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Abstrat

This paper desribes how a modal approah in the time-domain an be suitable for alulating the elastodynami

�eld in a layered plate. This elastodynami �eld is generated by impulsive soures loated in a small region of

a omposite plate onsisting of anisotropi layers stuk together. The aim is to alulate the transient response

of the elasti plate around the loation of the soures, generally emitting n-yle pulses. First, we apply a 2D

Fourier transform to the wave equation with respet to the oordinates in the plate plane, and then, in the

2D spetrum domain, for any given wave-vetor in the plate plane, solving a vibration problem with respet to

time and position in the diretion perpendiular to the plate. The solution is expressed as the sum of mode

responses, eah mode having a resonane frequeny and a shape whih depend on the wave-vetor in the plate

plane.

These alulations are di�erent from those obtained by the usual method in the harmoni domain, where the

modes are searhed for a �xed frequeny, suh as Lamb waves, i.e. guided waves that propagate along the

plate. In our ase, the solution is given as a summation of plate resonanes, i.e. a deomposition on the real

eigenfrequenies, assoiated to Lamb waves with the same �xed wave-vetor. This di�erene is of importane

sine only Lamb modes with real frequenies and real-valued wavenumbers in the plate plane are involved here,

ontrary to the usual harmoni methods, where these modes an be evanesent. This is of great interest as it

an simplify the alulation of the generated �eld near the soure.

Finally, we obtain a solution in the physial domain by performing an inverse 2D Fourier transform. After a

detailed desription of the method, results are shown for two typial plates. It is emphasized that the method

is aurate for observation points loated both above or below the soure and reasonably far from it along the

plate.
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1 Introdution

The study of the di�ration of an ultrasoni soure in an anisotropi multi-layered plate is of great interest in

the �eld of Nondestrutive Testing. From the point of view of propagation analysis, knowing the amplitude

distribution of the elastodynami �eld in di�erent diretions and studying ultrasoni wave propagation to the

area of inspetion are both important, for example, to hoose the orret soure for a spei� problem under

onsideration. This is mainly true for inspetions of omposite materials, whih are generally made of oriented

�ber staks. Their aousti responses are omplex and most of the time strongly anisotropi.

There are di�erent harmoni methods to alulate the di�rated �eld, at any point and any time, in suh plates

(e.g., [1, 2℄). The method most ommonly used, without doubt, onsists of applying a double Fourier transform

to the initial partial di�erential equation in four variables, with respet to time and one diretion d in the

plate plane. By doing so, we obtain a partial di�erential equation in a plane perpendiular to diretion d, and
onsequently to the plate too, for whih the angular frequeny and the wavenumber in diretion d are parameters

(see for example [3, 4℄). The solution is then deomposed into guided modes, i.e. generalized Lamb waves, and

the wavenumber in the diretion along the plate perpendiular to diretion d is alulated from all the other

spetrum variables. The guided wave an then be alulated by using a global matrix [5℄ for example, or an

impedane matrix [6℄. These methods are semi-analyti. Pure numerial methods exist like the SAFE method

([7℄, and e.g., [8℄), whih an be used to model very omplex plane strutures. When the modes are known, the

residue theorem, or other tehniques suh as those based on the reiproity theorem, an be applied to alulate

mode amplitude (e.g., [3℄). These �eld alulations are involved when developing hybrid methods, whih onsist

of oupling mode theory with �nite element methods [9, 8℄. In essene, these approahes are well adapted to

alulate the �eld for long distanes of propagation along the plate, sine the solution is given in terms of Lamb

waves. In ontrast, they are not so e�ient for analyzing the �eld for sub-soure loations, beause a very large

number of evanesent modes are involved in the �eld desription.

There is an alternative tehnique, however, whih is to do the alulation in the time-domain. Strangely, few

studies an be found in the literature on this subjet [10, 11℄. In this ase, a 2D Fourier transform is performed

with respet to the oordinates in the plane of the layers (and of the interfaes) on the partial di�erential

equation. In this 2D spetrum domain, i.e. at any �xed wave-vetor k, the solution is obtained by summation

of plate resonanes. A good introdution an be found in [10℄, showing that this method has been developed

and exploited in geophysis. In this paper, we propose to develop this approah to study wave propagation in

omposite materials for Nondestrutive Testing appliations.

After a brief desription of the basi equations (Setion 2), using our notations, the solution is obtained in the

time-domain (Setion 3), analogously to what has been done by the so-alled �Thin-Layer Method � [10℄, exept

that there is no disretization in the z-diretion perpendiular to the plate. Indeed, in the Thin-Layer Method,

�to solve the wave equation, [one℄ begins by dividing the physial domain in layers that are thin in the �nite

element sense [. . . ℄�[10℄. Mode shapes are de�ned here analytially for the most general ase as ontinuous

funtions of the z-oordinate, similarly to what is suggested for the isotropi ase in [11℄. Nevertheless, at the

last stage of the alulation, either semi-analytial or pure numerial tehniques must be used to alulate the

resonanes of the plate. The �nite di�erene method is used here for its e�ieny but it is not neessary (see

for example [5, 6℄ in the frequeny-domain). In Setion 4, the numerial aspets are presented and �nally, in

Setion 5, di�erent results are shown for two typial plates. It will be emphasized that the method is aurate

for observation points loated both under the soure and reasonably far from it along the plate.
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2 Equations in the physial domain

Let us onsider a multilayered medium onsisting of a plate system with a number m of perfet �at layers of

normal z, staked together. Eah layer is an anisotropi solid, with a given thikness hβ=zβ−zβ−1, as illustrated

in Fig. 1. The total thikness is expressed by h. Above and below this plate system are semi-in�nite vauum

half-spaes. The plate is assumed to be in�nite in the xy-plane, where the position is denoted by the vetor

x=(x, y).

This strati�ed medium is subjeted to an external fore density f(x, z, t) loated between the planes z=0 and

z=h and in the ylinder of equation |x | < rs .
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x

y

z

z0 = 0
z1
z2
z3

zm−1

zm = h

Localized
Source

Layer 1

Layer 2

Layer 3

Layer m

Figure 1: A multilayered in�nite plate of thikness h with m layers.

2.1 Equations in eah layer

In this setion the equations of motion in eah layer are presented. The development of these equations for an

in�nite homogeneous anisotropi solid has been overed in many textbooks, see for example [12, 13, 14℄. They

are realled here with ondensed notations. At any time t and any loation M(x, z), the displaement �eld and

the stress vetor in the α-diretion are expressed by u(x, z, t) and σα(x, z, t) (α=x, y, z) respetively.

By applying Newton's seond law, equilibrium in layer ♯β requires:

ρβ ∂
2
t u(x, z, t) = ∂ασα(x, z, t) + f(x, z, t) , (1)

where Einstein's summation onvention over repeated indies is used.

