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Abstra
t

This paper des
ribes how a modal approa
h in the time-domain 
an be suitable for 
al
ulating the elastodynami


�eld in a layered plate. This elastodynami
 �eld is generated by impulsive sour
es lo
ated in a small region of

a 
omposite plate 
onsisting of anisotropi
 layers stu
k together. The aim is to 
al
ulate the transient response

of the elasti
 plate around the lo
ation of the sour
es, generally emitting n-
y
le pulses. First, we apply a 2D

Fourier transform to the wave equation with respe
t to the 
oordinates in the plate plane, and then, in the

2D spe
trum domain, for any given wave-ve
tor in the plate plane, solving a vibration problem with respe
t to

time and position in the dire
tion perpendi
ular to the plate. The solution is expressed as the sum of mode

responses, ea
h mode having a resonan
e frequen
y and a shape whi
h depend on the wave-ve
tor in the plate

plane.

These 
al
ulations are di�erent from those obtained by the usual method in the harmoni
 domain, where the

modes are sear
hed for a �xed frequen
y, su
h as Lamb waves, i.e. guided waves that propagate along the

plate. In our 
ase, the solution is given as a summation of plate resonan
es, i.e. a de
omposition on the real

eigenfrequen
ies, asso
iated to Lamb waves with the same �xed wave-ve
tor. This di�eren
e is of importan
e

sin
e only Lamb modes with real frequen
ies and real-valued wavenumbers in the plate plane are involved here,


ontrary to the usual harmoni
 methods, where these modes 
an be evanes
ent. This is of great interest as it


an simplify the 
al
ulation of the generated �eld near the sour
e.

Finally, we obtain a solution in the physi
al domain by performing an inverse 2D Fourier transform. After a

detailed des
ription of the method, results are shown for two typi
al plates. It is emphasized that the method

is a

urate for observation points lo
ated both above or below the sour
e and reasonably far from it along the

plate.

Keywords

time-domain; lo
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e; layered anisotropi
 plate; transient response.
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1 Introdu
tion

The study of the di�ra
tion of an ultrasoni
 sour
e in an anisotropi
 multi-layered plate is of great interest in

the �eld of Nondestru
tive Testing. From the point of view of propagation analysis, knowing the amplitude

distribution of the elastodynami
 �eld in di�erent dire
tions and studying ultrasoni
 wave propagation to the

area of inspe
tion are both important, for example, to 
hoose the 
orre
t sour
e for a spe
i�
 problem under


onsideration. This is mainly true for inspe
tions of 
omposite materials, whi
h are generally made of oriented

�ber sta
ks. Their a
ousti
 responses are 
omplex and most of the time strongly anisotropi
.

There are di�erent harmoni
 methods to 
al
ulate the di�ra
ted �eld, at any point and any time, in su
h plates

(e.g., [1, 2℄). The method most 
ommonly used, without doubt, 
onsists of applying a double Fourier transform

to the initial partial di�erential equation in four variables, with respe
t to time and one dire
tion d in the

plate plane. By doing so, we obtain a partial di�erential equation in a plane perpendi
ular to dire
tion d, and

onsequently to the plate too, for whi
h the angular frequen
y and the wavenumber in dire
tion d are parameters

(see for example [3, 4℄). The solution is then de
omposed into guided modes, i.e. generalized Lamb waves, and

the wavenumber in the dire
tion along the plate perpendi
ular to dire
tion d is 
al
ulated from all the other

spe
trum variables. The guided wave 
an then be 
al
ulated by using a global matrix [5℄ for example, or an

impedan
e matrix [6℄. These methods are semi-analyti
. Pure numeri
al methods exist like the SAFE method

([7℄, and e.g., [8℄), whi
h 
an be used to model very 
omplex plane stru
tures. When the modes are known, the

residue theorem, or other te
hniques su
h as those based on the re
ipro
ity theorem, 
an be applied to 
al
ulate

mode amplitude (e.g., [3℄). These �eld 
al
ulations are involved when developing hybrid methods, whi
h 
onsist

of 
oupling mode theory with �nite element methods [9, 8℄. In essen
e, these approa
hes are well adapted to


al
ulate the �eld for long distan
es of propagation along the plate, sin
e the solution is given in terms of Lamb

waves. In 
ontrast, they are not so e�
ient for analyzing the �eld for sub-sour
e lo
ations, be
ause a very large

number of evanes
ent modes are involved in the �eld des
ription.

There is an alternative te
hnique, however, whi
h is to do the 
al
ulation in the time-domain. Strangely, few

studies 
an be found in the literature on this subje
t [10, 11℄. In this 
ase, a 2D Fourier transform is performed

with respe
t to the 
oordinates in the plane of the layers (and of the interfa
es) on the partial di�erential

equation. In this 2D spe
trum domain, i.e. at any �xed wave-ve
tor k, the solution is obtained by summation

of plate resonan
es. A good introdu
tion 
an be found in [10℄, showing that this method has been developed

and exploited in geophysi
s. In this paper, we propose to develop this approa
h to study wave propagation in


omposite materials for Nondestru
tive Testing appli
ations.

After a brief des
ription of the basi
 equations (Se
tion 2), using our notations, the solution is obtained in the

time-domain (Se
tion 3), analogously to what has been done by the so-
alled �Thin-Layer Method � [10℄, ex
ept

that there is no dis
retization in the z-dire
tion perpendi
ular to the plate. Indeed, in the Thin-Layer Method,

�to solve the wave equation, [one℄ begins by dividing the physi
al domain in layers that are thin in the �nite

element sense [. . . ℄�[10℄. Mode shapes are de�ned here analyti
ally for the most general 
ase as 
ontinuous

fun
tions of the z-
oordinate, similarly to what is suggested for the isotropi
 
ase in [11℄. Nevertheless, at the

last stage of the 
al
ulation, either semi-analyti
al or pure numeri
al te
hniques must be used to 
al
ulate the

resonan
es of the plate. The �nite di�eren
e method is used here for its e�
ien
y but it is not ne
essary (see

for example [5, 6℄ in the frequen
y-domain). In Se
tion 4, the numeri
al aspe
ts are presented and �nally, in

Se
tion 5, di�erent results are shown for two typi
al plates. It will be emphasized that the method is a

urate

for observation points lo
ated both under the sour
e and reasonably far from it along the plate.
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2 Equations in the physi
al domain

Let us 
onsider a multilayered medium 
onsisting of a plate system with a number m of perfe
t �at layers of

normal z, sta
ked together. Ea
h layer is an anisotropi
 solid, with a given thi
kness hβ=zβ−zβ−1, as illustrated

in Fig. 1. The total thi
kness is expressed by h. Above and below this plate system are semi-in�nite va
uum

half-spa
es. The plate is assumed to be in�nite in the xy-plane, where the position is denoted by the ve
tor

x=(x, y).

This strati�ed medium is subje
ted to an external for
e density f(x, z, t) lo
ated between the planes z=0 and

z=h and in the 
ylinder of equation |x | < rs .

PSfrag repla
ements

x

y

z

z0 = 0
z1
z2
z3

zm−1

zm = h

Localized
Source

Layer 1

Layer 2

Layer 3

Layer m

Figure 1: A multilayered in�nite plate of thi
kness h with m layers.

