide essential


lues for the analysis of the energy 
onsisten
e of the swit
h.

A small di�eren
e is observed between the energy 
urve of the beammodel

and that of the mixed beam-3D model. This di�eren
e is due to modeling

di�eren
es (shape fun
tions di�eren
es, et
.). After swit
hing, the mixed

beam-3D model energy 
urve joins that of the referen
e mixed beam-3D

model. The same 
on
lusion drawn from the previous appli
ation example,

in whi
h no beam to 3D 
onne
tion is used, is on
e more obtained: the swit
h

does not lead to any perturbation in the energy values. The kineti
 energy

is presented in Fig. 12 in the time interval t ∈ [1, 3] (s), and a zoom on the

kineti
 energy around the swit
h instant is presented on the right hand side

of the this same �gure.
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Figure 12: Kineti
 energy

29



Analyzing the kineti
 energy 
urves 
on�rms the energy 
onsisten
y of

the swit
h.

In this example, at the swit
h instant the velo
ity is near its maximum

as it 
an be seen on Fig. 9b, while the displa
ements and a

elerations are

low as shown in Fig. 9a and Fig. 10, respe
tively. It is interesting to perform

a swit
h at a di�erent instant to have a di�erent initial 
on�guration su
h

as ts = 1.75 (s), at whi
h the velo
ities are low, while the displa
ements and

a

elerations are high. This 
an illustrate the e�
ien
y of the swit
h and
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Figure 13: A

eleration results for tb = 1.75 (s)

prove that the swit
h instant 
an be a 
omplete random in the simulation

interval. Sin
e the triple stati
 swit
h is elegant and easy to implement, we

present, thereafter, the results obtained only by this method for ts = 1.75 (s).
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Fig. 13 show the a

eleration results a

ording to the x-axis at point DN .

The same a

ura
y is obtained on the displa
ements and velo
ities results.

Fig. 14 shows the kineti
 and strain energy sum. No energy perturbation

is dete
ted. This is also the 
ase if we 
he
k the strain and kineti
 energy


urves separately. It is obvious that we have the same e�
ien
y for the swit
h
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Figure 14: Strain and kineti
 energy sum at tb = 1.75 (s)

performed at ts = 2.4 (s) and ts = 1.75 (s).

8. Con
lusions

We have proposed a numeri
al method that enables to swit
h from a

beam to a 3D model, or from a beam to a mixed beam-3D model, when a

3D des
ription is required only on a small part of spa
e and time domains.
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This te
hnique enables to save 
omputational time while preserving a good

a

ura
y.

Two swit
hing te
hniques were proposed. One uses a numeri
al damp-

ing to �lter possible artifa
t os
illations in a

elerations and velo
ities, and

the se
ond, the triple stati
 swit
h, is more elegant, do not need numeri
al

damping and do not 
ause artifa
t os
illations.

The swit
h proved to work on dynami
 and stati
 
ases. The 3D swit
h

solution is pra
ti
ally the same as the 3D referen
e one.

The energy 
onsisten
y of the swit
h has been demonstrated. No energy

is removed nor inserted by the swit
h.

In this arti
le and as also presented in Tannous et al. [25℄, the swit
h

method is developed for transient dynami
 analyses problems without an

overall rotation. However, the main motivation behind the swit
h 
on
ept

proposed in the PhD thesis of Tannous [26℄, and presented in Tannous et al.

[27℄, is its appli
ations to turbine a

idents involving rotor-stator 
onta
t

intera
tions. The swit
h method will be extended, in future publi
ations,

for appli
ation to the slowing down of unbalan
ed turbine rotors with lo
al

intera
tions and fri
tions.
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