Using the bilinear produt

β⋄, introdued in [15℄ and depending on the values of the elasti onstants c
[β]
ijkm,

Hooke's Law takes the form:

σα(x, z, t) =
(

nα

β⋄ ▽
)

u(x, z, t) (2)

where nα is the unit vetor in the α diretion, ▽ = ∂α nα is the gradient operator and (a
β⋄b) is a three-by-three

matrix suh that (a
β⋄ b)im=c

[β]
ijkm aj bk.

For simpliity, the index β will be omitted below. It will be reintrodued only when neessary to avoid ambiguity.
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Combining equations (1) and (2) yields the following wave equation in eah media:

ρ ∂2
t u(x, z, t)− (▽ ⋄▽) u(x, z, t) = f(x, z, t) (3)

with zero initial onditions.

2.2 Boundary onditions and ontinuity at the interlayer surfaes

Taking into aount the free boundary onditions at both the upper and lower interfaes, the normal stresses

in layer ♯1 at z=0 and in layer ♯m at z=h are zero:

(n ⋄ ▽) u(x, 0, t) = 0 and (n ⋄ ▽) u(x, h, t) = 0 , (4)

with the notation n=nz .

Completing the development of the equations, the ontinuity of the vetor of displaements and of normal

stresses at eah interfae between two onseutive layers, ♯β and ♯(β+1), must be satis�ed. This implies:

u(x, z−β , t) = u(x, z+β , t) and (n
β⋄ ▽ ) u(x, z−β , t) = (n

β+1⋄ ▽ ) u(x, z+β , t) , (5)

where z−β indiates that the quantities are determined in layer ♯β, while for z+β the same quantity is expressed

in layer ♯(β+1).

It is of interest to note that eah �eld exhibits a �nite support at eah time. As a matter of fat, sine the

soure is loalized, i.e. enlosed in a ylinder |x|<rs , and starts at t=0, the displaement �eld is neessarily zero

outside of the ylinder |x|<(rs+cmax t), where cmax is the highest wave speed. This will be useful to alulate

the 2D Fourier transform introdued in the next setion.

3 An in�nity of one-dimensional vibrating systems

The usual method used to solve Eqs. (3) to (5) is to apply a 3D Fourier transformation to them, with respet

to x, y and t (e.g., [5, 16, 6℄). The three spae and time frequenies, denoted by kx, ky and ω, are independent
variables. The �rst two are the omponents of the wave vetor on the surfae and the last one is the angular

frequeny. In eah layer ♯β and for eah partial mode ♯i, the wave number κβ,i in the z-diretion is then related

to the three variables kx, ky and ω by the Christo�el equation. Taking into aount the boundary onditions,

one spatial integral, for example those in kx, is onverted to an in�nite summation of plate modes, whih are

obtained by searhing all the guided waves with wave-numbers kx,n, for given values of ky and ω. The values

of kx,n an be omplex. Consequently, the guided waves an be exponentially attenuated in the x-diretion.
Similarly, the di�erent values of the ith wavenumber κβ,i,n in the z-diretion and in eah layer an be omplex

aording to the Christo�el equation.

In this paper, we present an alternative way to solve Eqs. (3) to (5) in the time-domain, extending what has been

done by Kausel et al. in [10℄ and [11℄ to general anisotropy and ontinuous values of the vertial position z. To
this end, the solution we are searhing for in the plane of the plate is the superposition of real-valued sinusoidal

�elds, of wavelength 2 π k−1
, where k=|k |, as follows:

u(x, z, t) =

∫

R2

cos(k · x)uc(k, z, t) + sin(k · x)us (k, z, t)dk

︸ ︷︷ ︸

m
︷ ︸︸ ︷

uc(k, z, t) =
1

4π2

∫

R2

cos(k · x)u(x, z, t)dx and us (k, z, t) =
1

4π2

∫

R2

sin(k · x)u(x, z, t)dx

(6)

Éri Duasse & Mar Deshamps Time-domain response of layered plates
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where uc(k, z, t) and us (k, z, t) are independent real-valued quantities, whih are even and odd funtions re-

spetively with respet to the wave-vetor k. As a onsequene of these last properties, these two quantities

an be grouped together in the following omplex-valued �eld U(z, t) whih is the usual Fourier transform of

the displaement �eld u(x, z, t), suh that:

U(z, t) = uc(k, z, t) + ius(k, z, t) =
1

4π2

∫

R2

e

ik·x u(x, z, t)dx ⇐⇒ u(x, z, t) =

∫

R2

e

−ik·xU(z, t)dk , (7)

with uc(k, z, t) = Re[U(z, t)] and us(k, z, t) = Im[U(z, t)]. The dependene of this �eld with respet to the

horizontal wave-vetor k is omitted. Throughout this paper, when �elds are denoted by upper ase letters, they

are expressed in the k-domain and the dependene with respet to the horizontal wave-vetor is impliit.

3.1 A one-dimensional osillator for eah horizontal wave-vetor

Finally the problem onsists of �nding the funtion U(z, t). Noting that the gradient operator ▽ beomes

−ik+∂zn in the k-domain, Eq. (3) is transformed into:

ρ ∂2
tU(z, t)− (n ⋄ n) ∂z2U(z, t) + i [(n ⋄ k) + (k ⋄ n)] ∂zU(z, t) + (k ⋄ k)U(z, t) = F(z, t) , (8)

with zero initial onditions, where F(z, t) = f


(k, z, t) + i f
s

(k, z, t) is the Fourier transform of the fore density

f(x, z, t). This fore �eld f(x, z, t) and the new omplex funtion F(z, t) satisfy the same kind of relations

introdued in Eqs. (6) and (7). Similarly, let us introdue the Fourier transform of the stress vetor in the

α-diretion, suh that: Σα(z, t) = σα(k, z, t) + iσαs(k, z, t).

Using this notation, the boundary onditions at both free interfaes are:

Σz(0, t) = (n ⋄n) ∂zU(0, t)− i (n ⋄k)U(0, t) = 0 and Σz(h, t) = (n ⋄n) ∂zU(h, t)− i (n ⋄k)U(h, t) = 0 , (9)

while the equations of ontinuity at eah interfae between two layers are:

U(z−β , t) = U(z+β , t) and

(n
β⋄ n) ∂zU(z−β , t)− i (n

β⋄ k)U(z−β , t) = (n
β+1⋄ n) ∂zU(z+β , t)− i (n

β+1⋄ k)U(z+β , t) .
(10)

The initial problem is then replaed by equation (8) of motion in eah layer, whih is oupled with the boundary

onditions (9), and the di�erent equations (10) of ontinuity. Thus, for a given vetor k, we obtain a partial

di�erential equation system with respet to position z and time t. In fat, we are searhing for the displaement

response U of a one-dimensional vibrating system (similar to a string or a beam) to the exitation F. This

vibrating system is onstituted by m media, as shown in Fig. 2.