2.1 Equations in ea
h layer

In this se
tion the equations of motion in ea
h layer are presented. The development of these equations for an

in�nite homogeneous anisotropi
 solid has been 
overed in many textbooks, see for example [12, 13, 14℄. They

are re
alled here with 
ondensed notations. At any time t and any lo
ation M(x, z), the displa
ement �eld and

the stress ve
tor in the α-dire
tion are expressed by u(x, z, t) and σα(x, z, t) (α=x, y, z) respe
tively.

By applying Newton's se
ond law, equilibrium in layer ♯β requires:

ρβ ∂
2
t u(x, z, t) = ∂ασα(x, z, t) + f(x, z, t) , (1)

where Einstein's summation 
onvention over repeated indi
es is used.

Using the bilinear produ
t

β⋄, introdu
ed in [15℄ and depending on the values of the elasti
 
onstants c
[β]
ijkm,

Hooke's Law takes the form:

σα(x, z, t) =
(

nα

β⋄ ▽
)

u(x, z, t) (2)

where nα is the unit ve
tor in the α dire
tion, ▽ = ∂α nα is the gradient operator and (a
β⋄b) is a three-by-three

matrix su
h that (a
β⋄ b)im=c

[β]
ijkm aj bk.

For simpli
ity, the index β will be omitted below. It will be reintrodu
ed only when ne
essary to avoid ambiguity.
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Combining equations (1) and (2) yields the following wave equation in ea
h media:

ρ ∂2
t u(x, z, t)− (▽ ⋄▽) u(x, z, t) = f(x, z, t) (3)

with zero initial 
onditions.

2.2 Boundary 
onditions and 
ontinuity at the interlayer surfa
es

Taking into a

ount the free boundary 
onditions at both the upper and lower interfa
es, the normal stresses

in layer ♯1 at z=0 and in layer ♯m at z=h are zero:

(n ⋄ ▽) u(x, 0, t) = 0 and (n ⋄ ▽) u(x, h, t) = 0 , (4)

with the notation n=nz .

Completing the development of the equations, the 
ontinuity of the ve
tor of displa
ements and of normal

stresses at ea
h interfa
e between two 
onse
utive layers, ♯β and ♯(β+1), must be satis�ed. This implies:

u(x, z−β , t) = u(x, z+β , t) and (n
β⋄ ▽ ) u(x, z−β , t) = (n

β+1⋄ ▽ ) u(x, z+β , t) , (5)

where z−β indi
ates that the quantities are determined in layer ♯β, while for z+β the same quantity is expressed

in layer ♯(β+1).

It is of interest to note that ea
h �eld exhibits a �nite support at ea
h time. As a matter of fa
t, sin
e the

sour
e is lo
alized, i.e. en
losed in a 
ylinder |x|<rs , and starts at t=0, the displa
ement �eld is ne
essarily zero

outside of the 
ylinder |x|<(rs+cmax t), where cmax is the highest wave speed. This will be useful to 
al
ulate

the 2D Fourier transform introdu
ed in the next se
tion.

3 An in�nity of one-dimensional vibrating systems

The usual method used to solve Eqs. (3) to (5) is to apply a 3D Fourier transformation to them, with respe
t

to x, y and t (e.g., [5, 16, 6℄). The three spa
e and time frequen
ies, denoted by kx, ky and ω, are independent
variables. The �rst two are the 
omponents of the wave ve
tor on the surfa
e and the last one is the angular

frequen
y. In ea
h layer ♯β and for ea
h partial mode ♯i, the wave number κβ,i in the z-dire
tion is then related

to the three variables kx, ky and ω by the Christo�el equation. Taking into a

ount the boundary 
onditions,

one spatial integral, for example those in kx, is 
onverted to an in�nite summation of plate modes, whi
h are

obtained by sear
hing all the guided waves with wave-numbers kx,n, for given values of ky and ω. The values

of kx,n 
an be 
omplex. Consequently, the guided waves 
an be exponentially attenuated in the x-dire
tion.
Similarly, the di�erent values of the ith wavenumber κβ,i,n in the z-dire
tion and in ea
h layer 
an be 
omplex

a

ording to the Christo�el equation.

In this paper, we present an alternative way to solve Eqs. (3) to (5) in the time-domain, extending what has been

done by Kausel et al. in [10℄ and [11℄ to general anisotropy and 
ontinuous values of the verti
al position z. To
this end, the solution we are sear
hing for in the plane of the plate is the superposition of real-valued sinusoidal

�elds, of wavelength 2 π k−1
, where k=|k |, as follows:

u(x, z, t) =

∫

R2

cos(k · x)uc(k, z, t) + sin(k · x)us (k, z, t)dk

︸ ︷︷ ︸

m
︷ ︸︸ ︷

uc(k, z, t) =
1

4π2

∫

R2

cos(k · x)u(x, z, t)dx and us (k, z, t) =
1

4π2

∫

R2

sin(k · x)u(x, z, t)dx

(6)
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where uc(k, z, t) and us (k, z, t) are independent real-valued quantities, whi
h are even and odd fun
tions re-

spe
tively with respe
t to the wave-ve
tor k. As a 
onsequen
e of these last properties, these two quantities


an be grouped together in the following 
omplex-valued �eld U(z, t) whi
h is the usual Fourier transform of

the displa
ement �eld u(x, z, t), su
h that:

U(z, t) = uc(k, z, t) + ius(k, z, t) =
1

4π2

∫

R2

e

ik·x u(x, z, t)dx ⇐⇒ u(x, z, t) =

∫

R2

e

−ik·xU(z, t)dk , (7)

with uc(k, z, t) = Re[U(z, t)] and us(k, z, t) = Im[U(z, t)]. The dependen
e of this �eld with respe
t to the

horizontal wave-ve
tor k is omitted. Throughout this paper, when �elds are denoted by upper 
ase letters, they

are expressed in the k-domain and the dependen
e with respe
t to the horizontal wave-ve
tor is impli
it.

3.1 A one-dimensional os
illator for ea
h horizontal wave-ve
tor

Finally the problem 
onsists of �nding the fun
tion U(z, t). Noting that the gradient operator ▽ be
omes

−ik+∂zn in the k-domain, Eq. (3) is transformed into:

ρ ∂2
tU(z, t)− (n ⋄ n) ∂z2U(z, t) + i [(n ⋄ k) + (k ⋄ n)] ∂zU(z, t) + (k ⋄ k)U(z, t) = F(z, t) , (8)

with zero initial 
onditions, where F(z, t) = f



(k, z, t) + i f
s

(k, z, t) is the Fourier transform of the for
e density

f(x, z, t). This for
e �eld f(x, z, t) and the new 
omplex fun
tion F(z, t) satisfy the same kind of relations

introdu
ed in Eqs. (6) and (7). Similarly, let us introdu
e the Fourier transform of the stress ve
tor in the

α-dire
tion, su
h that: Σα(z, t) = σα
(k, z, t) + iσαs(k, z, t).

Using this notation, the boundary 
onditions at both free interfa
es are:

Σz(0, t) = (n ⋄n) ∂zU(0, t)− i (n ⋄k)U(0, t) = 0 and Σz(h, t) = (n ⋄n) ∂zU(h, t)− i (n ⋄k)U(h, t) = 0 , (9)

while the equations of 
ontinuity at ea
h interfa
e between two layers are:

U(z−β , t) = U(z+β , t) and

(n
β⋄ n) ∂zU(z−β , t)− i (n

β⋄ k)U(z−β , t) = (n
β+1⋄ n) ∂zU(z+β , t)− i (n

β+1⋄ k)U(z+β , t) .
(10)

The initial problem is then repla
ed by equation (8) of motion in ea
h layer, whi
h is 
oupled with the boundary


onditions (9), and the di�erent equations (10) of 
ontinuity. Thus, for a given ve
tor k, we obtain a partial

di�erential equation system with respe
t to position z and time t. In fa
t, we are sear
hing for the displa
ement

response U of a one-dimensional vibrating system (similar to a string or a beam) to the ex
itation F. This

vibrating system is 
onstituted by m media, as shown in Fig. 2.

