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Abstract The goal of this paper is to solve the global sensitivity analysis for a
particular control problem. More precisely, the boundary control problem of an
open-water channel is considered, where the boundary conditions are defined
by the position of a down stream overflow gate and an upper stream underflow
gate. The dynamics of the water depth and of the water velocity are described
by the Shallow Water equations, taking into account the bottom and friction
slopes. Since some physical parameters are unknown, a stabilizing boundary
control is first computed for their nominal values, and then a sensitivity anal-
ysis is performed to measure the impact of the uncertainty in the parameters
on a given to-be-controlled output. The unknown physical parameters are de-
scribed by some probability distribution functions. Numerical simulations are
performed to measure the first-order and total sensitivity indices.

1 Introduction

In this work we consider the boundary stabilization of an open channel. The
model we consider is described by the Shallow-Water equations, which are
conservation laws perturbed by non-homogeneous terms due to the effects of
the bottom slope, the slope’s friction, and the lateral supply. The boundary
actions are defined as the position of both spillways located at the extremities
of the reach. In [8,14], the authors designed stabilizing boundary output feed-
back controllers, with an exponential convergence to the equilibrium of water
level and water flow. Our interest is motivated by the following remark: in a
given real open channel, many of the involved parameters are uncertain, e.g.,
because of measurement uncertainties (bottom slope, friction slope, . . . ). Our
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aim is then to study the sensitivity of the efficiency of the control of the open
channel with respect to the uncertainties in these parameters.

This problem is related to the insensitizing problem, which consists in
finding a control function such that some functional of the state is locally
insensitive to the perturbations of one given parameter (usually the initial
condition in the literature). For the semilinear heat equation, we can mention
[5] for bounded domain and [11] for unbounded domain (see also [13] for a
complete insensitization). Other works include [12] for insensitizing controls
of semilinear parabolic equation where some data of the heat equation are
incomplete and unknown (see also [6] for the heat equation in presence of
superlinear nonlinearity) and [34] when the control and the observation regions
are disjoint. When focusing on hyperbolic systems and fluid mechanics, similar
works have been caried out, see in particular [2,10] for the wave equation, [17]
for a simplified linear ocean model, [21,22] for recent papers on Stokes and
Navier–Stokes equations.

Previous papers on this topic address a local sensitivity problem, that is
they study the derivative of the quantity of interest around a given value of one
parameter. The work we propose here presents a double originality. Firstly we
will address simultaneously the sensitivity to all uncertain parameters, and not
just one. And secondly, we propose to investigate the global sensitivity, when
the parameters vary around their mean values, following prescribed probability
distributions (Gaussian or uniform). Therefore, the present approach can be
seen as a global analysis of the control. This will be addressed using statistical
techniques.

Sensitivity analysis aims to find the most sensitive parameters, i.e. param-
eters whose variations have the largest impact on the output quantity. Local
sensitivity analysis essentially computes the derivative of the output with re-
spect to the parameter, at a given value of the parameter. Global (stochastic)
sensitivity analysis (see e.g. [39] for a review) assumes that the parameters can
vary widely, either in a given range, or around a given value. In this frame-
work, the parameters are assumed to follow suitable probability distributions.
One way of measuring sensitivities is to compute sensitivity indices, such as
Sobol indices [43], which quantify the contribution of a given parameter or set
of parameters to the output variance: the larger the index value, the greater
the sensitivity.