PSfrag replaements
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Figure 2: A string-like one-dimensional vibrating system of length h, inluding m media.
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3.2 Deomposition of the response in the modal basis

As is usually the ase in strutural dynamis (e.g., [17℄), equations (8), (9) and (10) lead to the following weak

formulation:

∀Φ ,
〈
Φ, ∂2

tU(•, t)
〉
+A(Φ,U(•, t)) =

〈
Φ, ρ−1F(•, t)

〉
, (11.a)

where the salar produt of two displaement �elds Φ and Ψ is de�ned by:

〈Φ,Ψ〉 =
∫ h

0

[
Φ(z)+ Ψ(z)

]
ρ(z)dz , (11.b)

the supersript + denoting the transposition ombined with the omplex onjugation, and where the positive

hermitian form A is expressed as follows:

A(Φ,Ψ) =

∫ h

0

Φ′(z)+ [ (n ⋄ n)Ψ′(z)− i(n ⋄ k)Ψ(z) ] + iΦ(z)+ [ (k ⋄ n)Ψ′(z)− i(k ⋄ k)Ψ(z) ]dz . (11.)

The solution U of Eq. (11) is expressed in the orthonormal basis of the eigenmodes (ωn,Φn) of the one-

dimensional osillator as follows (see Appendix A for more details):

U(z, t) =

+∞∑

n=1

un(t)Φn(z) , (12)

un(t) denoting the magnitude of the mode ♯n.

By replaing Φ by Φn in Eq. (11) for eah mode ♯n, suessively, and by using both the orthogonality property

(A.9) and Eq. (A.11), we obtain the following independent ordinary di�erential equations in the time-domain

governing eah magnitude un(t):

∀n ∈ N∗ , u′′

n(t) + ω2
n un(t) =

∫ h

0

Φn(z)
+ F(z, t)dz = fn(t) , (13)

with zero initial onditions. The fn(t) oe�ient results from the projetion of the soure-term F divided by

the density ρ onto the mode shape ♯n, i.e. ρ(z)−1 F(z, t) =
∑+∞

n=1 fn(t)Φn(z).

Thus, the exat solution of Eq. (13) is written as follows:

un =

[

h(•)sin(ωn • )
ωn

]

∗ fn , (14)

where h is the Heaviside unitstep funtion (omitted in [10℄ and [11℄) and ∗ denotes the ontinuous-time onvo-

lution.

3.3 Synthesis of the displaement �eld in the physial domain

Finally the response U(z, t), at any �xed time t and at any vertial position z of observation, was obtained

from Eqs. (12) and (14) for all wave-vetors k. An inverse 2D Fourier transform by Eq. (7) yields a snapshot of

the displaement �eld at time t and at depth z. The diret and inverse 2D Fourier transform have to be done

numerially, as shown in the next setion.
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4 Computation

One a retangular domain of observation and disretization steps have been hosen, the omputation is per-

formed in two suessive stages: �rstly, for a given layered plate, the di�erent modes are alulated and stored.

The mode omputation has to be done one and for all. Seondly, the time-domain response of the plate to a

given soliitation is alulated.

4.1 Disretization and periodization in the x- and k-domains

As noted below, the displaement �eld at any time t is zero outside of a ylinder of radius (rs+cmax t). Conse-
quently, two values xmax and ymax an be hosen suh that u(x, z, t) = 0 if the horizontal position x is outside

of the retangle [−xmax, xmax]× [−ymax, ymax] and if time t is less than tmax.

Aording to the Shannon Sampling Theorem (e.g., [18℄) applied to a 2D spae, if the soure is assumed to

ontain only spatial frequenies less than kmax
x and kmax

y in the x- and y-diretions respetively, the 2D x-

(physial spae) and k-domains (horizontal wave-vetors) an be disretized.

Thus, a nx-by-ny grid is de�ned on eah domain. The disretization steps are δx and δy in the x-domain, δkx
and δky in the k-domain. They satisfy the following relations:

δx =
2 xmax

nx

=
π

kmax
x

; δy =
2 ymax

ny

=
π

kmax
y

; δkx =
2 kmax

x

nx

=
π

xmax

; δky =
2 kmax

y

ny

=
π

ymax

. (15)

In fat, our goal is to ompute the real values of the displaement �eld on the grid in the x-domain. These values

are obtained by applying Fast Fourier Transforms [19℄ to the displaement �eld omputed in the k-domain by

Eqs. (12) and (14). Due to the symmetry properties of Eq. (6), the latter omputation must be made on set G
only, as this set almost orresponds to the half of the grid in the k-domain:

G =
{(

lx δkx, ly δky
)
; ly=0 and 0 6 lx 6 nx/2, or 1 6 ly 6 ny/2 and 1− nx/2 6 lx 6 nx/2

}
. (16)

4.2 Modes omputation

We searh for numerial values for eah eigenmode (ω,Φ) that will approximately satisfy the following equations.

Firstly, in eah layer:

(n ⋄ n)Φ′′(z)− i [(n ⋄ k) + (k ⋄ n)] Φ′(z) +
[
ρ ω2

I3 − (k ⋄ k)
]
Φ(z) = 0 . (17.a)

Seondly:

(n ⋄ n)Φ′(0)− i (n ⋄ k)Φ(0) = 0 ; (n ⋄ n)Φ′(h)− i (n ⋄ k)Φ(h) = 0 (free walls). (17.b)

And lastly, the ontinuity at eah interlayer ♯β is expressed by:

Φ(z−β ) = Φ(z+β ) ; (n
β⋄ n)Φ′(z−β )− i (k

β⋄ n)Φ(z−β ) = (n
β+1⋄ n)Φ′(z+β )− i (n

β+1⋄ k)Φ(z+β ) . (17.)

Beause the seond-order ordinary di�erential equation (17.a) on eah layer is linear and parameterized by the

wave-vetor k and the (ρ ω2) oe�ient, its solution spae is six-dimensional and an be determined analytially.

For eah of the m layers, the solution Φ(z) is then haraterized by six oe�ients assoiated to six exponential

solutions, eah one de�ned by a wave-number in the z-diretion and a polarization vetor. Consequently, the

problem is to �nd the 6m oe�ients that satisfy the 6 equations (17.b) and the 6(m−1) equations (17.). Thus,
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we have to �nd non-zero solutions of a 6m-by-6m linear system, i.e. to determine the frequenies ω suh that

the determinant of a 6m-by-6m matrix is zero. In fat, we obtain a Pohhammer-like dispersion equation whih

is strongly non-linear and an be di�ult to solve numerially.

