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Global sensitivity analysis for the boundary control of an open channel

Alexandre Janon, Maëlle Nodet, Christophe Prieur and Clémentine Prieur

Abstract— The goal of this paper is to solve the global
sensitivity analysis for a particular control problem. More
precisely, the boundary control problem of an open-water
channel is considered, where the boundary conditions are
defined by the position of a downstream overflow gate and an
upperstream underflow gate. The dynamics of the water depth
and of the water velocity are described by the Shallow Water
equations, by taking into account the bottom and friction slopes.
Since some physical parameters are unknown, a stabilizing
boundary control is first computed for their nominal values, and
then a sensitivity analysis is performed to measure the impact
of the uncertainty in the parameters on a given to-be-controlled
output. The unknown physical parameters are described by
some probability distribution functions. Numerical simulations
are performed to measure the first-order and total sensitivity
indices.

I. INTRODUCTION

In this work we consider the boundary stabilization of

an open channel. The model we consider is described by

the Shallow-Water equations, which are conservation laws

perturbed by non-homogeneous terms due to the effects

of the bottom slope, the slope’s friction, and the lateral

supply. The boundary actions are defined as the position

of both spillways located at the extremities of the reach.

In [5], [6], the authors designed stabilizing boundary output

feedback controllers, with an exponential convergence to the

equilibrium of water level and water flow. Our interest is

motivated by the following remark: in a given real open

channel, many of the involved parameters are uncertain, e.g.,

because of measurement uncertainties (bottom slope, friction

slope, . . . ). Our aim is then to study the sensitivity of the

efficiency of the control of the open channel with respect to

the uncertainties in these parameters.

Previous papers on this topic include those considering

the insensitizing problem, for e.g., the wave equation (see

[1] among other references). They address a local sensitivity

problem, that is they study the derivative of the quantity of

interest around a given value of one parameter. The work

we propose here presents a double originality. Firstly we

will address simultaneously the sensitivity to all uncertain

parameters, and not just one. And secondly, we propose to

investigate the global sensitivity, when the parameters vary

around their mean values, following prescribed probability

distributions (Gaussian or uniform). Therefore, the present
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approach can be seen as a global analysis of the control.

This will be addressed using statistical techniques.

Sensitivity analysis aims to find the most sensitive param-

eters, i.e. parameters whose variation have the largest impact

on the output quantity. Local sensitivity analysis essentially

compute the derivative of the output with respect to the pa-

rameter, at a given value of the parameter. Global (stochastic)

sensitivity analysis (see e.g. [19] for a review) assume that

the parameters can vary widely, either in a given range, or

around a given value. In this framework, the parameters are

assumed to follow suitable probability distributions. One way

of measuring sensitivities is to compute sensitivity indices,

such as Sobol indices [21], which quantify the contribution of

a given parameter or set of parameters to the output variance:

the larger the index value, the greater the sensitivity.

These indices are in general impossible to compute ex-

actly, and must be estimated. Classical approaches of ef-

fective computation use Monte-Carlo type methods, see the

survey [11]. The Monte-Carlo approach requires a large

number of model runs. As in general the model is complex

and requires large computing time, it is beneficial to replace

the full model by a metamodel, that is an approximate but

fast model. In this work we used the reduced basis method

[9], [10], [17], [23], [14]. The reduced basis method consists

in solving the discrete model PDE in a smaller dimension

space, i.e. to look for a solution in a space spanned by a

reduced basis instead of a large generic basis.

Due to space limitation, the proofs are omitted.

This paper is organized as follows. Section II presents

the model and states the problem. Section III presents the

sensitivity analysis in our context, and describes the numeri-

cal computation of indices using Monte Carlo approach and

reduced basis metamodelling. Section IV presents numerical

results. We conclude and give outlooks in Section V.

II. BOUNDARY CONTROL OF AN OPEN CHANNEL AND

PROBLEM STATEMENT

A. Quasilinear equation

Let us consider the classical Shallow Water equations

describing the flow dynamics inside of an open-channel. For

an introduction of such model and related control problems

see e.g. [4], [2], [6]. This model describes the space and time-

evolution of the water depth H = H(x, t) and horizontal

water velocity V = V (x, t) and is written as follows, for all

(x, t) ∈ [0, L] × R+,

∂t

(

H
V

)

+ ∂x

(

HV
1
2V 2 + gH

)

+

(

0
g(Sf − Sb)

)

= 0 ,

(1)



where L stands for the length of the pool, g is the gravity

constant, Sb is the bottom slope and Sf is the friction slope.

