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Abstract

Transient structural dynamic analyses often exhibit different phases, which
enables to use an adaptive modeling. Thus, a 3D model is required for
a better understanding of local or non-linear effects, whereas a simplified
beam model is sufficient for simulating the linear phenomena occurring for a
long period of time.

This paper proposes a method which enables to switch from a beam to
a 3D model during a transient dynamic analysis, and thus, allows to reduce
the computational cost while preserving a good accuracy.

The method is validated through comparisons with a 3D reference solu-
tion computed during all the simulation.

Keywords: Transient dynamics, finite elements, switch.

Email address: mikhael.tannous@ec-nantes.fr (Mikhael Tannous)

Preprint submitted to Finite Elements in Analysis and Design April 8, 201/


ddureissei
Texte tapé à la machine
This is a preprint of the article that appears on its final form as: M. Tannous, 
P. Cartraud, D. Dureisseix, M. Torkhani, A beam to 3D model switch in 
transient dynamic analysis, Finite Elements in Analysis and Design 91:95-107, 
2014. DOI: 10.1016/j.finel.2014.07.003, © 2014, Elsevier. Licensed under 
the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Many transient structural dynamic problems require a 3D model in order
to accurately account for local effects, that occur along a small period of
time. However, a 3D model for the entire structure used during the whole
simulation will result in an unaffordable computational cost even on the best
nowadays computational machines and softwares. Since a 3D model is re-
quired for a better understanding of local or non-linear effects, whereas a
simplified beam model is sufficient for simulating the linear phenomena oc-
curring for a long period of time, an adaptive modeling technique in which a
3D and a beam model are used in different phases of the transient dynamic
calculations can reduce the computational cost while preserving a good ac-
curacy. We, therefore, present a method that can reduce dramatically the
computational cost, for problems where the 3D non linearities are restricted
in space and time.

To solve problems for which non linearities are restricted in time, one
can use a time integration scheme switching technique such as done by Noels
et al. [1] for a blade/casing interaction simulation.

For phenomena that are restricted in space, i.e. to a small part of the
computational domain, a wide range of methods has been developed. These
approaches can be divided into exact (or direct) methods and iterative ones.
In the first group we mention the static condensation techniques and the
exact structural reanalysis methods, such those used in Hirai et al. [2], the
volume patches techniques such as Arlequin (Ben Dhia [3]) and the beam to
3D connections or shell to 3D connections, that enable to account accurately

for local 3D phenomena, while the rest of the model is less computationally



expensive thanks to the beam or shell elements (Kettil and Wiberg [4]).

The iterative domain decomposition methods can be divided into overlap-
ping and non-overlapping domain decomposition methods. In the first group,
one finds the Schwarz, semi-Schwarz and semi-Schwarz-Lagrange methods
(see Hager et al. [5]). Multi-scale methods with patch, such as the finite
element patches (Glowinski et al. [6]) and the harmonic patches (He et al.
[7]) enable to have a local zoom on the global domain.

Non-overlapping domain decomposition methods can be classed into three
main categories (Gosselet and Rey [8]): the primal approaches (Mandel [9]),
the dual approaches (FETI method Farhat and Roux [10]), the hybrid or
mixed approaches such as FETI-DP which is an improved version of the FETT
method that mixes dual and primal approaches (Farhat et al. [11]). FETI
has also a multi-scale version such that used in Mobasher Amini et al. [12]
for the computation of ship structures where windows are some centimeters
wide, whereas the structure of the ship is hundred of meters long. For similar
applications we also find the micro-macro approaches (Ladevéze et al. [13]).

Regarding local non-linear phenomena, FETI was enhanced to deal with
large number of subdomains and can take geometric non linearities into ac-
count Farhat et al. [14], and was adapted for contact problems in Avery et al.
[15], Avery and Farhat [16], Dureisseix and Farhat [17]. In Gendre [18], Gen-
dre et al. [19, 20], the authors developed an algorithm that enables to replace
the global mesh by a finely meshed local zone, in order to take local non linear
effects into consideration with low computational effort.