An alternative approah is to disretize the interval [0, h] and replae the �rst-order and seond-order derivatives

with respet to z in Eq. (17) by �nite di�erenes. Note that a �nite element method ould also be used, as is

usually done in the frequeny-domain (SAFE method [7, 9, 8℄). Thus, the present approah ould be alled the

�Time-Domain Semi-Analytial Finite Di�erene� (TDSAFD) method. After disretization, Eq. (17) beomes

an ordinary eigenvalue problem Mϕ = ω2
ϕ, where M is a sparse square matrix.

After omputation, eah mode is reorded by storing its eigenfrequeny and the 6m pairs (wave-number in the z-
diretion, polarization vetor multiplied by the amplitude oe�ient). In pratie, a maximum frequeny ωmax

has to be onsidered suh that eah exitation ontains frequenies lower than ωmax. The number of modes

obtained for the two numerial examples given below are drawn in Fig. 3 with respet to the horizontal wave-

vetor k. One an see that the number of modes dereases and tends to zero when the wave-number (the

norm of the wave-vetor) inreases. It is important to notie that the modes to take into aount, i.e. of

eigenfrequenies less than the maximum frequeny of the exitation signal, are neessarily in a �nite number,

ontrarily to standard frequeny-domain methods. Indeed, in this latter ase, an in�nity of evanesent modes

has to be negleted. Fig. 3(a) shows that only 8 modes are needed to alulate the response of a monolayer

arbon epoxy plate of 3.6mm thikness to a soure of 500 kHz maximum frequeny. As the maximum exitation

frequeny inreases, the number of required modes inreases. For example, approximately 60 modes are required

for a maximum frequeny of 5MHz. Empirially, we also obtained the best estimate of the eigenfrequenies

(up to eight signi�ant digits) by eighth-order and tenth-order �nite di�erene shemes and a su�ient number

of subintervals of disretization, whih obviously must inrease as the maximum exitation frequeny inreases.

The omparison was made possible by using an additional (ostly) numerial method on the non-linear dispersion

equation resulting from Eq. (17) to �nd eah �exat� eigenfrequeny (double preision alulation) in the lose

viinity of eah omputed eigenfrequeny.
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x = 2.10mm−1

, nx = 1024, δx ≈ 1.496mm
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y = 2.60mm−1

, ny = 512, δy ≈ 1.208mm

Frequenies lower than 250 kHz

kmax
x = 1.142mm−1

, nx = 1024, δx ≈ 2.75mm

kmax
y = 1.142mm−1

, ny = 1024, δy ≈ 2.75mm

Figure 3: Number of alulated modes with respet to the horizontal wave-vetor: two examples.

(a) A monolayer arbon epoxy plate of thikness 3.6mm.

(b) A three-layer arbon epoxy/glue/steel plate of thiknesses 3.6mm/0.3mm/1.0mm.
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4.3 Response building

We start from the knowledge of the external fore density f(x, z, t). The �rst step onsists of alulating its

2D Fourier transform F(z, t) for eah horizontal wave-vetor k of set G [see Eq. (16)℄. Generally, F(z, t) will be
omputed by FFT but for basi shapes like the Gaussian point-soures used for the numerial examples below,

it an be expressed analytially. In the seond step, the soure term F(z, t) is projeted on the modal basis, for

eah k in G. This projetion leads to the fn funtions de�ned in Eq. (13). As in the �rst step, these funtions

an be either symboli or numerial expressions.

In the examples below, we onsider the partiular ase of a surfae fore exerted on the upper side of the plate

at z=0. Thus, the volume fore density beomes:

x−domain : f(x, z, t) = δ(z) s(t) g(x) ⇐⇒ k−domain : F(z, t) = δ(z) s(t)G , (18)

where δ denotes the Dira distribution, s(t) is a dimensionless signal, g(x) is the surfae fore density, and

the G vetor its 2D Fourier transform. In this ase, the projetion of the soure onto the mode ♯n beomes:

fn(t) = [Φn(0)
+G ] s(t).

The third step onsists of alulating the onvolution (14) to obtain the amplitude un(t) of the mode ♯n. This
point may need more study in the general ase but here we onsider only Gaussian pulses and n-yle pulses,
for whih the onvolution is symboli, as shown in Appendix B.

5 Numerial results

This setion reports some numerial results based on our numerial shemes. Two typial plates are analyzed.

The �rst plate is made of a single layer of a unidiretional �ber omposite. The seond is a struture made of

a unidiretional �ber omposite plate and a steel plate stuk together.

5.1 Monolayer arbon epoxy plate

Within the frequeny range of alulations, suh a omposite material an be onsidered as an orthotropi

homogeneous medium for whih the equivalent density is ρ=1560 kg·m−3
and the homogenized sti�nesses are:

c11=86.60, c22=13.50, c33=14.00, c44=2.72, c55=4.06, c66=4.70, c12=9.00, c13=6.40, c23=6.80 [GPa℄. The rys-

tallographi diretions ♯1, ♯2 and ♯3 orrespond to the x-, y- and z-axis, respetively. The diretion of �bers

oinides with the x-axis. This material has been hosen beause some experiments have already been arried

out on it [20, Table 2.3℄, some of whih will be disussed later. The plate thikness is 3.6mm. The soure is

a 5-yle pulse of frequeny 150 kHz normally exerted on the upper side of the plate (in the z-diretion) as an
axisymmetri Gaussian fore density 15mm wide, i.e. the produt of two Gaussian funtions with respet to x
and y, respetively, with the same width of 15mm [see Eq. (B.1), where �duration� is replaed by �width�, and

Eq. (B.3) for exat de�nitions℄.

First of all, let us determine the modes that an be generated in the inspetion onditions. In the frequeny

range of the emitter and for the arbon epoxy sample, there are only four possible propagating modes. The

three fundamental modes A0 (�exural wave), SH0 (horizontal shear wave) and S0 (ompressional wave), and

the �rst anti-symmetri mode, generally named A1 for the isotropi ase. Even though this lassi�ation is

improper for anisotropi plates, we will use it for simpliity.

Compared to the group veloity of bulk waves, where the dispersion is only angular, the dispersion of Lamb

modes is a more omplex phenomenon sine it is both angular and frequential. The group veloity vetor, whih

de�nes the wave-front, is normal to the phase slowness surfae and takes into aount the variation in the phase

Éri Duasse & Mar Deshamps Time-domain response of layered plates
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veloity versus the frequeny. The omplexity of the group veloity of Lamb modes propagating in anisotropi

media has been emphasized in Figure 4, where the phase and group veloities, in the interfae plane, are plotted

in polar oordinate for the frequeny range of the emitter pulse. In this frequeny range, the dependene of these

two veloities on the frequeny and on the angle of observation is learly visible. The extent of this dependene

depends on the mode. In this �gure, for both veloities, the urves assoiated to the entral frequeny are

plotted in a solid line. Note that for the A1 mode, this spei� urve is not plotted sine its assoiated ut-o�

frequeny is greater than the entral frequeny.
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Figure 4: (a) Phase and (b) group veloities of a arbon epoxy plate of thikness 3.6mm at the entral frequeny

150 kHz (solid line), lower frequenies 130 kHz (dashed), 110 kHz (dot-dashed) and 90 kHz (−··), and higher frequen-

ies 170 kHz (long-dashed), 190 kHz (dot-long-dashed), 200 kHz (−−··), 210 kHz (−−···) and 220 kHz (dotted).