The bottom slope Sb may depend on x in the literature, but

here we consider Sb constant.

Let us denote the water flow by Q. It is given by

Q(x, t) = BH(x, t)V (x, t) where B is the channel width.

In the present work, we suppose there are two gates, one at

x = 0 and one at x = L, which are respectively

• a submerged underflow gate:

Q(0, t) = U0Bµ0

√

2g(zup − H(0, t)), (2)

where zup is the water level before the gate, µ0 the water

flow coefficient and U0 the position of the spillway (see

Fig. 1),

• a submerged overflow gate:

H(L, t) =

(

Q2(L, t)

2gB2µ2
L

)1/3

+ hs + UL, (3)

where hs is the height of the fixed part of the overflow

gate, µL the water flow coefficient at this gate and UL

the position of the spillway (see Fig. 1).

The controls are the positions U0 and UL of both spillways

located at the extremities of the pool and related to the state

variables H and Q.

U0

H(x, t)

Sb

V (x, t)

UL

x = 0 x = L

hs

zup

Fig. 1: Sketch of a channel: one reach with a downstream

overflow gate and an upperstream underflow gate.

Other kinds of boundary conditions (BC) can be consid-

ered e.g., two submerged underflow gates (or two submerged

overflow gates) at x = 0 and at x = L.

There are sufficient stability conditions written in terms

of the boundary conditions for the stability of (1) with

the boundary conditions (2)-(3). These sufficient conditions

exploit Lyapunov functions (see e.g. [5]), or analysis of the

characteristic curves (see [18], [15]).

There are various empirical models that are available in

the literature for the friction slope (see e.g. [3], [6] which

are considering two different models). Let us pick the model

of [3] for Sf , that is

Sf = C
V 2

H
, (4)

where C is a constant friction coefficient.

B. Linearized model and stabilizing control laws

A steady-state solution or equilibrium of (1) is a time-

independent solution of this equation. Let us consider a

space-independent equilibrium, denoted H⋆, V ⋆ and defined

by:

V ⋆ =

(

SbQ
⋆

BC

)1/3

, H⋆ =
Q⋆

BV ⋆
. (5)

From (1) and (4), it implies Sf = Sb and SbH
⋆ = C(V ⋆)2.

The linearized Shallow Water equations around such an

equilibrium are computed in [3]. Denoting the deviations of

the states with respect to such an equilibrium by h(x, t) =
H(x, t) − H⋆ and v(x, t) = V (x, t) − V ⋆, we can write as

follows:

∂t

(

h
v

)

+

(

V ⋆ H⋆

g V ⋆

)

∂x

(

h
v

)

+

(

0 0

− gC(V ⋆)2

(H⋆)2
2gCV ⋆

H⋆

)

(

h
v

)

= 0 .
(6)

Now, introducing the classical characteristic coordinates,

that are defined by, for all (x, t) ∈ [0, L] × R+,

ξ1(x, t) = v(x, t) + h(x, t)
√

g
H⋆

ξ2(x, t) = v(x, t) − h(x, t)
√

g
H⋆

(7)

and the characteristic velocities:

λ1 = V ⋆ +
√

gH⋆ , −λ2 = V ⋆ −
√

gH⋆ . (8)

Assume that the flow is fluvial, that is gH⋆ > V ⋆2. Under

this condition, the characteristic velocities have opposite

signs, that is λ1 > 0 and −λ2 < 0.
The linearized Shallow Water equations (6) may be rewrit-

ten as

∂t

„

ξ1

ξ2

«

+

„

λ1 0
0 −λ2

«

∂x

„

ξ1

ξ2

«

+

„

γ δ
γ δ

«„

ξ1

ξ2

«

= 0
(9)

with the parameters

γ = gC (V ⋆)2

H⋆

(

1
V ⋆ − 1

2
√

gH⋆

)

,

δ = gC (V ⋆)2

H⋆

(

1
V ⋆ + 1

2
√

gH⋆

)

.
(10)

With direct computation, the following proposition could

be obtained.
Proposition 2.1: Given any constant values k0 and kL,

defining the controls U0 and UL by, for all t ≥ 0,

U0(t) =
H(0, t)

“

V ⋆ − 1+k0

1−k0
(H(0, t) − H⋆)

p

g

H⋆

”