For problems where non linearities are restricted both in space and time,

a strategy that allows to use a beam model and a beam-3D mixed model



at different stages of the transient analysis allows to reduce the computa-
tional cost while preserving a good accuracy as illustrated in Fig. 1. In fact,
the simulation starts at ¢ = t; with a beam model for a linear simulation,
and switches at ¢ = t;; to a beam-3D mixed model when a non linear phe-
nomenon is to take place. The simulation switches back at ¢ = t4 to the
beam model for of the rest of the simulation that ends at ¢¢, if no more non

linear phenomenon is present.

Switch one Switch two
— —
Beam model ! :
E Beam — 3D mixed model E Beammodel
¢ L >
to I: ls1 E ts2 ty

linear simulation non linear simulation linear simulation

Figure 1: Beam to 3D switch

This raises the problem of the switch from one model to another. This
paper presents a beam to 3D model switch, as well as a beam to a mixed
beam-3D model switch. The 3D to beam model switch is not the subject of
this research work.

Since the switch method enables to switch from a beam to a 3D model
when non-linear or local phenomena are to take place, then the switch instant
choice depends on the non-linear problem itself. The main purpose of the
switch method in this article is switching from a linear transient dynamic
problem without large rotations and with linear material behavior to a non-

linear dynamic contact problem. For contact problems, the switch instant is



easily computed. In fact, when a contact is detected (the contact algorithm
returns contact=1), the switch instant is computed by ty = t —n x At, where
t is the contact instant, At the time step value and n a safety factor (10
is sufficient) that is taken in order to prevent the 3D computations from
starting with an initial contact detected. However, this article is focused
on the switch process. Therefore, to demonstrate that the exactitude of the
switch method is independent from the switch instant choice, this later is

chosen arbitrary in the scope of our study cases.

2. Mathematical basics of the switch

A beam model simulation that started at ¢ = 0 is to be switched for a 3D
model simulation at ¢t = t,. Starting with the 3D model at ¢t = ¢, requires the
collection of the beam model solution at ¢, and transforming this solution to
have a suitable 3D model initialization at the same moment.

The fundamental dynamic equation of a beam at ¢ = ¢, can be written

as:

MU, + C,U, + K,U, = f, (1)

where, M,, , C,, and K, are respectively the mass, damping and stiffness
matrices of the beam model. f, is the external loading at ¢t = t,, Uy, Ub,
and U, denote, respectively, the beam displacements (including rotations),
velocities and accelerations at the same instant.

The 3D model at t = t; can be described by:

MspUsp + CspUsp + KspUsp = fap (2)



where, Msp , Csp, and K3p are respectively the mass, damping and
stiffness matrices of the 3D model. f5p is the external loading at ¢t = t;
on the 3D model, Usp, Usp, and Usp denote, respectively, the 3D model
displacements, velocities and accelerations at the same instant.

Suppose that we start with the beam model at ¢ = 0 and that we want to
switch to the 3D model at the switch moment (¢ = ¢,). We have to construct
the 3D solution Usp from the beam solution. This is performed first by de-
composing the 3D displacement into a cross-section rigid body displacement
corresponding to the classical Timoshenko kinematical assumption PU,, and

a 3D correction Usp,. which accounts for cross-section deformation:

Usp = Uszp. +PU, (3)

We therefore need to generate PU, and to compute Usp,. in order to

construct the 3D model displacement at ;.

2.1. Generating PU,

PU, is obtained through a projector matrix P which transforms the beam
displacement vector into a 3D rigid body displacement per beam section. It
is noteworthy to say that the 3D mesh and the beam mesh can not be totally
disconnected in order for the switch to be done. To be able to construct the
displacement of a node on the 3D mesh, we should have the displacements
and rotations of the beam node that has the same position along the beam.
In other words, the beam model should be a projection of the 3D mesh on
its neutral axis. However, it is not easy to build P because it depends on the
relationship between the beam mesh and the 3D mesh, which may change

from one cross-section to another. Instead, we will generate PU, as a whole.