The wave pakets, assoiated to the four modes, an be observed on the surfae �eld, as shown in Fig. 5.

Fig. 5(a)�() represents, respetively, the angular, radial and vertial displaements. The wave-fronts assoiated

to the ray theory, i.e. the energy veloity urves, are also plotted for the entral frequeny. The three fastest

fronts orrespond to the three fundamental modes A0, SH0 and S0. The good agreement between the �eld

alulation and the ray theory is notieable. This is mainly remarkable for the usp of the SH0 wave-front,

whih is, in addition, in agreement with some experimental measurements that have been done with the same

sample [20℄. Moreover, although the entral frequeny is below the �rst ut-o� frequeny, the energy after this

limit frequeny is large enough to generate the A1 mode. This is a very slow wave paket whih reveals a very

strong dispersive mode. Indeed, both phase and group veloities of this A1 mode strongly depend on frequeny,

as shown in Fig. 4. As frequeny inreases, phase veloity dereases (see Fig. 4(a)), i.e. wavelength dereases,

while group veloity inreases (see Fig. 4(b)). In aordane with this property, it an be observed for the

A1 mode in Fig. 5 that the further away you get from the soure, the lower the half-wavelength is.

Spei� analysis for �xed angles of observation are of great interest. To arry out these omplementary inves-

tigations, the two typial angles of θ=90◦ and θ=43◦ have been hosen beause they orrespond to two ases

with and without usp phenomena. These angles are identi�ed by blue and green dashed lines in Figs. 4 and 5.

First, the displaement �eld over the thikness is alulated. For the two ross-setions assoiated to the angles

θ=90◦ and θ=43◦, Figs. 6 and 8 show the three omponents of the displaement vetors in the orresponding

ross-setions at the �xed time t=100µs (the same time as for Fig. 5). The �xed observation time is long enough

Éri Duasse & Mar Deshamps Time-domain response of layered plates
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(a) Radial Displaement (b) Angular Displaement
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(c) Vertial Displaement
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Figure 5: The displaements at z=0 and t=100µs in a arbon epoxy plate of thikness 3.6mm exited by a 5-yle

pulse of frequeny 150 kHz at z=0.

for the Lamb waves to beome well established and to separate their wave pakets one from another. Seond,

the osillations of the top surfae, i.e. at z=0, are shown for various times, in Figs. 7 and 9, for the two hosen

observation diretions. In these two �gures, di�erent wave-fronts are identi�ed by their group veloities cg,
whih are in good agreement with the group veloities at the entral frequeny drawn in Figs. 4(b) and 5. As a

general observation, when the modes are generated, note the good orrespondene between the energy veloity

and the maximum of osillations. Let us now fous our interest on partiular observations involving the two

angles.

For the angle θ=90◦, in Figs. 6 and 7, only three Lamb waves are learly visible on the displaement �eld vetor

over the ross-setion and on the top surfae osillations, as the SH0 mode is not generated in this diretion by

this soure (see also Fig. 5).

For the generated modes, the �eld shape over the ross-setion is, at some partiular distanes from the soure,

lose to the mode shape assoiated to one of these modes. In fat, the symmetri and the antisymmetri behavior,

whih depends on the wave �eld omponent, is learly well de�ned on the mode shape. It is also disernible

for the very dispersive mode A1. In this ase, it is noteworthy that the pseudo-periodiity observed for the

displaement at the top surfae still exists over the setion, while respeting the symmetry and antisymmetry of

the mode shapes. For all these main ontributions to the �eld, beause the propagation diretion is following a

prinipal diretion, the mode shapes orrespond to Lamb waves for whih the phase veloities are also oriented in

this diretion. From a numerial point of view, alulation of the wave �elds has been deliberately left erroneous.

These wave �elds are visible at the top right of Fig. 7, for observation times t greater than tmax≈120µs. These
artifats ome from the hoie of spae sampling when using the FFT algorithm. Aording to the Shannon

theorem, they orrespond to waves produed by the periodized soure (δk−1
x in the x-diretion and δk−1

y in

the y-diretion, see �4.1). In this partiular ase, the observed wave is produed by the soure loated at

point (0, δk−1
y ). The size of the disretized retangular domain depends, among other things, on the maximum

horizontal veloity (in the xy-plane) as well as on the maximum time of observation tmax. Thus, the longer the

observation time, the greater the disretized retangular domain must be. A simple extension of this domain,

whih requires smaller disretization steps in the wave-vetor domain, would have avoided this problem. The

ost would have been a signi�ant inrease in alulation time. Consequently, far from the soure and for long
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observation times, standard frequeny-domain methods will be more e�ient than the present time-domain

method. Indeed, in this ase, only a few propagating Lamb modes are generally su�ient to desribe the

ultrasoni �eld. Thus, the loser to the soure the observation domain is, in time and spae, more e�ient the

present method is.

(a) Radial displaement

0 50 100 150 200 250 300 350

0

1

2

3

0

1.8

3.6

d @mmD

z
@m

m
D

t = 100 Μs

PSfrag replaements

�S0��A0��A1�

(b) Angular displaement

0 50 100 150 200 250 300 350

0

1

2

3

0

1.8

3.6

d @mmD

z
@m

m
D

t = 100 Μs

PSfrag replaements

�S0��A0��A1�

(c) Vertial displaement
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Figure 6: The displaements on the setion θ=90◦ at t=100µs in a arbon epoxy plate of thikness 3.6mm exited

by a 5-yle pulse of frequeny 150 kHz at z=0. d is the distane from the soure.

For the angle θ=43◦, the presene of the usp, as is well known, leads to multiple ray ontributions of a single

Lamb mode. For the �SH0 � mode, these di�erent ontributions are learly observed in the �eld on the top

surfae. It has been observed in the wave �eld, as has been well desribed in the literature, see for example [20℄,

and measured experimentally [21℄. In this paper, in addition to the method used, what is interesting in the

results is the analysis of the displaements in suh a ross-setion, i.e. with observable usp phenomenon.

A lose study of the mode shapes, identi�ed in Fig. 8, reveals that eah of them is assoiated to the mode

shape of the Lamb wave assoiated to the ray propagating in the diretion of the ross-setion. In addition,

the wavelength of eah identi�ed osillation is diretly onneted to the projetion of the phase veloity in the

diretion of the ross-setion.