µ0

p

2g(zup − H(0, t))
(11)

UL(t) =−

0

@

H(L, t)
“

V ⋆ + 1+kL

1−kl

(H(L, t) − H⋆)
p

g

H⋆

”

√
2gµL

1

A

2

3

+H(L, t) − hs , (12)

the boundary conditions (2) and (3) may be rewritten as
„

ξ1(0, t)
ξ2(L, t)

«

=

„

0 k0

kL 0

«„

ξ1(L, t)
ξ2(0, t)

«

. (13)

Note that by defining the to-be-measured outputs as the water

heights at both extremities of the channel, namely H(0, t),
and H(L, t), the previous result defines output feedback

controllers U0 and UL. Moreover, note that this is an exact

expression.



It is possible to combine the previous with Lyapunov

techniques to compute stabilizing controllers. This is one of

the contributions of [3] which is recalled here:

Proposition 2.2: ([3]) For any (k0, kL) ∈ R such that

max

{

|k0|

√

λ1γ

λ2δ
, |kL|

√

λ2δ

λ1γ

}

< 1 , (14)

where γ and δ are defined in (10), defining U0 and UL with

Proposition 2.1, the system (9) with the boundary conditions

(13) is exponentially stable (in L2-norm). More precisely,

there exist ν > 0 and M > 0 such that, for every initial

condition (ξ0
1 , ξ0

2) ∈ L2((0, L); R2), the solution to the

Cauchy problem (9) with the boundary conditions (13) and

the initial condition

(ξ1(x, 0), ξ2(x, 0)) = (ξ0
1(x), ξ0

2(x)) , ∀x ∈ (0, L) (15)

satisfies

‖(ξ1(·, t), ξ2(·, t))‖L2((0,L);R2) ≤ Me−νt‖(ξ0
1 , ξ0

2)‖L2((0,L);R2).
The proof of the previous result is given in [3] by noting

that (14) is equivalent to [3, Condition (9)].

C. Problem statement

Assume now that we want to use this study to compute

a stabilizing control for a real-life channel. In this case,

a legitimate question to ask is whether the controls com-

puted using the theoretical model are accurate enough to

stabilize the real-life channel according to Proposition 2.2.

More specifically, most of the physical parameters in this

problem are measured quantities, potentially endowed with

measurement errors. Thus the theoretical channel may differ

from the real-life one. And as the control has been designed

on the theoretical channel, it may lead to a difference in the

quality of the stabilization of the real-life channel. In this

paper, we want to find which physical parameters have the

largest influence on this quality of stabilization.

Indeed, if there are measurement errors, the real-life model

is still governed by (9), but the true values for the parameters

are unknown, a priori different from the nominal values.

However, the only way to design the control is to use for each

parameter its nominal value. It leads to non-usual boundary

conditions, which we linearize in order to keep the resolution

simple. Let us denote with nom in subscript the nominal

value of a parameter. For instance, zup,nom is the nominal

value of zup. The quantities V ⋆
nom and H⋆

nom are defined by

(5), with all parameters fixed to their nominal values. We

obtain the following
Proposition 2.3: Given any constant values k0 and kL,

defining the controls U0 and UL by, for all t ≥ 0,

U0(t) =

H(0, t)

„

V ⋆
nom − 1+k0

1−k0
(H(0, t) − H⋆

nom)
q

g

H⋆
nom

«

µ0

p

2g(zup,nom − H(0, t))
(16)

UL(t) =−

0

B

B

@

H(L, t)

„

V ⋆
nom + 1+kL

1−kL
(H(L, t) − H⋆

nom)
q

g

H⋆
nom

«

√
2gµL

1

C

C

A

2

3

+H(L, t) − hs,nom , (17)

the boundary conditions (2) and (3) for the real-life model
are linearized as
 

1 − B +
p

g/H⋆

2
p

g/H⋆

!

ξ1(0, t) +
B +

p

g/H⋆

2
p

g/H⋆
ξ2(0, t) = A (18)

− D −
p

g/H⋆

2
p

g/H⋆
ξ1(L, t) +

 

1 +
D −

p

g/H⋆

2
p

g/H⋆

!

ξ2(L, t) = C

(19)

where A, B, C and D are suitable values.

Remark 2.4: We remark that if the nominal parameters

coincide with the true ones, Proposition 2.1 and Proposition

2.3 provide the same boundary conditions.