Let N;; a node that belongs to the i" cross-section of the 3D model,
PUZj is the displacement of N;; computed for a cross-section rigid body
displacement. The cross-section to which belongs V;; has G; on its neutral
axis. The " beam node, which has the same coordinates as G;, has a
displacement U} and a rotational displacement 6;. We, then, compute PU,i)j
as follows:

PU) = U, + N,;G; A 6, (4)

where, N;;G; is a vector oriented from N;; to G;.

2.2. Computing Usp,
Due to the decomposition of the 3D displacement according to Eq. (3),
the 3D model initialization will be performed through the 3D correction

Uspe. Thus, inserting Eq. (3) in Eq. (2) at (¢ = t,) gives:
MBD(U3DC +PU,) + C3p(Usp. +PU,) (5)

+ K;p(Usp. +PU,) =15p

Since we have one equation with three unknowns, then the following as-

sumptions are added:

Uspe = 0
ﬂgDc - 0 (6)
They result in a displacement correction Usp,. that corresponds to a static

computation for the 3D model, at t = t,, and that is the solution of the

following equation:



KspUspe = f5p — MspPU, — C5pPU, — K3pPU, (7)

The computations of PUb and PI"Jb can be done in the same way as PU,
by deriving Eq. (4) with respect to time.
Now that we have in hand the 3D displacements at the switch instant

corresponding to Eq. (3) , we can initialize the 3D model at ¢ = ¢, by:

Usp = U;sp.+PU,
Uyp = PG,

Usp = PU, (8)

Eq. (6) and Eq. (8) are consistent with Eq. (5), and thus allow to initialize
the 3D model without violating its fundamental equation of motion at the
switch instant.

However, since an integration scheme is used to solve the fundamental dy-
namic equation, then the initialization depends also on this time integration

scheme, and that makes the subject of Section 3.

3. Initializing the 3D solution

In order to solve a dynamic problem, one needs to have in hand the ini-
tial displacements and velocities. The initial accelerations are therefore the
solution of the fundamental equation of motion solved at the initial instant.
However, when this equation is solved numerically via a time integration
scheme, the required initial conditions in that case depend on the time inte-

gration scheme being used. For an explicit integration scheme, not initializing



the initial accelerations will lead the finite element software in question (it
is the case of most softwares) to consider zero initial accelerations, while for
an implicit integration scheme to correctly compute the initial accelerations
that satisfy the fundamental equation of motion at that instant. Therefore,
for an explicit integration scheme initializing the accelerations is mandatory
to avoid an artifact transient phenomenon that may lead the integration
scheme to diverge shortly after switching. However, in the examples shown
in this paper, we are using an implicit integration scheme namely, a New-
mark integration scheme that does not require initial accelerations since the
software, Code Aster or Abaqus, computes automatically the initial accel-
erations having in hand the initial displacements and velocities, as indicated
in Rixen [21].

However, it is noteworthy to mention that with the choice of Eq. (8) only
the displacements are different from the cross-section rigid-body assumption
at the switch instant. The initial velocities (as well as the initial accelera-
tions) remain those constructed from the beam model, and they are around
5% different from the 3D reference velocities and accelerations for most cases
of study shown later in this paper. This difference seems quite small, but is
still strong enough for the problems we have solved and may cause an artifact
transient phenomenon depicted by high frequency oscillations in the acceler-
ations and velocities values. These high frequency oscillations may lead the
solution to diverge. In order to vanish these oscillations, one can insert a
numerical damping or change the velocities and accelerations corrections as

detailed in below.



3.1. Numerical damping (HHT integration technique)

A numerical damping in the integration scheme can filter these high fre-
quency oscillations without any other influence on the solution. The HHT
integration scheme has been used in this study to filter the numerical oscilla-
tions. This numerical damping needs to be maintained on several time steps
following the switch in order for the high frequency oscillations to vanish, as
shown in the results in the following. However, a more attractive method
does exist and can reduce the high frequency oscillations that appear after

switching considerably and is detailed in Section 3.2.