To examine how the alulations are possible near to the soure, i.e. in the lose �eld, let us analyze in Fig. 10

the radial displaement ur in the ross-setion x=0 during the �rst miroseonds. In this �gure, we plot the

shape of the �eld following the z-diretion against the distane d=y at di�erent times. Beause the exitation

soure starts at one negative time (f. Appendix B) the analysis is done from t= − 15µs up to t=13.5µs. For
the shortest exitation times, i.e. for negative times, the aousti �eld is, of ourse, onentrated in the viinity

of the soure. For suh observation points, a lot of waves interat. However, the �eld omputation is done

orretly. As the time inreases, it is interesting to observe the modes building. In fat, for the longest times,

the S0 mode (ompressional wave) is well established and the mode shape of the A0 mode (�exural wave) starts

to emerge.
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Figure 7: The radial displaement at z=0 and x=0 (θ=90◦) in a arbon epoxy plate of thikness 3.6mm exited by

a 5-yle pulse of frequeny 150 kHz at z=0, with respet to distane d=y from the soure and to time t.
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(b) Angular displaement
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(c) Vertial displaement
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Figure 8: The displaements on setion θ=43◦ at t=100µs in a arbon epoxy plate of thikness 3.6mm exited by a

5-yle pulse of frequeny 150 kHz at z=0. d is the distane from the soure.
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Figure 9: The angular displaement at z=0 in the diretion θ=43◦ in a arbon epoxy plate of thikness 3.6mm

exited by a 5-yle pulse of frequeny 150 kHz at z=0, with respet to distane d from the soure and to time t.

5.2 A unidiretional monolayer arbon �ber/epoxy plate glued to a steel plate

As a �nal example, some results are presented for a plate made up of three layers. The upper layer is a monolayer

made of the arbon epoxy omposite plate analyzed in �5.1. The thikness is the same, i.e. 3.6mm, but the

orientation of the plate is suh that the rystallographi axis diretion ♯1, the diretion of the �bers, makes

an angle of θ = 45◦ with the x-axis. For this kind of omposite material, the higher veloities are in the �ber

diretion, then the farthest ontributions, for a �xed time, are in this diretion as well. Doing this rotation thus

means that the 2D FFT sampling orresponds muh better to the large extension of the �eld in this diretion,

as an be seen in Fig. 11. Diretion ♯3 is still the z-axis.

The lower layer is a 1.0mm thik steel plate of density ρ=7900 kg·m−3
. It is assumed to be isotropi. The

sti�nesses are c11=280.0 and c44=80.0 [GPa℄. These two layers are perfetly stuk together. The epoxy adhesive

bond is 0.30mm thik and assumed to be isotropi (�3M Soth-Weld EC-9323 B/A Two Part Strutural

Adhesive� is onsidered here). Its mehanial properties are (from manufaturer's data in [22℄): ρ=1140 kg·m−3
,

c11=4.42 and c44=1.07 [GPa℄.

The fore �eld applied to the plane z=0 is oriented only in the z-diretion with a spatial distribution in the

interfae plane given by an axisymmetri Gaussian of 17.0mm in width. The signal is a 5-yle pulse of 100 kHz
frequeny (f. Appendix B).

The radial displaement �eld alulated on the upper surfae, for the �xed time t=250µs, is plotted in Fig. 11.

The omplexity of the response is learly visible. First, let us note the auray of the numerial alulations.

There is no numerial noise although the side of the square area of alulation is about 100 times the greatest

wavelength. The same auray is obtained for a greater number of layers. As an example, numerial alulation

has been arried out for a 25-layer omposite with the same performanes. From a physial point of view, the

usp an be pereived as well as many mode interferenes. Analyzing the �eld in two ross-setions makes

Éri Duasse & Mar Deshamps Time-domain response of layered plates
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Figure 10: The radial displaement ur in the ross-setion x=0 of a arbon epoxy plate of thikness 3.6mm exited

by a 5-yle pulse of frequeny 150 kHz at z=0, during the �rst miroseonds.

interpretation of this response easier. In Figs. 12 and 13, the �eld is plotted versus the distane d from the

soure enter and the vertial position z for the angles of θ=60◦ and θ=90◦, respetively.

Like the �eld in Fig. 8, the mode building, the existene of multiple rays due to the usp and the dispersive

behavior of one mode are learly observed. Of ourse, in this ase, owing to the inhomogeneity along the

z-diretion, the shape is muh more ompliated, although the �eld is periodi (or pseudo-periodi for the

dispersive mode) along the ray diretions. This periodiity depends diretly on the projetion on the ray

diretion of the wave-vetor assoiated to the Lamb Wave. From that point of view, a generalized Lamb mode

an be identi�ed when this periodiity (or pseudo periodiity) exists. This is learly the ase in Fig. 13 for the

Éri Duasse & Mar Deshamps Time-domain response of layered plates
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angle θ=90◦. In ontrast, for the ross-setion haraterized by the angle θ=60◦ (Fig. 12), no mode is distintly

identi�ed between the distanes 400 and 900mm, partiularly when looking at the radial displaement. In fat,

this reveals interferenes between modes.

Generally, the energy of waves inside the plate is loalized at di�erent depths, either in agreement with the

mode shapes (�pure� mode) or resulting from interferenes between several modes.

(a) Radial Displaement at the upper fae
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Figure 11: Response (radial displaement) at z=0 and t=250µs of a multilayered plate, made of a monolayer omposite

plate and a steel plate glued together, to a 5-yle pulse of frequeny 100 kHz at z=0.
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Figure 12: Response on setion θ=60◦at t=250µs of a multilayered plate, made of a monolayer omposite plate and

a steel plate glued together, to a 5-yle pulse of frequeny 100 kHz at z=0.
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Figure 13: Response on setion θ=90◦at t=250µs of a multilayered plate, made of a monolayer omposite plate and

a steel plate glued together, to a 5-yle pulse of frequeny 100 kHz at z=0.

Conlusion and future prospets

The method that has been developed in this work, based on time-domain analysis, permits to alulate ultrasoni

soure di�rations in multilayered omposites. This method is a useful tool whih omplements the most

ommonly used tehnique based on generalized Lamb wave deomposition, for whih preise alulations an

be made for long propagation distanes, in a relatively short time. However, the most interesting feature of

the modal deomposition in the time-domain is the fat that it is easier to alulate the aousti response in

the near �eld or under the soure.