PSfrag repla
ements

z

z0 z1 z2 z3 zm−1 zm

0 h (va
uum)(va
uum)

One-dimensional vibrating system

Figure 2: A string-like one-dimensional vibrating system of length h, in
luding m media.
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3.2 De
omposition of the response in the modal basis

As is usually the 
ase in stru
tural dynami
s (e.g., [17℄), equations (8), (9) and (10) lead to the following weak

formulation:

∀Φ ,
〈
Φ, ∂2

tU(•, t)
〉
+A(Φ,U(•, t)) =

〈
Φ, ρ−1F(•, t)

〉
, (11.a)

where the s
alar produ
t of two displa
ement �elds Φ and Ψ is de�ned by:

〈Φ,Ψ〉 =
∫ h

0

[
Φ(z)+ Ψ(z)

]
ρ(z)dz , (11.b)

the supers
ript + denoting the transposition 
ombined with the 
omplex 
onjugation, and where the positive

hermitian form A is expressed as follows:

A(Φ,Ψ) =

∫ h

0

Φ′(z)+ [ (n ⋄ n)Ψ′(z)− i(n ⋄ k)Ψ(z) ] + iΦ(z)+ [ (k ⋄ n)Ψ′(z)− i(k ⋄ k)Ψ(z) ]dz . (11.
)

The solution U of Eq. (11) is expressed in the orthonormal basis of the eigenmodes (ωn,Φn) of the one-

dimensional os
illator as follows (see Appendix A for more details):

U(z, t) =

+∞∑

n=1

un(t)Φn(z) , (12)

un(t) denoting the magnitude of the mode ♯n.

By repla
ing Φ by Φn in Eq. (11) for ea
h mode ♯n, su

essively, and by using both the orthogonality property

(A.9) and Eq. (A.11), we obtain the following independent ordinary di�erential equations in the time-domain

governing ea
h magnitude un(t):

∀n ∈ N∗ , u′′

n(t) + ω2
n un(t) =

∫ h

0

Φn(z)
+ F(z, t)dz = fn(t) , (13)

with zero initial 
onditions. The fn(t) 
oe�
ient results from the proje
tion of the sour
e-term F divided by

the density ρ onto the mode shape ♯n, i.e. ρ(z)−1 F(z, t) =
∑+∞

n=1 fn(t)Φn(z).

Thus, the exa
t solution of Eq. (13) is written as follows:

un =

[

h(•)sin(ωn • )
ωn

]

∗ fn , (14)

where h is the Heaviside unitstep fun
tion (omitted in [10℄ and [11℄) and ∗ denotes the 
ontinuous-time 
onvo-

lution.

3.3 Synthesis of the displa
ement �eld in the physi
al domain

Finally the response U(z, t), at any �xed time t and at any verti
al position z of observation, was obtained

from Eqs. (12) and (14) for all wave-ve
tors k. An inverse 2D Fourier transform by Eq. (7) yields a snapshot of

the displa
ement �eld at time t and at depth z. The dire
t and inverse 2D Fourier transform have to be done

numeri
ally, as shown in the next se
tion.

Éri
 Du
asse & Mar
 Des
hamps Time-domain response of layered plates



7 / 24

4 Computation

On
e a re
tangular domain of observation and dis
retization steps have been 
hosen, the 
omputation is per-

formed in two su

essive stages: �rstly, for a given layered plate, the di�erent modes are 
al
ulated and stored.

The mode 
omputation has to be done on
e and for all. Se
ondly, the time-domain response of the plate to a

given soli
itation is 
al
ulated.

4.1 Dis
retization and periodization in the x- and k-domains

As noted below, the displa
ement �eld at any time t is zero outside of a 
ylinder of radius (rs+cmax t). Conse-
quently, two values xmax and ymax 
an be 
hosen su
h that u(x, z, t) = 0 if the horizontal position x is outside

of the re
tangle [−xmax, xmax]× [−ymax, ymax] and if time t is less than tmax.

A

ording to the Shannon Sampling Theorem (e.g., [18℄) applied to a 2D spa
e, if the sour
e is assumed to


ontain only spatial frequen
ies less than kmax
x and kmax

y in the x- and y-dire
tions respe
tively, the 2D x-

(physi
al spa
e) and k-domains (horizontal wave-ve
tors) 
an be dis
retized.

Thus, a nx-by-ny grid is de�ned on ea
h domain. The dis
retization steps are δx and δy in the x-domain, δkx
and δky in the k-domain. They satisfy the following relations:

δx =
2 xmax

nx

=
π

kmax
x

; δy =
2 ymax

ny

=
π

kmax
y

; δkx =
2 kmax

x

nx

=
π

xmax

; δky =
2 kmax

y

ny

=
π

ymax

. (15)

In fa
t, our goal is to 
ompute the real values of the displa
ement �eld on the grid in the x-domain. These values

are obtained by applying Fast Fourier Transforms [19℄ to the displa
ement �eld 
omputed in the k-domain by

Eqs. (12) and (14). Due to the symmetry properties of Eq. (6), the latter 
omputation must be made on set G
only, as this set almost 
orresponds to the half of the grid in the k-domain:

G =
{(

lx δkx, ly δky
)
; ly=0 and 0 6 lx 6 nx/2, or 1 6 ly 6 ny/2 and 1− nx/2 6 lx 6 nx/2

}
. (16)

4.2 Modes 
omputation

We sear
h for numeri
al values for ea
h eigenmode (ω,Φ) that will approximately satisfy the following equations.

Firstly, in ea
h layer:

(n ⋄ n)Φ′′(z)− i [(n ⋄ k) + (k ⋄ n)] Φ′(z) +
[
ρ ω2

I3 − (k ⋄ k)
]
Φ(z) = 0 . (17.a)

Se
ondly:

(n ⋄ n)Φ′(0)− i (n ⋄ k)Φ(0) = 0 ; (n ⋄ n)Φ′(h)− i (n ⋄ k)Φ(h) = 0 (free walls). (17.b)

And lastly, the 
ontinuity at ea
h interlayer ♯β is expressed by:

Φ(z−β ) = Φ(z+β ) ; (n
β⋄ n)Φ′(z−β )− i (k

β⋄ n)Φ(z−β ) = (n
β+1⋄ n)Φ′(z+β )− i (n

β+1⋄ k)Φ(z+β ) . (17.
)

Be
ause the se
ond-order ordinary di�erential equation (17.a) on ea
h layer is linear and parameterized by the

wave-ve
tor k and the (ρ ω2) 
oe�
ient, its solution spa
e is six-dimensional and 
an be determined analyti
ally.

For ea
h of the m layers, the solution Φ(z) is then 
hara
terized by six 
oe�
ients asso
iated to six exponential

solutions, ea
h one de�ned by a wave-number in the z-dire
tion and a polarization ve
tor. Consequently, the

problem is to �nd the 6m 
oe�
ients that satisfy the 6 equations (17.b) and the 6(m−1) equations (17.
). Thus,
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we have to �nd non-zero solutions of a 6m-by-6m linear system, i.e. to determine the frequen
ies ω su
h that

the determinant of a 6m-by-6m matrix is zero. In fa
t, we obtain a Po
hhammer-like dispersion equation whi
h

is strongly non-linear and 
an be di�
ult to solve numeri
ally.