Let us define by µ =
(

hs, B, Sb, C, zup, ξ
0
1 , ξ0

2

)

the vector of

uncertain parameters. The uncertainty on these parameters

is modeled by random variables. Parameters hs, B, Sb,

zup are modeled by Gaussian distributions whose means

are the nominal values of parameters (their measure) and

whose standard deviations reflect the uncertainties on these

measures. Initial conditions (ξ0
1 , ξ0

2) and parameter C are

modeled by uniform distributions. We refer to Table I for

more details on these distributions.

Name Nominal value Comment

hs 4m uncertainty: N (4, 0.03)
B 80m uncertainty N (80, 1.03)
Sb 0.0002 uncertainty N

`

2 × 10−4, 2.5 × 10−6
´

C 0.001 uncertainty U
`

[9 × 10−4, 0.0011]
´

zup 10m uncertainty N (10, 0.13)
ξ0
1

0 initial value, uncertainty U ([−0.01, 0.01])
ξ0
2

0 initial value, uncertainty U ([−0.01, 0.01])
k0 0.6 known
kL 0.7 known
µ0 0.6 known
µL 0.73 known
Q⋆ 50 known
g 9.81 acceleration of gravity, known

TABLE I: Uncertainty on input parameters. N (m, σ) is a

normal distribution of mean value m and standard deviation

σ, and U([a, b]) is the uniform distribution on [a, b].

The stability of the system is then measured by the so-

called to-be-controlled output:

f(µ) =

√

∫ T ⋆

t=0

∫ L

x=0

(Q⋆ − Q(x, t))
2

dx dt , (20)

where T ⋆ is a given time horizon. In our study, the parame-

ters (k0, kL) will be fixed by the controller. Recall that ξ is

governed by Equations (9) with boundary conditions given

by Proposition 2.3. The sensitivity of the to-be-controlled

output to the input parameters µ will be derived by perform-

ing a global sensitivity analysis whose basements are recalled

in the next section. The closed-loop system is sketched out

in Figure 2 where the uncertainties appear.

III. SENSITIVITY ANALYSIS

In the following, one wants to measure the sensitivity

of the to-be-controlled output f(µ) with respect to the

uncertainties on the parameter vector µ.



PDE for (H,V )bound. conditions

to-be-controlled

to-be-measured

control U0, UL

uncertainty

initial conditions

output f(µ)

outputs

H(0, t) and H(L, t)

Fig. 2: Control loop in case of uncertainties

A. Global sensitivity: a variance-based approach

We adopt a stochastic framework. Input parameters µ1,

. . . , µp (here p = 7) are assumed to be independent and

are thus modeled by one-dimensional distributions, as made

precise in Table I. The to-be-controlled output can then be

considered as a scalar random variable Y = f(µ). The

conditional expectation E(Y |µi) is a random variable which

gives the mean of Y over the distributions of the µj (j 6= i),
when µi is fixed. It is the best approximation in the mean

square sense of Y which depends on µi only. Its variance

quantifies the influence of µi on the dispersion of Y . The

Sobol’ sensitivity indices are obtained by normalizing this

variance. Thus, the Sobol’ first order sensitivity index of

input parameter µi is defined by

S{i} =
Var
(

E(Y |µi)
)

Var(Y )
.

It belongs to the interval [0, 1]. More generally, one can

define sensitivity indices of any order r ∈ {1, . . . , p}, starting

from the functional ANOVA decomposition (see [7]). Let us

first introduce some notation. We assume that f is a real

square integrable function, u is a subset of {1, . . . , p}, u
c

stands for its complement, its cardinal is denoted r = |u|,
and µu represents the random vector with components µi,

i ∈ u. The ANOVA decomposition then states that Y = f(µ)
can be uniquely decomposed into summands of increasing

dimensions

f(µ) =
∑

u⊆{1,...,p}
fu(µu) (21)

where f∅ = E[Y ] and the other components have zero mean

value and are mutually uncorrelated. The Sobol’ index [21]

of order r = |u| with respect to the combination of all the

variables in u ⊆ {1, . . . , p} is then defined as

Su =
σ2

u

σ2
=

Var
[

fu(µu)
]

Var[Y ]
. (22)