These alulations will be used to develop the topologial imaging of defets hidden deep in sub-soure positions

in multilayered strutures. The topologial imaging method is based on interations between two alulated

�elds, derived from the so-alled diret and adjoint problems [23, 24, 25℄. As these two �elds are the results

of wave propagation in a defetless medium, the present alulations will be highly suitable, espeially if the

defets are far from the soure in the diretion normal to the surfae. This work, whih also extends to over

unidiretional waveguides and immersed/embedded plates, is urrently in progress.
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Appendix A Spetral analysis of the A form

A.1 Theoretial bakground: density of the elasti potential energy

The density of the potential energy of an elastially deformed body de�ned by (e.g., [12℄):

ep =
1

2

(
∂xu · σx + ∂yu · σ y + ∂zu · σ z

)
(A.1)

is stritly positive for any non-zero deformation. A zero value of the density of the elasti potential energy ep
orresponds to a rigid-body motion (translation and rotation).

The expression (A.1) beomes, by applying Hooke's Law (2):

ep =
1

2







∂xu

∂yu

∂zu







T 





(l ⋄ l) (l ⋄m) (l ⋄ n)
(m ⋄ l) (m ⋄m) (m ⋄ n)
(n ⋄ l) (n ⋄m) (n ⋄ n)













∂xu

∂yu

∂zu







, (A.2)

where the unit vetors l, m, n are nx, ny, nz, respetively. Consequently, the nine-by-nine symmetri matrix

in (A.2) is positive.
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In the 1D ase where the displaement depends only on the z-oordinate, ep =
1

2
∂zu

T (n ⋄ n) ∂zu. Neessarily,
the symmetri matrix (n ⋄ n) is positively de�ned beause rigid-body motions are only translations, for whih

∂zu is zero.

In the 2D ase where the displaement depends only on the x and z oordinates, the energy density beomes:

ep =
1

2

[
∂xu
∂zu

]T

S
[
∂xu
∂zu

]

, where S =

[

(l ⋄ l) (l ⋄ n)
(n ⋄ l) (n ⋄ n)

]

. (A.3)

In this seond ase the symmetri matrix S is positive but not de�ned beause rigid-body motions inlude

rotations in the x−z plane, for whih the spatial derivative of the displaement are non-zero. Indeed, beause

(a ⋄b)c=(a ⋄ c)b [15℄, it is obvious that S
[
n
−l

]

is the zero vetor: ep = 0 if and only if ∂xux, ∂xuy, ∂zuy, ∂zuz,

and (∂xuz+∂zux) are zero.

A.2 De�nition of the T operator

With the notation Ω =

m⋃

β=1

]zβ−1, zβ[ = ]0, h[\
{
z1 , · · · , zm−1

}
(Ω is an open bounded subset of R), let us onsider

the following di�erential operator T involved in Eq. (8) and de�ned by:

∀z ∈ Ω, (T Φ)(z) = ρ(z)−1 [−(n ⋄ n)Φ′′(z) + i [(n ⋄ k) + (k ⋄ n)] Φ′(z) + (k ⋄ k)Φ(z)] . (A.4)

The T operator ats on any vetor �eld Φ satisfying the following onditions:

1. Φ, Φ′
and Φ′′

are de�ned on eah interval ]zβ−1, zβ[;

2. Φ(0)=Φ(0+), Φ′(0)=Φ′(0+), Φ(h)=Φ(h−), Φ′(h)=Φ′(h−) exist and:

• (n
1⋄ n)Φ′(0)− i (n

1⋄ k)Φ(0) = 0 (upper side);

• (n
m⋄ n)Φ′(h)− i (k

m⋄ n)Φ(h) = 0 (lower side);

3. Φ′′ ∈ L2([0, h]), i.e.

∫ h

0

Φ′′(z)+ Φ′′(z) ρ(z)dz < +∞, where the supersript + denotes the transposition

ombined with the omplex onjugation;

4. Continuity on eah interfae ♯β (z=zβ, see Fig. 2):

• Φ(z−β ) = Φ(z+β ) (displaement);

• (n
β⋄ n)Φ′(z−β )− i (k

β⋄ n)Φ(z−β ) = (n
β+1⋄ n)Φ′(z+β )− i (n

β+1⋄ k)Φ(z+β ) (stress).

The set of suh vetor �elds Φ is a funtional spae denoted by V.

One an demonstrate that V is a subspae of the Sobolev spae H2(Ω) and ontains the test-funtion spae

D(Ω), whih is dense in H1(Ω) (e.g, [28, Th. 1.2-3 (in Frenh)℄ or [29℄).

Furthermore, the Sobolev spae H1(Ω) is dense in L2([0, h]) (e.g, [28℄), in whih we onsider the following salar

produt of two funtions:

∀Φ,Ψ ∈ L2([0, h]), 〈Φ,Ψ〉 =
∫ h

0

Φ(z)+ Ψ(z) ρ(z)dz =

m∑

β=1

[

ρβ

∫ z
β

z
β−1

Φ(z)+ Ψ(z) dz

]

, (A.5)

and the anonial injetion from H1(Ω) to L2([0, h]) is ompat (e.g.,[28, Th. 1.5-2℄) beause Ω ⊂ [0, h] is
bounded.
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A.3 The hermitian form A assoiated to the T operator

Let us onsider the following sesquilinear form A:

∀Φ,Ψ ∈ V, A(Φ,Ψ) = 〈Φ, T Ψ〉 =
m∑

β=1

∫ z
β

z
β−1

Φ(z)+ (T Ψ)(z) dz . (A.6)

After integration by parts on eah interval [zβ−1, zβ], we obtain:

A(Φ,Ψ) = 〈Φ′, (n �n)Ψ′ − i (n �k)Ψ 〉+ i 〈Φ, (k �n)Ψ′ − i (k �k)Ψ 〉
= 〈Φ′, (n �n)Ψ′〉 − i 〈Φ′, (n �k)Ψ〉+ i 〈Φ, (k �n)Ψ′〉+ 〈Φ, (k �k)Ψ〉
= 〈Φ′, (n �n)Ψ′〉 − i 〈Φ′, (n �k)Ψ〉+ i 〈(n �k)Φ,Ψ′〉+ 〈Φ, (k �k)Ψ〉 ,

(A.7)

where (a �b) is a three-by-three matrix suh that (a �b)=ρ−1
β (a ⋄ b) on eah layer ♯β, and by using the fat

that (n ⋄ k) is equal to the transpose of the real-valued matrix (k ⋄ n) (see [15℄).

The de�nition (A.7) an be extended to funtions Φ and Ψ in the Sobolev spae H1(Ω). The sesquilinear

form A thus de�ned on H1(Ω) is hermitian, i.e. A(Φ,Ψ) = A(Ψ,Φ)∗, the supersript ∗ denoting the omplex

onjugation. Indeed, the matries (n �n) and (k �k) are real-valued and symmetri [15℄.

A.4 The hermitian form A is positive

If the wave-vetor k is zero (1D ase), A(Φ,Φ) =

∫ h

0

[Φ′(z)]
+
(n ⋄ n)Φ′(z) dz .