3.2. A triple static switch procedure

As Eq. (8) shows, the high frequency oscillations are generated by a poor
initialization of the velocities and accelerations, since these are later gen-
erated from the beam solution and are not completely adapted to the 3D
model. The hypothesis taken in Eq. (6) is too strong and therefore gener-
ates high frequency oscillations. However, assuming that the displacement
initialization is adapted to the 3D model, then a strategy enabling a better
initialization of the velocities (and accelerations if needed for the integration
scheme) based on the displacement correction can be built with the integra-
tion scheme and thus eliminates the high frequency transient phenomenon
that occurs after switching.

We therefore first check the displacement correction on a static problem
to prove its efficiency and then, according to the integration scheme being

used, construct velocity and acceleration initializations.

10



3.2.1. The switch for static problems

The switch for a static problem may be seen as a particular case of the
dynamic one. It is investigated here to test if the 3D displacements after
switching are close to a reference 3D static solution. The beam fundamental

equation for a static problem is:

KU, = f, (9)

The 3D fundamental equation is:

KspUsp =f5p (10)

The 3D displacement can be divided as explained earlier in Eq. (3), and

leads to define Ujsp, as the solution of:

KspUspe = f3p — K3pPU, (11)

This static correction Usp,. summed with PU, is compared to a refer-
ence solution for the same 3D model mesh, computed by solving Eq. (10).
This has been performed on several mesh types, cross-sections shapes and
boundary conditions, and difference between the computed displacements
and the reference solution has been found to be negligible, indicating that

the displacements are well corrected by this switch method

3.2.2. Basics of the triple static switch procedure
Since a static switch provides an accurate correction of the 3D displace-
ments, then a correction of the velocities and accelerations can be built using

three static switch procedures at three consecutive time steps. In fact, the

11



displacement correction proposed in Section 2.2 takes the cross-section defor-
mation into account. But the velocities and accelerations proposed in Eq. (8)
are for a rigid body cross-section assumption. Since, we are using a Newmark
integration scheme, then there is no need to initialize the accelerations but
we need to improve the velocities initialization. This can be achieved if the
static switch is applied on three consecutive time steps, the switch instant ¢,
the preceding step t;_; and the following one ¢,,,. Then based on the three
successive displacements, one can inspire from the finite difference method a
better initialization of the velocities as following:

Usp

1
- 2 % AT([PUb + U3Dc]ts+1 - [PUb -+ U3Dc]ts_1) (12)

This velocity initialization combined with the displacement initialization
will lead the Newmark integration scheme to compute the initial accelerations

as the solution of:

MgDU3D == (ng - C3DU3D - K3DU3D) (13)

This initialization technique proved to be simple and very efficient, in
the application examples shown in this article and on several others. It is
completely consistent with the Newmark integration scheme, and therefore, is
proposed as a proper beam to 3D model switching technique in our research
work.

Note that the triple static switch procedure does not require a numerical
damping. Therefore, all the following switch examples solved by a triple
static switch method are not damped.

Most of our cases of study are solved with a Newmark integration scheme.

12



However, if one wishes to use an explicit integration scheme, and as discussed
earlier in this article, initializing the accelerations is mandatory. For the
central difference integration scheme, the finite difference method leads to

the following initial accelerations:

. 1
Usp = ATQ([PUb—f‘U:sDc]

— 2x [PUy,+ Uspeli. + [PU, + Uspele. )

(14)

ts+1

This acceleration initialization proved to work on several cases of study

not shown in this research work.

4. Energy consistency of the switch

To validate the concept of the switch for transient dynamic applications,
we compare the 3D solution after switching with a 3D reference solution
obtained by performing the same computation on the whole simulation pe-
riod. Another way to check the validity of the switch method on transient
dynamic problems is to check whether the switch removes or inserts parasite
energy in the system at the switch instant, which can lead to non physical
simulations. Such solution precision analyses are widely used in the litera-
ture such as in Noels et al. [1, 22, 23], where this analysis technique served
to demonstrate the stability and consistency of an implicit and explicit time
integration schemes switch method.