The main effect of the ith factor is measured by S{i};

then, for i 6= j, the interaction effect1 due to the ith and

the jth factors, that cannot be explained by the sum of the

individual effects of µi and µj , is measured by S{i,j}, and so

1Following the terminology of sensitivity analysis (see e.g. [19]), inter-
action effect is the combination effect of several input parameters on the
to-be-controlled output.

on (see [19]). For any i ∈ {1, . . . , p}, we also define a total

sensitivity index ST
{i} to express the overall output sensitivity

to an input µi by

ST
{i} =

∑

v⊂{1,...p} such that i∈v

Sv . (23)

B. An estimator for Sobol’ indices

In our context, no analytical formula is available for the

Sobol’ indices, which we thus need to estimate. In this

subsection, we introduce the classical Monte Carlo estimator

of Sobol’ indices first introduced in [21].

We first need some notation. Let u be a non-empty subset

of {1, . . . p}. For any i ∈ {1, . . . , p}, let µj,1
i and µj,2

i ,

j = 1, . . . , n be two independent and identically distributed

(i.i.d.) samples of size n of the parameter µi. Recall that

the p parameters µ1, . . . , µp are distributed according to

distributions given in Table I. We now define

µj
u = (µj,1

i , i ∈ u)

µj,1
u

c = (µj,1
i , i ∈ u

c)

µj,2
u

c = (µj,2
i , i ∈ u

c) .

Finally, for k = 1 and 2, consider

Y j,k
u

= f(µj
u
, µj,k

u
c ) . (24)

For practical purposes, we need to define the closed Sobol’

index of order r = |u| with respect to the combination of all

the variables in u ⊆ {1, . . . , p} as

Sclosed
u

=
Var
(

E(Y |µu)
)

Var(Y )
. (25)

Let us remark that for first-order indices, Sclosed
{i} and S{i}

coincide.

We define the estimator Ŝclosed
u,n of Sclosed

u
as

Ŝclosed
u,n =

1

n

n
X

j=1

Y j,1
u Y j,2

u −
 

1

n

n
X

j=1

Y j,1
u + Y j,2

u

2

!2

1

n

n
X

j=1

(Y j,1
u )2 + (Y j,2

u )2

2
−
 

1

n

n
X

j=1

Y j,1
u + Y j,2

u

2

!2

(26)

with u = {i} for first-order indices and u = {i, j} for closed

second-order indices. This estimator was first introduced in

[16]. The asymptotic properties of Ŝclosed
u,n are stated in [12,

Propositions 2.2 and 2.5]. This estimator requires a large

number n of model evaluations. Therefore, to reduce the

cost, we opt for a metamodel approach, replacing equations

(9) by a reduction of a linear version of (9). We refer to

Section III-C for more details on the reduction procedure.

Let us now define the respective estimators of S{i}, ST
{i} and

S{i,j} as

Ŝ{i},n = Ŝclosed
{i},n , ŜT

{i},n = 1 − Ŝclosed
{i}c,n

and

Ŝ{i,j},n = Ŝclosed
{i,j},n − Ŝclosed

{i},n − Ŝclosed
{j},n .



Theorem 3.1: Assume that E(Y 4) < ∞. Let α ∈ (0, 1)
(typically α = 0.05 or 0.10). Then an asymptotic confidence
interval (CI) of level 1 − α for S{i} is given by

»

Ŝclosed
{i},n − z1− α

2

σ√
n

, Ŝclosed
{i},n + z1− α

2

σ√
n

–

,

with z1−α

2
is the 1 − α

2 quantile of the N (0, 1) distribution

and where σ = σ{i}. The analogous of this result is also

true for ST
{i} and S{i,j}.

Proof of Theorem 3.1 (sketch). Combining the vectorial

central limit theorem stated in [8, Theorem 3.1] for vectors

of closed Sobol’ indices with the delta method (as in [22])

applied to the particular case of linear transformations, we

get the result of Theorem 3.1. �

C. Discretized and reduced model

1) Discretization of the model: We use an implicit upwind

scheme to discretize (9). We denote by k the discrete time

index, by i = 1, . . . , Nx the space index (where Nx is the

number of discretization points in space), and by ξi,k
j an

approximation of ξj (j = 1, 2) at the ith point of the uniform

space grid on [0, L] with Nx points and at the kth timestep.

We denote by ∆x = L/Nx and ∆t = T ⋆/Nt the space and

time steps, respectively.