An alternative approa
h is to dis
retize the interval [0, h] and repla
e the �rst-order and se
ond-order derivatives

with respe
t to z in Eq. (17) by �nite di�eren
es. Note that a �nite element method 
ould also be used, as is

usually done in the frequen
y-domain (SAFE method [7, 9, 8℄). Thus, the present approa
h 
ould be 
alled the

�Time-Domain Semi-Analyti
al Finite Di�eren
e� (TDSAFD) method. After dis
retization, Eq. (17) be
omes

an ordinary eigenvalue problem Mϕ = ω2
ϕ, where M is a sparse square matrix.

After 
omputation, ea
h mode is re
orded by storing its eigenfrequen
y and the 6m pairs (wave-number in the z-
dire
tion, polarization ve
tor multiplied by the amplitude 
oe�
ient). In pra
ti
e, a maximum frequen
y ωmax

has to be 
onsidered su
h that ea
h ex
itation 
ontains frequen
ies lower than ωmax. The number of modes

obtained for the two numeri
al examples given below are drawn in Fig. 3 with respe
t to the horizontal wave-

ve
tor k. One 
an see that the number of modes de
reases and tends to zero when the wave-number (the

norm of the wave-ve
tor) in
reases. It is important to noti
e that the modes to take into a

ount, i.e. of

eigenfrequen
ies less than the maximum frequen
y of the ex
itation signal, are ne
essarily in a �nite number,


ontrarily to standard frequen
y-domain methods. Indeed, in this latter 
ase, an in�nity of evanes
ent modes

has to be negle
ted. Fig. 3(a) shows that only 8 modes are needed to 
al
ulate the response of a monolayer


arbon epoxy plate of 3.6mm thi
kness to a sour
e of 500 kHz maximum frequen
y. As the maximum ex
itation

frequen
y in
reases, the number of required modes in
reases. For example, approximately 60 modes are required

for a maximum frequen
y of 5MHz. Empiri
ally, we also obtained the best estimate of the eigenfrequen
ies

(up to eight signi�
ant digits) by eighth-order and tenth-order �nite di�eren
e s
hemes and a su�
ient number

of subintervals of dis
retization, whi
h obviously must in
rease as the maximum ex
itation frequen
y in
reases.

The 
omparison was made possible by using an additional (
ostly) numeri
al method on the non-linear dispersion

equation resulting from Eq. (17) to �nd ea
h �exa
t� eigenfrequen
y (double pre
ision 
al
ulation) in the 
lose

vi
inity of ea
h 
omputed eigenfrequen
y.

(a) (b)
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, ny = 1024, δy ≈ 2.75mm

Figure 3: Number of 
al
ulated modes with respe
t to the horizontal wave-ve
tor: two examples.

(a) A monolayer 
arbon epoxy plate of thi
kness 3.6mm.

(b) A three-layer 
arbon epoxy/glue/steel plate of thi
knesses 3.6mm/0.3mm/1.0mm.
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4.3 Response building

We start from the knowledge of the external for
e density f(x, z, t). The �rst step 
onsists of 
al
ulating its

2D Fourier transform F(z, t) for ea
h horizontal wave-ve
tor k of set G [see Eq. (16)℄. Generally, F(z, t) will be

omputed by FFT but for basi
 shapes like the Gaussian point-sour
es used for the numeri
al examples below,

it 
an be expressed analyti
ally. In the se
ond step, the sour
e term F(z, t) is proje
ted on the modal basis, for

ea
h k in G. This proje
tion leads to the fn fun
tions de�ned in Eq. (13). As in the �rst step, these fun
tions


an be either symboli
 or numeri
al expressions.

In the examples below, we 
onsider the parti
ular 
ase of a surfa
e for
e exerted on the upper side of the plate

at z=0. Thus, the volume for
e density be
omes:

x−domain : f(x, z, t) = δ(z) s(t) g(x) ⇐⇒ k−domain : F(z, t) = δ(z) s(t)G , (18)

where δ denotes the Dira
 distribution, s(t) is a dimensionless signal, g(x) is the surfa
e for
e density, and

the G ve
tor its 2D Fourier transform. In this 
ase, the proje
tion of the sour
e onto the mode ♯n be
omes:

fn(t) = [Φn(0)
+G ] s(t).

The third step 
onsists of 
al
ulating the 
onvolution (14) to obtain the amplitude un(t) of the mode ♯n. This
point may need more study in the general 
ase but here we 
onsider only Gaussian pulses and n-
y
le pulses,
for whi
h the 
onvolution is symboli
, as shown in Appendix B.

5 Numeri
al results

This se
tion reports some numeri
al results based on our numeri
al s
hemes. Two typi
al plates are analyzed.

The �rst plate is made of a single layer of a unidire
tional �ber 
omposite. The se
ond is a stru
ture made of

a unidire
tional �ber 
omposite plate and a steel plate stu
k together.

5.1 Monolayer 
arbon epoxy plate

Within the frequen
y range of 
al
ulations, su
h a 
omposite material 
an be 
onsidered as an orthotropi


homogeneous medium for whi
h the equivalent density is ρ=1560 kg·m−3
and the homogenized sti�nesses are:

c11=86.60, c22=13.50, c33=14.00, c44=2.72, c55=4.06, c66=4.70, c12=9.00, c13=6.40, c23=6.80 [GPa℄. The 
rys-

tallographi
 dire
tions ♯1, ♯2 and ♯3 
orrespond to the x-, y- and z-axis, respe
tively. The dire
tion of �bers


oin
ides with the x-axis. This material has been 
hosen be
ause some experiments have already been 
arried

out on it [20, Table 2.3℄, some of whi
h will be dis
ussed later. The plate thi
kness is 3.6mm. The sour
e is

a 5-
y
le pulse of frequen
y 150 kHz normally exerted on the upper side of the plate (in the z-dire
tion) as an
axisymmetri
 Gaussian for
e density 15mm wide, i.e. the produ
t of two Gaussian fun
tions with respe
t to x
and y, respe
tively, with the same width of 15mm [see Eq. (B.1), where �duration� is repla
ed by �width�, and

Eq. (B.3) for exa
t de�nitions℄.

First of all, let us determine the modes that 
an be generated in the inspe
tion 
onditions. In the frequen
y

range of the emitter and for the 
arbon epoxy sample, there are only four possible propagating modes. The

three fundamental modes A0 (�exural wave), SH0 (horizontal shear wave) and S0 (
ompressional wave), and

the �rst anti-symmetri
 mode, generally named A1 for the isotropi
 
ase. Even though this 
lassi�
ation is

improper for anisotropi
 plates, we will use it for simpli
ity.