If we have a mechanical system subjected to an external force F, with a
mass M, and a stiffness K, and if the displacements at a given instant ¢ are
denoted by U and the velocities at the same instant by U, the kinetic energy

can then be written:

13



W, =-U"MU (15)

The strain energy reads:

1
Wy = 5UTKU (16)

The work of the external forces Wy is computed by:

W;=F'U (17)

We note W;ss the work of dissipative forces (friction, damping, etc.). The

kinetic energy theorem gives:

d d d
W.= —We+ —(Wiae — W 1
dt ¢ dt ! i dt( diss 2 (18)

In our cases of study, the dissipative forces are negligible, then:

We+ Wy =Wy +cst (19)

where cst is a constant that depends on the problem being solved.

We distinguish three main cases:
e F =0 : the total energy W, = W, 4+ W; is a constant.

e F is a constant: the total energy is a time dependent function (but

W, + Wy — Wy is a constant).

e F evolves in time (which is the case of all the application examples of

this article): the total energy, is a time dependent function.

14



To illustrated Eq. (19), let us consider a spring-mass system example. A
mass M is hold by a spring having a stiffness £ and subjected to an external

force F. The motion occurs along the z-axis. The displacement solution is:

F
x = Acos(wt) + Bsin(wt) + = (20)

|k
where w = e The corresponding kinetic energy is:

1 1
W. = §M9'c2 = ék(A2 sin?(wt) + B? cos®(wt) — AB sin(2wt)) (21)

Therefore, the kinetic energy involves only the angular frequency 2w,

while the strain energy involves both w and 2w. In fact:

1 F?
Wy =—ka® = §k(A2 cos?(wt) + B? sin®(wt) + =

F F
+ 2ABsin(wt)cos(wt) + QAEcos(wt) + Qstm(wt) (22)

Therefore, the strain and kinetic energy do not have the same angular

frequency.
1
fF=0W.+W;= §k(A2 + B?) = cte.
If F'=cst#0:

1 1 F?
W.+ W, = ik(A2 + B?) + 5(— + 2AFcos(wt) + 2BF'sin(wt)) = cte + Wy

k
(23)
If ' =cst, W, =W, + Wy =W;+ cst.
In this article, the energy consistency of the switch is verified if the energy

(is it the kinetic or strain energy) value of the 3D solution after switching is

15



close to its corresponding value for the 3D reference solution. This can prove
that the switch does not remove nor insert energy in the 3D solution after
switching. A comparison will be set between the evolution of the kinetic,
strain and total energy of the beam model, 3D reference model and the 3D

switch model to prove that the switch method is energetically sound.

5. Application examples

In this section, we present a simple numerical example that illustrates the

efficiency of the beam to 3D model switch for dynamic cases.

£(#)

Figure 2: The 3D model under study

In fact, the method has been validated on more complex cases, for dif-
ferent cross-section shapes, loadings and boundary conditions. In the case
considered here, the beam model is a Timoshenko beam model, with a rect-
angular cross-section, having the following dimensions: width 0.012 m, height
0.01 m and a length of 0.1m. The beam is made with a steel material with
density p = 7800 kg/m3, Young modulus E = 2.1 x 10"* N/m? and Poisson
coefficient ¥ = 0.3. One side of the beam is fixed, the other one is subjected
to a transverse load equal to f(¢) = 100 x ¢ x e 11" at its surface center.

Fig. 2 illustrates the 3D model. The 3D model is quadratically meshed with

16



approximately one thousand nodes. The switch instant is ¢, = 1.5 s, at which
the beam simulation is switched to the 3D model, with the same boundary
conditions and loading. The 3D solution after switching is compared to a
reference solution, which is a 3D solution obtained on the same 3D model
for a simulation that starts at ¢t = 0 and last three seconds.

The switch from the beam model to the 3D model is performed first
using the approach described in section Section 2.2 (static correction with
numerical damping) and second with the initialization built from the 3D

displacements computed at three different time steps (see Section 3.2.2).