Using a classical upwind scheme, we get the following

approximations:

∂tξ1+λ1∂xξ1 ≈

(

ξi,k+1
1 − ξi,k

1

∆t
+ λ1

ξi,k+1
1 − ξi−1,k+1

1

∆x

)

i,k

and:

∂tξ2−λ2∂xξ2 ≈

(

ξi,k+1
2 − ξi,k

2

∆t
− λ2

ξi+1,k+1
2 − ξi,k+1

2

∆x

)

i,k

,

which give, when combined to (9), the following implicit

recurrence (in k) relations:
(

1

∆t
+

λ1

∆x
+ γ

)

ξi,k+1
1 −

λ1

∆x
ξi−1,k+1
1 + δξi,k+1

2 =
ξi,k
1

∆t
(

1

∆t
−

λ2

∆x
+ δ

)

ξi,k+1
2 +

λ2

∆x
ξi,k+1
2 + γξi,k+1

1 =
ξi,k
2

∆t
.

The boundary conditions (18) and (19) can readily be

incorporated so as to write, at each time step, a linear

system of equations that has to be solved so as to find ξk+1
1

and ξk+1
2 from ξk

1 and ξk
2 . An approximation of the to-be-

controlled output can then be obtained by discretizing the

double integral in (20).

2) Model reduction: As the experimental model will have

to be numerically solved for a large number of parameter val-

ues, we use the reduced basis technique (see e.g., [17], and

[13] for space-time reduction) so as to accelerate the resolu-

tions of the above mentioned systems. We use a space-time

reduced basis approach, which can be summed up as follows:

we introduce the vector ξ = (ξ0
1 , ξ0

2 , ξ1
1 , ξ1

2 , . . . , ξN
1 t, ξN

2 t),
which is the solution of some large (dimension 2 × (Nt +
1) × Nx) sparse linear system of equations A(µ)ξ = b(µ),
where A(µ) and b(µ) are appropriate functions of the true

parameter values µ. One can check that A(µ) and b(µ) satisfy

the so-called affine decomposition hypothesis (as introduced

in [17]), hence the classical reduced basis algorithms (op.

cit.) can be readily applied to this system.

IV. NUMERICAL RESULTS

A. Parameters

For the numerical implementations, we have chosen the

channel length L = 250 m, and the time horizon T ⋆ = 75 s.

The parameters k0 and kL have been fixed to 0.6 and 0.7. The

discretization parameters were settled to ∆t = 5 s, ∆x = 5
m, and for the reduction, a reduced basis obtained from

proper orthogonal decomposition [20] of size 11, obtained

from a snapshot of size 100. For the estimation of Sobol’

indices, the Monte-Carlo sample size was fixed equal to

50 000. We provide in the next sub-section asymptotic CI

of level 0.95 provided in Theorem 3.1.

Note that the length of a CI is a direct measure of the

estimation precision.

B. Indices estimations
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Fig. 3: First-order (left) and total (right) Sobol’ indices with

95% CI for parameters hs, B, Sb and C
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Fig. 4: First-order (left) and total (right) Sobol’ indices with

95% CI for parameters zup, ξ0
1 , and ξ0

2

On Figures 3 and 4 the results read as follows. For each

uncertain parameter, the bold centered line on the left part

of the figure (respectively on the right part) gives, on the

vertical axis, the estimation of the first-order (resp. total)

Sobol’ index. The upper and lower thin lines define the upper

and lower bounds of the 95% CI. Note that, by definition,

the first-order index is smaller than the corresponding total

index. We conclude with a confidence level of 95% that the



influence of the parameters hs and zup are not significant for

this to-be-controlled output. As expected from the choice of

T ⋆ and the exponential control rate, the initial conditions

(ξ0
1 , ξ0

2) are not significant as well. The parameter C is the

parameter having the most significant effect, parameters Sb

and B are influent as well but in a less extent.

As for each parameter, as the difference between the total

and the first-order indices is not significant, it means that the

interactions are negligible. Thus the to-be-controlled output

is additive in the parameters.

V. CONCLUSION

In this paper, the global sensitivity analysis has been

performed when considering probabilistic distribution func-

tions standing for the uncertainty in some unknown phys-

ical parameters. It allows us to describe the impact of

the parameters on a to-be-controlled output in a boundary

control problem. This boundary control is motivated by an

application for the flow control in an open channel. This

work lets many research lines open. In particular, it could

be interesting to vary parameters µ0 and µL, as they are in

general ill-estimated.
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