Compared to the group velo
ity of bulk waves, where the dispersion is only angular, the dispersion of Lamb

modes is a more 
omplex phenomenon sin
e it is both angular and frequential. The group velo
ity ve
tor, whi
h

de�nes the wave-front, is normal to the phase slowness surfa
e and takes into a

ount the variation in the phase
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velo
ity versus the frequen
y. The 
omplexity of the group velo
ity of Lamb modes propagating in anisotropi


media has been emphasized in Figure 4, where the phase and group velo
ities, in the interfa
e plane, are plotted

in polar 
oordinate for the frequen
y range of the emitter pulse. In this frequen
y range, the dependen
e of these

two velo
ities on the frequen
y and on the angle of observation is 
learly visible. The extent of this dependen
e

depends on the mode. In this �gure, for both velo
ities, the 
urves asso
iated to the 
entral frequen
y are

plotted in a solid line. Note that for the A1 mode, this spe
i�
 
urve is not plotted sin
e its asso
iated 
ut-o�

frequen
y is greater than the 
entral frequen
y.
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Figure 4: (a) Phase and (b) group velo
ities of a 
arbon epoxy plate of thi
kness 3.6mm at the 
entral frequen
y

150 kHz (solid line), lower frequen
ies 130 kHz (dashed), 110 kHz (dot-dashed) and 90 kHz (−··), and higher frequen-


ies 170 kHz (long-dashed), 190 kHz (dot-long-dashed), 200 kHz (−−··), 210 kHz (−−···) and 220 kHz (dotted).

The wave pa
kets, asso
iated to the four modes, 
an be observed on the surfa
e �eld, as shown in Fig. 5.

Fig. 5(a)�(
) represents, respe
tively, the angular, radial and verti
al displa
ements. The wave-fronts asso
iated

to the ray theory, i.e. the energy velo
ity 
urves, are also plotted for the 
entral frequen
y. The three fastest

fronts 
orrespond to the three fundamental modes A0, SH0 and S0. The good agreement between the �eld


al
ulation and the ray theory is noti
eable. This is mainly remarkable for the 
usp of the SH0 wave-front,

whi
h is, in addition, in agreement with some experimental measurements that have been done with the same

sample [20℄. Moreover, although the 
entral frequen
y is below the �rst 
ut-o� frequen
y, the energy after this

limit frequen
y is large enough to generate the A1 mode. This is a very slow wave pa
ket whi
h reveals a very

strong dispersive mode. Indeed, both phase and group velo
ities of this A1 mode strongly depend on frequen
y,

as shown in Fig. 4. As frequen
y in
reases, phase velo
ity de
reases (see Fig. 4(a)), i.e. wavelength de
reases,

while group velo
ity in
reases (see Fig. 4(b)). In a

ordan
e with this property, it 
an be observed for the

A1 mode in Fig. 5 that the further away you get from the sour
e, the lower the half-wavelength is.

Spe
i�
 analysis for �xed angles of observation are of great interest. To 
arry out these 
omplementary inves-

tigations, the two typi
al angles of θ=90◦ and θ=43◦ have been 
hosen be
ause they 
orrespond to two 
ases

with and without 
usp phenomena. These angles are identi�ed by blue and green dashed lines in Figs. 4 and 5.

First, the displa
ement �eld over the thi
kness is 
al
ulated. For the two 
ross-se
tions asso
iated to the angles

θ=90◦ and θ=43◦, Figs. 6 and 8 show the three 
omponents of the displa
ement ve
tors in the 
orresponding


ross-se
tions at the �xed time t=100µs (the same time as for Fig. 5). The �xed observation time is long enough
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(a) Radial Displa
ement (b) Angular Displa
ement
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(c) Verti
al Displa
ement
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Figure 5: The displa
ements at z=0 and t=100µs in a 
arbon epoxy plate of thi
kness 3.6mm ex
ited by a 5-
y
le

pulse of frequen
y 150 kHz at z=0.

for the Lamb waves to be
ome well established and to separate their wave pa
kets one from another. Se
ond,

the os
illations of the top surfa
e, i.e. at z=0, are shown for various times, in Figs. 7 and 9, for the two 
hosen

observation dire
tions. In these two �gures, di�erent wave-fronts are identi�ed by their group velo
ities cg,
whi
h are in good agreement with the group velo
ities at the 
entral frequen
y drawn in Figs. 4(b) and 5. As a

general observation, when the modes are generated, note the good 
orresponden
e between the energy velo
ity

and the maximum of os
illations. Let us now fo
us our interest on parti
ular observations involving the two

angles.

For the angle θ=90◦, in Figs. 6 and 7, only three Lamb waves are 
learly visible on the displa
ement �eld ve
tor

over the 
ross-se
tion and on the top surfa
e os
illations, as the SH0 mode is not generated in this dire
tion by

this sour
e (see also Fig. 5).

For the generated modes, the �eld shape over the 
ross-se
tion is, at some parti
ular distan
es from the sour
e,


lose to the mode shape asso
iated to one of these modes. In fa
t, the symmetri
 and the antisymmetri
 behavior,

whi
h depends on the wave �eld 
omponent, is 
learly well de�ned on the mode shape. It is also dis
ernible

for the very dispersive mode A1. In this 
ase, it is noteworthy that the pseudo-periodi
ity observed for the

displa
ement at the top surfa
e still exists over the se
tion, while respe
ting the symmetry and antisymmetry of

the mode shapes. For all these main 
ontributions to the �eld, be
ause the propagation dire
tion is following a

prin
ipal dire
tion, the mode shapes 
orrespond to Lamb waves for whi
h the phase velo
ities are also oriented in

this dire
tion. From a numeri
al point of view, 
al
ulation of the wave �elds has been deliberately left erroneous.

These wave �elds are visible at the top right of Fig. 7, for observation times t greater than tmax≈120µs. These
artifa
ts 
ome from the 
hoi
e of spa
e sampling when using the FFT algorithm. A

ording to the Shannon

theorem, they 
orrespond to waves produ
ed by the periodized sour
e (δk−1
x in the x-dire
tion and δk−1

y in

the y-dire
tion, see �4.1). In this parti
ular 
ase, the observed wave is produ
ed by the sour
e lo
ated at

point (0, δk−1
y ). The size of the dis
retized re
tangular domain depends, among other things, on the maximum

horizontal velo
ity (in the xy-plane) as well as on the maximum time of observation tmax. Thus, the longer the

observation time, the greater the dis
retized re
tangular domain must be. A simple extension of this domain,

whi
h requires smaller dis
retization steps in the wave-ve
tor domain, would have avoided this problem. The


ost would have been a signi�
ant in
rease in 
al
ulation time. Consequently, far from the sour
e and for long
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observation times, standard frequen
y-domain methods will be more e�
ient than the present time-domain

method. Indeed, in this 
ase, only a few propagating Lamb modes are generally su�
ient to des
ribe the

ultrasoni
 �eld. Thus, the 
loser to the sour
e the observation domain is, in time and spa
e, more e�
ient the

present method is.
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(c) Verti
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ement

0 50 100 150 200 250 300 350

0

1

2

3

0

1.8

3.6

d @mmD

z
@m

m
D

t = 100 Μs

PSfrag repla
ements

�S0��A0��A1�

Figure 6: The displa
ements on the se
tion θ=90◦ at t=100µs in a 
arbon epoxy plate of thi
kness 3.6mm ex
ited

by a 5-
y
le pulse of frequen
y 150 kHz at z=0. d is the distan
e from the sour
e.

For the angle θ=43◦, the presen
e of the 
usp, as is well known, leads to multiple ray 
ontributions of a single

Lamb mode. For the �SH0 � mode, these di�erent 
ontributions are 
learly observed in the �eld on the top

surfa
e. It has been observed in the wave �eld, as has been well des
ribed in the literature, see for example [20℄,

and measured experimentally [21℄. In this paper, in addition to the method used, what is interesting in the

results is the analysis of the displa
ements in su
h a 
ross-se
tion, i.e. with observable 
usp phenomenon.