0.0002 T T T T T T T T T T T

I 3D switch model zoomthree |
***** 3D reference model

—_— Beam model

0.00015 [—

£

u(p)

0.0001 —

5e-05 [—

Figure 3: Displacement results: the numerical damping method and the triple static switch

lead to the same results

We compare the displacements, velocities and accelerations of node P

where the load is exerted, that belongs to the 3D model as shown on Fig. 2,

17



and the corresponding point that belongs to the beam model.

Fig. 3 shows the displacement results. First we can see a difference be-
tween the beam solution and the 3D reference solution. This difference is
very small, but still noticeable if we make a zoom. Immediately after switch-
ing, the 3D solution turns out to be very accurate and is very close to the
reference one. Both switch methods exhibit practically the same precision
regarding the displacements.

However, as shown on Fig. 4, which represent a velocity comparison,
or Fig. 5 which represents an acceleration comparison, immediately after
switching, high frequency oscillations with large amplitude occur in the case
where there is only the static correction. If a numerical damping is used to
filter out these oscillations, then, they will be present only several time steps
after switching. For a HHT integration scheme with o = 0.25, in our case
35 time steps (0.05 s) were sufficient for the 3D solution to converge to the
reference one. If a triple static switch procedure is performed, the velocities
do not present any oscillations; however, very small oscillations occur on the
accelerations and vanish very shortly after switching.

The results show that both methods work, but the triple static switch
appears to be more accurate while easy to implement. The beam to 3D model
switch accelerates the dynamic simulation of a 3D model while preserving a
good accuracy.

Energy analysis confirms the efficiency of the switch . In fact, the switch
does not remove nor insert parasite energy in the solution

Fig. 6 sets a comparison between the kinetic and strain energies of the

beam model, the 3D reference model and the 3D switch model. Is it the

18
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Figure 4: Beam to 3D switch: velocity analysis
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Figure 5: Beam to 3D switch: acceleration analysis
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triple static switch or the simple switch stabilized by numerical damping,
the same strain energy curve is obtained. However, if the simple switch is
performed and is stabilized with numerical damping, oscillations are observed
on the kinetic energy curve on several time steps following the switch instant
before it converges to its stable value. A small difference exists between the
strain energy of the 3D reference model and that of the beam model. That
is due to modeling differences, such as the difference in the shape functions,
between the beam and the 3D models. After switching, there remains a small
difference between the 3D model strain energy and the 3D reference model
strain energy, but it appears that the switch does not cause a disturbance on
the value of the strain.

— Beam Model
— 3D Reference Model
— 3D Switch Model

3e-10

2e-10

75
1e-10

1 2

W, [x107% J]

15

t (s)
Simple switch stabilized
by numerical damping

Triple static switch

2.5

Figure 6: The kinetic (W,) and the strain (Wy) energies

This same conclusion is also obtained on the kinetic energy once this later

is stable. The triple static switch procedure is a more elegant switching tech-

21



nique that do not need numerical damping and do not lead to any energy
perturbation even on the few time steps following the switch instant. How-
ever, in many industrial cases, the 3D model is required for a small interval
of time, but also for a small area. It is therefore more appropriate to switch
from a beam model to a mixed beam-3D model. The 3D zone is limited to

the zone where local phenomena are to take place as shown in Fig. 7.

Beam model 3D model Beam model

AN ’ N AN
/ \
! \
1 1
|

\ /

\ /
“»Beamto3D <€~

connexion

Figure 7: Beam-3D mixed model

This raises the question of the beam to 3D connection and makes the

subject of Section 6.

6. Beam to 3D connection

As previously mentioned in the introduction, when local phenomena are
restricted in space and time, a beam to a beam-3D mixed model switch
enables to preserve a good modeling accuracy while decreasing the com-
putational cost. In the following, a beam to 3D connection, available in
Code_Aster (see Pellet [24]), is presented and will be used in this research
work. This beam to 3D connection satisfies the consistency of the beam
and 3D displacements (kinematic stability), as well as a suitable effort trans-
mission from the beam to the 3D (static stability) that does not generate

parasite strains and stresses in the connection area.
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This beam to 3D connection is a non-overlapping one. The connection
occurs between a beam node P and a 3D cross-section S of area A at the

gravity center GG of S.