These indices are in general impossible to compute exactly, and must be
estimated. Classical approaches of effective computation use Monte-Carlo type
methods, see the survey [24]. We can cite the FAST method (Fourier Ampli-
tude Sensitivity Testing, [9,46]) which uses the Fourier decomposition of the
output function, the polynomial chaos expansion method [45], and the Sobol
pick-freeze scheme [43,44,28,18] which uses sampled replications of model out-
puts. The Monte-Carlo approach requires a large number of model runs (e.g.
around one thousand for one parameter). As in general the model is complex
and requires large computing time, it is beneficial to replace the full model
by a metamodel, that is an approximate but fast model. In this work we used
the reduced basis method [19,20,36,47,29], but we can also mention kriging
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method [40], interpolation kernels [41], and we refer to [16] for a review on
metamodeling methods. The reduced basis method consists in solving the dis-
crete model partial differential equation in a smaller dimension space, i.e. to
look for a solution in a space spanned by a reduced basis instead of a large
generic basis (such as finite elements). The advantage of this method is that
it can provide certified error bounds that allow us to quantify the informa-
tion loss between the full model and the metamodel, and therefore to provide
certified Confidence Intervals (CI) for the sensitivity indices [30].

This paper is organized as follows. Section 2 presents the model and states
the problem. Section 3 presents the sensitivity analysis in our context, and
describes the numerical computation of indices using Monte Carlo approach
and reduced basis metamodeling. Section 4 presents numerical results. We
conclude and give outlooks in Section 5. The Appendix collects the proof of
some intermediate results. This work is an extension of the paper of the same
title presented at the 2014 CDC conference [32], where no proof is given, a
simpler to-be-controlled output is considered and less parameters are included
in the sensitivity analysis.

2 Boundary control of an open channel and problem statement

2.1 Quasilinear equation

Let us consider the classical Shallow Water equations describing the flow dy-
namics inside of an open-channel. For an introduction of such model and re-
lated control problems see e.g. [7,3,14]. This model describes the space and
time-evolution of the water depth H = H(x, t) and horizontal water velocity
V = V (x, t), for all (x, t) ∈ [0, L]× R+, and is written as follows

∂t

(
H
V

)
+ ∂x

(
HV

1
2V

2 + gH

)
+

(
0

g(Sf − Sb)

)
= 0 , (1)

where L stands for the length of the pool, g is the gravity constant, Sb is the
bottom slope and Sf is the friction slope. Moreover it is assumed that the
bottom slope Sb doesnot depend on x.

Let us denote the water flow by Q. It is given by Q(x, t) = BH(x, t)V (x, t)
where B is a constant channel width. In the present work, we suppose there
are two gates, one at x = 0 and one at x = L, which are respectively

– a submerged underflow gate:

Q(0, t) = U0Bµ0

√
2g(zup −H(0, t)), (2)

where zup is the water level before the gate, µ0 the water flow coefficient
and U0 the position of the spillway (see Figure 1),
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– a submerged overflow gate:

H(L, t) =

(
Q2(L, t)

2gB2µ2
L

)1/3

+ hs + UL, (3)

where hs is the height of the fixed part of the overflow gate, µL the wa-
ter flow coefficient at this gate and UL the position of the spillway (see
Figure 1).

The controls are the positions U0 and UL of both spillways located at the
extremities of the pool and related to the state variables H and Q.

U0

H(x, t)

Sb

V (x, t)

UL

x = 0 x = L

hs

zup

Fig. 1 Sketch of a channel: one reach with a downstream overflow gate and an upperstream
underflow gate.

Other kinds of boundary conditions (BC) can be considered e.g., two sub-
merged underflow gates (or two submerged overflow gates) at x = 0 and at
x = L.

There are sufficient stability conditions written in terms of the boundary
conditions for the stability of (1) with the boundary conditions (2)-(3). These
sufficient conditions exploit Lyapunov functions (see e.g. [8]), or analysis of
the characteristic curves (see [37,33]).

There are various empirical models that are available in the literature for
the friction slope (see e.g. [4,14] which are considering two different models).
Let us pick the model of [4] for Sf , that is

Sf = C
V 2

H
, (4)

where C is a constant friction coefficient.

2.2 Linearized model and stabilizing control laws

A steady-state solution or equilibrium of (1) is a time-independent solution
of this equation. Let us consider a space-independent equilibrium, denoted
H?, V ? and defined by:

V ? =

(
SbQ

?