A(Φ,Φ)=0 if and only if Φ′=0, i.e. the displaement �eld Φ is uniform (translation).

If the wave-vetor k is non-zero (2D ase), without loss of generality, we an onsider that the wave-vetor k

is parallel to the x axis. Indeed, a rotation of the x-y system leads to k = k l and [see Eqs. (A.2) and (A.3)℄:

A(Φ,Φ) =

∫ h

0

[

−i kΦ(z)
Φ′(z)

]+

S
[

−i kΦ(z)
Φ′(z)

]

dz . A(Φ,Φ)=0 if and only if Φ=0.

Consequently, the hermitian form A is positive in any ase, and positively de�ned if the wave-vetor k is

non-zero.

A.5 Redution of the hermitian form A

From the previous setions, it appears that the hermitian form A is oeritive (e.g., [28, Th. 6.2-1℄), i.e. for all

positive reals ν, there is a positive real µ suh that:

∀Φ ∈ H1(Ω) , A(Φ,Φ) + ν 〈Φ,Φ〉 > µ ||Φ||2
H1(Ω) = µ (〈Φ,Φ〉+ 〈Φ,Φ〉) . (A.8)

In onlusion, there are (e.g., [28, Th. 6.2-1℄) both an inreasing sequene 0 6 ω2
1 6 ω2

2 6 · · · 6 ω2
n 6 · · · of

positive eigenvalues whih tends to in�nity and an orthonormal Hilbert basis {Φn}n∈N∗ of L2(Ω), i.e.

∀n, n′ ∈ N∗ , n 6= n′ , 〈Φn,Φn〉 = 1 and 〈Φn,Φn′〉 = 0 (A.9)

and

∀Ψ ∈ L2(Ω) , Ψ =

+∞∑

n=1

〈Φn,Ψ〉 Φn , (A.10)
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suh that Φn ∈ H1(Ω) for all integers n and:

∀Ψ ∈ H1(Ω) , A(Φn,Ψ) = ω2
n 〈Φn,Ψ〉 . (A.11)

Eah pair (ωn,Φn) de�nes an eigenmode: ωn is its angular eigenfrequeny and Φn the mode shape.

Note that the mode shape Φn is an element of the Sobolev spae H1(Ω) but is not neessarily an element of the

V spae. Nevertheless, Φn an be approahed as near as desired by an element of V (V is dense in H1(Ω)).

Appendix B Gaussian and n-yle pulses: de�nition and onvolution

by ausal sine signals

B.1 Gaussian pulse of duration d

Consider the Gaussian pulse gd of �duration� d de�ned as follows:

Time−domain : gd(t) =
5

2 d
exp

(−25 π t2

4 d2

)

⇐⇒ Frequency−domain : ĝd(ω) = exp

(−d2 ω2

25 π

)

, (B.1)

suh that gd tends to the Dira delta funtion when the duration tends to zero, as drawn in Fig. B.1.
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PSfrag replaements
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(t
)/
d

f = 0 (ramp funtion)

f d = 0.05

f d = 0.1

f d = 0.25

f d = 0.5

f d = 1.0
f d = 2.0

Figure B.1: The onvolution of a Gaussian pulse (plain, thin) of duration d by a ausal sine signal of frequeny f ,

for f=0 (dashed thin), f d=0.05 (plain), f d=0.1 (dashed), f d=0.25 (−·), f d=0.5 (−··), f d=1 (−···), f d=2 (dotted

thik).

One an demonstrate that the onvolution of the Gaussian pulse by the ausal sine of angular frequeny ω is

rd,ω given by:

rd,ω(t) =

∫ t

−∞

gd(τ)
sin[ω (t−τ)]

ω
d τ

=
1

ω
exp

(−d2 ω2

25 π

)[

sin(ω t) +
1

2
Im

{

e

iω t

[

erf

(
5
√
π

2 d
t+i

ω d

5
√
π

)

− 1

]}]

,

(B.2)

where �erf� denotes the error funtion de�ned by: erf(z) = 2
√
π
−1 ∫ z

0
e

−ζ2
dζ (e.g., [27, �7.2℄).
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As expeted, beause erf(a+ i b) tends to ±1 when a tends to ±∞, we an observe that the onvolution produt

is zero before the beginning of the pulse and it is

sin(ω t)

ω
exp

(−d2 ω2

25 π

)

=
ĝd(ω)

ω
sin(ω t) [Eq. (B.1)℄ after the

end of the pulse (see Fig. B.1).

B.2 n-yle pulse of angular frequeny ν

Consider the n-yle pulse pn,ν of angular frequeny ν de�ned by:

Time−domain : pn,ν(t) =
3 ν

n π
√
2 π

exp

(−9 ν2 t2

2 π2 n2

)

sin(ν t)

︸ ︷︷ ︸

m
︷ ︸︸ ︷

Frequency−domain : p̂n,ν(ω) =
1

2 i

{

exp

[−π2 n2 (ω−ν)2

18 ν2

]

− exp

[−π2 n2 (ω+ν)2

18 ν2

]}

.

(B.3)

This n-yle pulse and its spetrum are drawn in Fig. B.2, for n = 2, 3 and 5.
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Figure B.2: n-yle pulses of angular frequeny ν, (a) in the time-domain and (b) in the frequeny-domain, where

n=2 (plain), n=3 (dashed) and n=5 (dot-dashed).

The onvolution of the n-yle pulse by the ausal sine of angular frequeny ω is rn,ν,ω given by:

rn,ν,ω(t) =

∫ t

−∞

pn,ν(τ)
sin[ω (t−τ)]

ω
d τ

=
1

4ω

{

e

−b2+
[
(1 + r+(t)) cos(ω t)− i+(t) sin(ω t)

]

−e−b2
−

[
(1 + r−(t)) cos(ω t) + i−(t) sin(ω t)

]}

,

(B.4.a)

where:

b± =
nπ (ν ± ω)

3
√
2 ν

, c±(t) = erf

(
3 ν

n π
√
2
t + i b±

)

, r±(t) = Re
[
c±(t)

]
and i±(t) = Im

[
c±(t)

]
. (B.4.b)

As above, beause erf(a + i b) tends to ±1 when a tends to ±∞, we an observe that the onvolution produt

is zero before the beginning of the pulse and it is

cos(ω t)

ω

e

−b2+ − e

−b2
−

2
=

−| p̂n,ν(ω) |
ω

cos(ω t) [Eq. (B.3)℄ after

the end of the pulse (see Fig. B.3).
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Figure B.3: The onvolution of a 3-yle pulse (plain, thin) by a ausal sine signal of angular frequeny ω, ω=0.2 ν
(plain), ω=0.5 ν (dashed), ω=ν(−·), ω=1.5 ν (−··), ω=1.8 ν (−···).
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