6.1. Kinematic stability

The 3D displacements Usp is the sum of a rigid-body cross-section dis-
placement Usp, and a cross section deformation vector U,. The beam dis-
placement and rotation vectors at point P are denoted, respectively, U, and
0,. The kinematic connection condition between P and arbitrary node M
that belongs to section S reads: Uszp, = U, + 0, A GM.

The kinematic stability of the connection is fulfilled if the orthogonality of
vectors Usp, and U, is satisfied. This ensures that the 3D cross-section has
no influence on the displacement of the beam nodes. This can be expressed

by the following equations:

U, = L / UspdS (24)
A S
0, = I ( / GM/\ngdS) (25)

6.2. Static stability

In order to avoid artifact strains on the connection interface between
the 3D model and the beam model, a suitable transmission of the loading
between the beam and the 3D model is necessary. It can be achieved if
the projection of section S stresses on node P result in beam loading and is

expressed by:
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/O’.?’L.UngS = FpUb + Tp0b (26)

where F), is a loading vector on node P and T, is a torque vector on node

P that can be deduced from Eq. (26) by solving an optimization problem:

F, = /a.ndS (27)
T, - / GM A 0.ndS (28)

The following section present a beam to a mixed beam-3D model switch

in transient dynamic analysis.

7. A beam to mixed beam-3D model switch example

In this example, we take a beam with a circular cross-section of radius
0.005m and a 0.25m length, simply supported from both sides, and that
has the following material properties: p = 7800 kg/m?3, Poisson coefficient
v = 0.3 and a Young modulus F = 2.1x 10! Pa. At 0.12m from one side it is
subjected to a load of the form f(¢) = —100 x sin(w x t), where w = 6.4 rad/s,
for a 3s long simulation starting at t = 0s. An implicit integration scheme is
used with 2000 time steps. The switch instant is fixed at ¢ = 2s. For a better
presentation of the results, the displacements, velocities and accelerations
are presented in the following illustrations in the interval ¢ € [1,3] s.

The displacement, velocities and accelerations are registered with respect
to time at a node Dy as illustrated in Fig. 8. The later shows the dimen-
sions of the model in question. The same physical model is modeled by a
beam model, a whole 3D model and a model that combines beam and 3D

elements. The reference solution is the one computed using the 3D reference
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model. The beam to mixed beam-3D model switch is performed using the

0.14m
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' | % Dy
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Figure 8: Beam model, beam-3D mixed model, and 3D reference model

two initialization methods discussed earlier, namely, a numerical damping
method (HHT integration scheme) with o = 0.25 and a three static switch
procedure. The displacements, velocities and accelerations of the beam-3D
mixed model after switching are compared with the beam model solution,
the mixed beam-3D model solution and a 3D model reference solution, three
of them for the same loading, starting at ¢ = 0 s and lasting 3 s.

If a numerical damping is used to stabilize the solution after switching, a
transient stage is initiated and can be seen on the accelerations, see Fig. 10a,
while being less noticeable on the velocities, see Fig. 9a and absent on the
displacements, see Fig. 9b.

By contrast, if a triple static switch procedure is performed, no transient
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(a) Displacements: the numerical damping method and the triple static switch

lead to the same displacements results.
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(b) Velocities: comparison between the numerical damping method and the

triple static switch method

Figure 9: Displacements and velocities analysis
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stage is observed, see Fig. 9 and Fig. 10b. It is noteworthy to say that a
difference exists between the displacements of the 3D reference model, the
beam one and the beam-3D mixed model as shown on Fig. 9a. The beam-3D
mixed model is closer to the beam solution, since the 3D zone is one fifth
the length of the beam-3D mixed model. This conclusion is the same for the
velocities and accelerations as shown in Fig. 9b and Fig. 10 respectively.

Both switching techniques prove to be efficient. The triple static switch
is more elegant while easy to implement.