A 
lose study of the mode shapes, identi�ed in Fig. 8, reveals that ea
h of them is asso
iated to the mode

shape of the Lamb wave asso
iated to the ray propagating in the dire
tion of the 
ross-se
tion. In addition,

the wavelength of ea
h identi�ed os
illation is dire
tly 
onne
ted to the proje
tion of the phase velo
ity in the

dire
tion of the 
ross-se
tion.

To examine how the 
al
ulations are possible near to the sour
e, i.e. in the 
lose �eld, let us analyze in Fig. 10

the radial displa
ement ur in the 
ross-se
tion x=0 during the �rst mi
rose
onds. In this �gure, we plot the

shape of the �eld following the z-dire
tion against the distan
e d=y at di�erent times. Be
ause the ex
itation

sour
e starts at one negative time (
f. Appendix B) the analysis is done from t= − 15µs up to t=13.5µs. For
the shortest ex
itation times, i.e. for negative times, the a
ousti
 �eld is, of 
ourse, 
on
entrated in the vi
inity

of the sour
e. For su
h observation points, a lot of waves intera
t. However, the �eld 
omputation is done


orre
tly. As the time in
reases, it is interesting to observe the modes building. In fa
t, for the longest times,

the S0 mode (
ompressional wave) is well established and the mode shape of the A0 mode (�exural wave) starts

to emerge.
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Figure 7: The radial displa
ement at z=0 and x=0 (θ=90◦) in a 
arbon epoxy plate of thi
kness 3.6mm ex
ited by

a 5-
y
le pulse of frequen
y 150 kHz at z=0, with respe
t to distan
e d=y from the sour
e and to time t.

(a) Radial displa
ement
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(b) Angular displa
ement

0 50 100 150 200 250 300 350

0

1

2

3

0

1.8

3.6

d @mmD

z
@m

m
D

t = 100 Μs

PSfrag repla
ements

�S0��SH0a��SH0b��A0��A1�

(c) Verti
al displa
ement
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Figure 8: The displa
ements on se
tion θ=43◦ at t=100µs in a 
arbon epoxy plate of thi
kness 3.6mm ex
ited by a

5-
y
le pulse of frequen
y 150 kHz at z=0. d is the distan
e from the sour
e.
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Figure 9: The angular displa
ement at z=0 in the dire
tion θ=43◦ in a 
arbon epoxy plate of thi
kness 3.6mm

ex
ited by a 5-
y
le pulse of frequen
y 150 kHz at z=0, with respe
t to distan
e d from the sour
e and to time t.

5.2 A unidire
tional monolayer 
arbon �ber/epoxy plate glued to a steel plate

As a �nal example, some results are presented for a plate made up of three layers. The upper layer is a monolayer

made of the 
arbon epoxy 
omposite plate analyzed in �5.1. The thi
kness is the same, i.e. 3.6mm, but the

orientation of the plate is su
h that the 
rystallographi
 axis dire
tion ♯1, the dire
tion of the �bers, makes

an angle of θ = 45◦ with the x-axis. For this kind of 
omposite material, the higher velo
ities are in the �ber

dire
tion, then the farthest 
ontributions, for a �xed time, are in this dire
tion as well. Doing this rotation thus

means that the 2D FFT sampling 
orresponds mu
h better to the large extension of the �eld in this dire
tion,

as 
an be seen in Fig. 11. Dire
tion ♯3 is still the z-axis.

The lower layer is a 1.0mm thi
k steel plate of density ρ=7900 kg·m−3
. It is assumed to be isotropi
. The

sti�nesses are c11=280.0 and c44=80.0 [GPa℄. These two layers are perfe
tly stu
k together. The epoxy adhesive

bond is 0.30mm thi
k and assumed to be isotropi
 (�3M S
ot
h-Weld EC-9323 B/A Two Part Stru
tural

Adhesive� is 
onsidered here). Its me
hani
al properties are (from manufa
turer's data in [22℄): ρ=1140 kg·m−3
,

c11=4.42 and c44=1.07 [GPa℄.

The for
e �eld applied to the plane z=0 is oriented only in the z-dire
tion with a spatial distribution in the

interfa
e plane given by an axisymmetri
 Gaussian of 17.0mm in width. The signal is a 5-
y
le pulse of 100 kHz
frequen
y (
f. Appendix B).

The radial displa
ement �eld 
al
ulated on the upper surfa
e, for the �xed time t=250µs, is plotted in Fig. 11.

The 
omplexity of the response is 
learly visible. First, let us note the a

ura
y of the numeri
al 
al
ulations.

There is no numeri
al noise although the side of the square area of 
al
ulation is about 100 times the greatest

wavelength. The same a

ura
y is obtained for a greater number of layers. As an example, numeri
al 
al
ulation

has been 
arried out for a 25-layer 
omposite with the same performan
es. From a physi
al point of view, the


usp 
an be per
eived as well as many mode interferen
es. Analyzing the �eld in two 
ross-se
tions makes
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Figure 10: The radial displa
ement ur in the 
ross-se
tion x=0 of a 
arbon epoxy plate of thi
kness 3.6mm ex
ited

by a 5-
y
le pulse of frequen
y 150 kHz at z=0, during the �rst mi
rose
onds.

interpretation of this response easier. In Figs. 12 and 13, the �eld is plotted versus the distan
e d from the

sour
e 
enter and the verti
al position z for the angles of θ=60◦ and θ=90◦, respe
tively.

Like the �eld in Fig. 8, the mode building, the existen
e of multiple rays due to the 
usp and the dispersive

behavior of one mode are 
learly observed. Of 
ourse, in this 
ase, owing to the inhomogeneity along the

z-dire
tion, the shape is mu
h more 
ompli
ated, although the �eld is periodi
 (or pseudo-periodi
 for the

dispersive mode) along the ray dire
tions. This periodi
ity depends dire
tly on the proje
tion on the ray

dire
tion of the wave-ve
tor asso
iated to the Lamb Wave. From that point of view, a generalized Lamb mode


an be identi�ed when this periodi
ity (or pseudo periodi
ity) exists. This is 
learly the 
ase in Fig. 13 for the
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angle θ=90◦. In 
ontrast, for the 
ross-se
tion 
hara
terized by the angle θ=60◦ (Fig. 12), no mode is distin
tly

identi�ed between the distan
es 400 and 900mm, parti
ularly when looking at the radial displa
ement. In fa
t,

this reveals interferen
es between modes.

Generally, the energy of waves inside the plate is lo
alized at di�erent depths, either in agreement with the

mode shapes (�pure� mode) or resulting from interferen
es between several modes.

(a) Radial Displa
ement at the upper fa
e
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Figure 11: Response (radial displa
ement) at z=0 and t=250µs of a multilayered plate, made of a monolayer 
omposite

plate and a steel plate glued together, to a 5-
y
le pulse of frequen
y 100 kHz at z=0.
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Figure 12: Response on se
tion θ=60◦at t=250µs of a multilayered plate, made of a monolayer 
omposite plate and

a steel plate glued together, to a 5-
y
le pulse of frequen
y 100 kHz at z=0.
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Figure 13: Response on se
tion θ=90◦at t=250µs of a multilayered plate, made of a monolayer 
omposite plate and

a steel plate glued together, to a 5-
y
le pulse of frequen
y 100 kHz at z=0.

Con
lusion and future prospe
ts

The method that has been developed in this work, based on time-domain analysis, permits to 
al
ulate ultrasoni


sour
e di�ra
tions in multilayered 
omposites. This method is a useful tool whi
h 
omplements the most


ommonly used te
hnique based on generalized Lamb wave de
omposition, for whi
h pre
ise 
al
ulations 
an

be made for long propagation distan
es, in a relatively short time. However, the most interesting feature of

the modal de
omposition in the time-domain is the fa
t that it is easier to 
al
ulate the a
ousti
 response in

the near �eld or under the sour
e.

These 
al
ulations will be used to develop the topologi
al imaging of defe
ts hidden deep in sub-sour
e positions

in multilayered stru
tures. The topologi
al imaging method is based on intera
tions between two 
al
ulated

�elds, derived from the so-
alled dire
t and adjoint problems [23, 24, 25℄. As these two �elds are the results

of wave propagation in a defe
tless medium, the present 
al
ulations will be highly suitable, espe
ially if the

defe
ts are far from the sour
e in the dire
tion normal to the surfa
e. This work, whi
h also extends to 
over

unidire
tional waveguides and immersed/embedded plates, is 
urrently in progress.
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Appendix A Spe
tral analysis of the A form

A.1 Theoreti
al ba
kground: density of the elasti
 potential energy

The density of the potential energy of an elasti
ally deformed body de�ned by (e.g., [12℄):

ep =
1

2

(
∂xu · σx + ∂yu · σ y + ∂zu · σ z

)
(A.1)

is stri
tly positive for any non-zero deformation. A zero value of the density of the elasti
 potential energy ep

orresponds to a rigid-body motion (translation and rotation).

The expression (A.1) be
omes, by applying Hooke's Law (2):

ep =
1

2







∂xu

∂yu

∂zu







T 





(l ⋄ l) (l ⋄m) (l ⋄ n)
(m ⋄ l) (m ⋄m) (m ⋄ n)
(n ⋄ l) (n ⋄m) (n ⋄ n)













∂xu

∂yu

∂zu







, (A.2)

where the unit ve
tors l, m, n are nx, ny, nz, respe
tively. Consequently, the nine-by-nine symmetri
 matrix

in (A.2) is positive.
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In the 1D 
ase where the displa
ement depends only on the z-
oordinate, ep =
1

2
∂zu

T (n ⋄ n) ∂zu. Ne
essarily,
the symmetri
 matrix (n ⋄ n) is positively de�ned be
ause rigid-body motions are only translations, for whi
h

∂zu is zero.

In the 2D 
ase where the displa
ement depends only on the x and z 
oordinates, the energy density be
omes:

ep =
1

2

[
∂xu
∂zu

]T

S
[
∂xu
∂zu

]

, where S =

[

(l ⋄ l) (l ⋄ n)
(n ⋄ l) (n ⋄ n)

]

. (A.3)

In this se
ond 
ase the symmetri
 matrix S is positive but not de�ned be
ause rigid-body motions in
lude

rotations in the x−z plane, for whi
h the spatial derivative of the displa
ement are non-zero. Indeed, be
ause

(a ⋄b)c=(a ⋄ c)b [15℄, it is obvious that S
[
n
−l

]

is the zero ve
tor: ep = 0 if and only if ∂xux, ∂xuy, ∂zuy, ∂zuz,

and (∂xuz+∂zux) are zero.

A.2 De�nition of the T operator

With the notation Ω =

m⋃

β=1

]zβ−1, zβ[ = ]0, h[\
{
z1 , · · · , zm−1

}
(Ω is an open bounded subset of R), let us 
onsider

the following di�erential operator T involved in Eq. (8) and de�ned by:

∀z ∈ Ω, (T Φ)(z) = ρ(z)−1 [−(n ⋄ n)Φ′′(z) + i [(n ⋄ k) + (k ⋄ n)] Φ′(z) + (k ⋄ k)Φ(z)] . (A.4)

The T operator a
ts on any ve
tor �eld Φ satisfying the following 
onditions:

1. Φ, Φ′
and Φ′′

are de�ned on ea
h interval ]zβ−1, zβ[;

2. Φ(0)=Φ(0+), Φ′(0)=Φ′(0+), Φ(h)=Φ(h−), Φ′(h)=Φ′(h−) exist and:

• (n
1⋄ n)Φ′(0)− i (n

1⋄ k)Φ(0) = 0 (upper side);

• (n
m⋄ n)Φ′(h)− i (k

m⋄ n)Φ(h) = 0 (lower side);

3. Φ′′ ∈ L2([0, h]), i.e.

∫ h

0

Φ′′(z)+ Φ′′(z) ρ(z)dz < +∞, where the supers
ript + denotes the transposition


ombined with the 
omplex 
onjugation;

4. Continuity on ea
h interfa
e ♯β (z=zβ, see Fig. 2):

• Φ(z−β ) = Φ(z+β ) (displa
ement);

• (n
β⋄ n)Φ′(z−β )− i (k

β⋄ n)Φ(z−β ) = (n
β+1⋄ n)Φ′(z+β )− i (n

β+1⋄ k)Φ(z+β ) (stress).

The set of su
h ve
tor �elds Φ is a fun
tional spa
e denoted by V.

One 
an demonstrate that V is a subspa
e of the Sobolev spa
e H2(Ω) and 
ontains the test-fun
tion spa
e

D(Ω), whi
h is dense in H1(Ω) (e.g, [28, Th. 1.2-3 (in Fren
h)℄ or [29℄).

Furthermore, the Sobolev spa
e H1(Ω) is dense in L2([0, h]) (e.g, [28℄), in whi
h we 
onsider the following s
alar

produ
t of two fun
tions:

∀Φ,Ψ ∈ L2([0, h]), 〈Φ,Ψ〉 =
∫ h

0

Φ(z)+ Ψ(z) ρ(z)dz =

m∑

β=1

[

ρβ

∫ z
β

z
β−1

Φ(z)+ Ψ(z) dz

]

, (A.5)

and the 
anoni
al inje
tion from H1(Ω) to L2([0, h]) is 
ompa
t (e.g.,[28, Th. 1.5-2℄) be
ause Ω ⊂ [0, h] is
bounded.
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A.3 The hermitian form A asso
iated to the T operator

Let us 
onsider the following sesquilinear form A:

∀Φ,Ψ ∈ V, A(Φ,Ψ) = 〈Φ, T Ψ〉 =
m∑

β=1

∫ z
β

z
β−1

Φ(z)+ (T Ψ)(z) dz . (A.6)

After integration by parts on ea
h interval [zβ−1, zβ], we obtain:

A(Φ,Ψ) = 〈Φ′, (n �n)Ψ′ − i (n �k)Ψ 〉+ i 〈Φ, (k �n)Ψ′ − i (k �k)Ψ 〉
= 〈Φ′, (n �n)Ψ′〉 − i 〈Φ′, (n �k)Ψ〉+ i 〈Φ, (k �n)Ψ′〉+ 〈Φ, (k �k)Ψ〉
= 〈Φ′, (n �n)Ψ′〉 − i 〈Φ′, (n �k)Ψ〉+ i 〈(n �k)Φ,Ψ′〉+ 〈Φ, (k �k)Ψ〉 ,

(A.7)

where (a �b) is a three-by-three matrix su
h that (a �b)=ρ−1
β (a ⋄ b) on ea
h layer ♯β, and by using the fa
t

that (n ⋄ k) is equal to the transpose of the real-valued matrix (k ⋄ n) (see [15℄).