We now check the energy consistency of the switch for this application

example.
— Beam model
—  Beam — 3D mixed reference model
i Beam — 3D mixed swicth model b
A
0.015 |. //\\
E 0.01
=
=
+ -
S
0.005 |...
0 \/

Figure 11: strain and kinetic energy sum

Fig. 11 shows the sum of the kinetic and strain energy for the beam model,

the mixed beam-3D model computed along the whole simulation time and
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the mixed beam-3D switch model. We avoid to present the energy curves
corresponding to the 3D reference model since they do not provide essential
clues for the analysis of the energy consistence of the switch.

A small difference is observed between the energy curve of the beam model
and that of the mixed beam-3D model. This difference is due to modeling
differences (shape functions differences, etc.). After switching, the mixed
beam-3D model energy curve joins that of the reference mixed beam-3D
model. The same conclusion drawn from the previous application example,
in which no beam to 3D connection is used, is once more obtained: the switch
does not lead to any perturbation in the energy values. The kinetic energy
is presented in Fig. 12 in the time interval ¢ € [1, 3] (s), and a zoom on the
kinetic energy around the switch instant is presented on the right hand side

of the this same figure.

— Beam model
— Beam — 3D mixed reference model
Beam — 3D mized swicth model

1.5e-07 |

1e-07

W, [J]

5e-08

Zoom 400%

t(s)

Figure 12: Kinetic energy
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Analyzing the kinetic energy curves confirms the energy consistency of
the switch.
In this example, at the switch instant the velocity is near its maximum
as it can be seen on Fig. 9b, while the displacements and accelerations are
low as shown in Fig. 9a and Fig. 10, respectively. It is interesting to perform
a switch at a different instant to have a different initial configuration such
as ts = 1.75 (), at which the velocities are low, while the displacements and

accelerations are high. This can illustrate the efficiency of the switch and

Beam model
— 3D reference model
Beam — 3D mixed reference model
Beam — 3D mized swicth model

0.015
I : N
001

0.005|-/
/

-0.005

-0.01

25

1 15
t(s)

Figure 13: Acceleration results for t, = 1.75 (s)

prove that the switch instant can be a complete random in the simulation
interval. Since the triple static switch is elegant and easy to implement, we

present, thereafter, the results obtained only by this method for ¢, = 1.75 ()
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Fig. 13 show the acceleration results according to the x-axis at point Dy .
The same accuracy is obtained on the displacements and velocities results.

Fig. 14 shows the kinetic and strain energy sum. No energy perturbation
is detected. This is also the case if we check the strain and kinetic energy

curves separately. It is obvious that we have the same efficiency for the switch
— Beam model

Beam — 3D mized reference model
Beam — 3D mized swicth model

0.015 \ [\ [\
\ [ [\
\ |

0.01

Wy+ W, (J)

0.005

0 15 2 25 3
t(s)

Figure 14: Strain and kinetic energy sum at ¢, = 1.75 (s)
performed at t; = 2.4 (s) and t, = 1.75 (s).

8. Conclusions

We have proposed a numerical method that enables to switch from a
beam to a 3D model, or from a beam to a mixed beam-3D model, when a

3D description is required only on a small part of space and time domains.
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This technique enables to save computational time while preserving a good
accuracy.

Two switching techniques were proposed. One uses a numerical damp-
ing to filter possible artifact oscillations in accelerations and velocities, and
the second, the triple static switch, is more elegant, do not need numerical
damping and do not cause artifact oscillations.

The switch proved to work on dynamic and static cases. The 3D switch
solution is practically the same as the 3D reference one.

The energy consistency of the switch has been demonstrated. No energy
is removed nor inserted by the switch.

In this article and as also presented in Tannous et al. [25], the switch
method is developed for transient dynamic analyses problems without an
overall rotation. However, the main motivation behind the switch concept
proposed in the PhD thesis of Tannous [26|, and presented in Tannous et al.
[27], is its applications to turbine accidents involving rotor-stator contact
interactions. The switch method will be extended, in future publications,
for application to the slowing down of unbalanced turbine rotors with local

interactions and frictions.
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