The de�nition (A.7) 
an be extended to fun
tions Φ and Ψ in the Sobolev spa
e H1(Ω). The sesquilinear

form A thus de�ned on H1(Ω) is hermitian, i.e. A(Φ,Ψ) = A(Ψ,Φ)∗, the supers
ript ∗ denoting the 
omplex


onjugation. Indeed, the matri
es (n �n) and (k �k) are real-valued and symmetri
 [15℄.

A.4 The hermitian form A is positive

If the wave-ve
tor k is zero (1D 
ase), A(Φ,Φ) =

∫ h

0

[Φ′(z)]
+
(n ⋄ n)Φ′(z) dz .

A(Φ,Φ)=0 if and only if Φ′=0, i.e. the displa
ement �eld Φ is uniform (translation).

If the wave-ve
tor k is non-zero (2D 
ase), without loss of generality, we 
an 
onsider that the wave-ve
tor k

is parallel to the x axis. Indeed, a rotation of the x-y system leads to k = k l and [see Eqs. (A.2) and (A.3)℄:

A(Φ,Φ) =

∫ h

0

[

−i kΦ(z)
Φ′(z)

]+

S
[

−i kΦ(z)
Φ′(z)

]

dz . A(Φ,Φ)=0 if and only if Φ=0.

Consequently, the hermitian form A is positive in any 
ase, and positively de�ned if the wave-ve
tor k is

non-zero.

A.5 Redu
tion of the hermitian form A

From the previous se
tions, it appears that the hermitian form A is 
oer
itive (e.g., [28, Th. 6.2-1℄), i.e. for all

positive reals ν, there is a positive real µ su
h that:

∀Φ ∈ H1(Ω) , A(Φ,Φ) + ν 〈Φ,Φ〉 > µ ||Φ||2
H1(Ω) = µ (〈Φ,Φ〉+ 〈Φ,Φ〉) . (A.8)

In 
on
lusion, there are (e.g., [28, Th. 6.2-1℄) both an in
reasing sequen
e 0 6 ω2
1 6 ω2

2 6 · · · 6 ω2
n 6 · · · of

positive eigenvalues whi
h tends to in�nity and an orthonormal Hilbert basis {Φn}n∈N∗ of L2(Ω), i.e.

∀n, n′ ∈ N∗ , n 6= n′ , 〈Φn,Φn〉 = 1 and 〈Φn,Φn′〉 = 0 (A.9)

and

∀Ψ ∈ L2(Ω) , Ψ =

+∞∑

n=1

〈Φn,Ψ〉 Φn , (A.10)
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su
h that Φn ∈ H1(Ω) for all integers n and:

∀Ψ ∈ H1(Ω) , A(Φn,Ψ) = ω2
n 〈Φn,Ψ〉 . (A.11)

Ea
h pair (ωn,Φn) de�nes an eigenmode: ωn is its angular eigenfrequen
y and Φn the mode shape.

Note that the mode shape Φn is an element of the Sobolev spa
e H1(Ω) but is not ne
essarily an element of the

V spa
e. Nevertheless, Φn 
an be approa
hed as near as desired by an element of V (V is dense in H1(Ω)).

Appendix B Gaussian and n-
y
le pulses: de�nition and 
onvolution

by 
ausal sine signals

B.1 Gaussian pulse of duration d

Consider the Gaussian pulse gd of �duration� d de�ned as follows:

Time−domain : gd(t) =
5

2 d
exp

(−25 π t2

4 d2

)

⇐⇒ Frequency−domain : ĝd(ω) = exp

(−d2 ω2

25 π

)

, (B.1)

su
h that gd tends to the Dira
 delta fun
tion when the duration tends to zero, as drawn in Fig. B.1.
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Figure B.1: The 
onvolution of a Gaussian pulse (plain, thin) of duration d by a 
ausal sine signal of frequen
y f ,

for f=0 (dashed thin), f d=0.05 (plain), f d=0.1 (dashed), f d=0.25 (−·), f d=0.5 (−··), f d=1 (−···), f d=2 (dotted

thi
k).

One 
an demonstrate that the 
onvolution of the Gaussian pulse by the 
ausal sine of angular frequen
y ω is

rd,ω given by:

rd,ω(t) =

∫ t

−∞

gd(τ)
sin[ω (t−τ)]

ω
d τ

=
1

ω
exp

(−d2 ω2

25 π

)[

sin(ω t) +
1

2
Im

{

e

iω t

[

erf

(
5
√
π

2 d
t+i

ω d

5
√
π

)

− 1

]}]

,

(B.2)

where �erf� denotes the error fun
tion de�ned by: erf(z) = 2
√
π
−1 ∫ z

0
e

−ζ2
dζ (e.g., [27, �7.2℄).

Éri
 Du
asse & Mar
 Des
hamps Time-domain response of layered plates



23 / 24

As expe
ted, be
ause erf(a+ i b) tends to ±1 when a tends to ±∞, we 
an observe that the 
onvolution produ
t

is zero before the beginning of the pulse and it is

sin(ω t)

ω
exp

(−d2 ω2

25 π

)

=
ĝd(ω)

ω
sin(ω t) [Eq. (B.1)℄ after the

end of the pulse (see Fig. B.1).

B.2 n-
y
le pulse of angular frequen
y ν

Consider the n-
y
le pulse pn,ν of angular frequen
y ν de�ned by:

Time−domain : pn,ν(t) =
3 ν

n π
√
2 π

exp

(−9 ν2 t2

2 π2 n2

)

sin(ν t)

︸ ︷︷ ︸

m
︷ ︸︸ ︷

Frequency−domain : p̂n,ν(ω) =
1

2 i

{

exp

[−π2 n2 (ω−ν)2

18 ν2

]

− exp

[−π2 n2 (ω+ν)2

18 ν2

]}

.

(B.3)

This n-
y
le pulse and its spe
trum are drawn in Fig. B.2, for n = 2, 3 and 5.
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Figure B.2: n-
y
le pulses of angular frequen
y ν, (a) in the time-domain and (b) in the frequen
y-domain, where

n=2 (plain), n=3 (dashed) and n=5 (dot-dashed).

The 
onvolution of the n-
y
le pulse by the 
ausal sine of angular frequen
y ω is rn,ν,ω given by:

rn,ν,ω(t) =

∫ t

−∞

pn,ν(τ)
sin[ω (t−τ)]

ω
d τ

=
1

4ω

{

e

−b2+
[
(1 + r+(t)) cos(ω t)− i+(t) sin(ω t)

]

−e−b2
−

[
(1 + r−(t)) cos(ω t) + i−(t) sin(ω t)

]}

,

(B.4.a)

where:

b± =
nπ (ν ± ω)

3
√
2 ν

, c±(t) = erf

(
3 ν

n π
√
2
t + i b±

)

, r±(t) = Re
[
c±(t)

]
and i±(t) = Im

[
c±(t)

]
. (B.4.b)

As above, be
ause erf(a + i b) tends to ±1 when a tends to ±∞, we 
an observe that the 
onvolution produ
t

is zero before the beginning of the pulse and it is

cos(ω t)

ω

e

−b2+ − e

−b2
−

2
=

−| p̂n,ν(ω) |
ω

cos(ω t) [Eq. (B.3)℄ after

the end of the pulse (see Fig. B.3).
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Figure B.3: The 
onvolution of a 3-
y
le pulse (plain, thin) by a 
ausal sine signal of angular frequen
y ω, ω=0.2 ν
(plain), ω=0.5 ν (dashed), ω=ν(−·), ω=1.5 ν (−··), ω=1.8 ν (−···).
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