BC

)1/3

, H? =
Q?

BV ?
. (5)
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Using (1) and (4), it implies Sf = Sb and SbH
? = C(V ?)2. The linearized

Shallow Water equations around such an equilibrium are computed in [4].
Denoting the deviations of the state with respect to such an equilibrium by
h(x, t) = H(x, t)−H? and v(x, t) = V (x, t)− V ?, we have:

∂t

(
h
v

)
+

(
V ? H?

g V ?

)
∂x

(
h
v

)
+

(
0 0

− gSbH?
2gSb
V ?

)(
h
v

)
= 0 ,

or equivalently, by recalling that SbH
? = C(V ?)2,

∂t

(
h
v

)
+

(
V ? H?

g V ?

)
∂x

(
h
v

)
+

(
0 0

− gC(V ?)2

(H?)2
2gCV ?

H?

)(
h
v

)
= 0 . (6)

We now introduce the classical characteristic coordinates defined by:

ξ1(x, t) = v(x, t) + h(x, t)
√

g
H?

ξ2(x, t) = v(x, t)− h(x, t)
√

g
H?

(7)

for all (x, t) ∈ [0, L]× R+, and the characteristic velocities:

λ1 = V ? +
√
gH? , −λ2 = V ? −

√
gH? . (8)

Assume that the flow is fluvial, that is gH? > V ?2. Under this condition, the
characteristic velocities have opposite signs, that is λ1 > 0 and −λ2 < 0.

The linearized Shallow Water equations (6) may be rewritten as

∂t

(
ξ1
ξ2

)
+

(
λ1 0
0 −λ2

)
∂x

(
ξ1
ξ2

)
+

(
γ δ
γ δ

)(
ξ1
ξ2

)
= 0 (9)

with the parameters

γ = gC (V ?)2

H?

(
1
V ? −

1
2
√
gH?

)
,

δ = gC (V ?)2

H?

(
1
V ? + 1

2
√
gH?

)
.

(10)

We then have the following proposition (see Appendix A.1 for the proof
which is inspired by [14,4]):

Proposition 1 Given any constant values k0 and kL, let us define the controls
U0 and UL by, for all t ≥ 0,

U0(t) =
H(0, t)

(
V ? − 1+k0

1−k0 (H(0, t)−H?)
√

g
H?

)
µ0

√
2g(zup −H(0, t))

; (11)

UL(t) = −

H(L, t)
(
V ? + 1+kL

1−kl (H(L, t)−H?)
√

g
H?

)
√

2gµL


2
3

+H(L, t)− hs.

(12)
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Then the boundary conditions (2) and (3) may be rewritten as(
ξ1(0, t)
ξ2(L, t)

)
=

(
0 k0
kL 0

)(
ξ1(L, t)
ξ2(0, t)

)
. (13)

Note that by defining the to-be-measured outputs as the water heights at
both extremities of the channel, namely H(0, t), and H(L, t), the previous
result defines output feedback controllers U0 and UL. Moreover, note that this
is an exact expression (not coming from an approximation or a linearization
of the boundary conditions (2) and (3)).

It is possible to combine the previous results with Lyapunov techniques to
compute stabilizing controllers. This is one of the contributions of [4] which is
recalled here:

Proposition 2 ([4]) For any (k0, kL) ∈ R such that

max

{
|k0|
√
λ1γ

λ2δ
, |kL|

√
λ2δ

λ1γ

}
< 1 , (14)

where γ and δ are defined in (10), defining U0 and UL with Proposition 1,
the system (9) with the boundary conditions (13) is exponentially stable (in
L2-norm). More precisely, there exist ν > 0 and M > 0 such that, for every
initial condition (ξ01 , ξ

0
2) ∈ L2((0, L);R2), the solution to the Cauchy problem

(9) with the boundary conditions (13) and the initial condition

(ξ1(x, 0), ξ2(x, 0)) = (ξ01(x), ξ02(x)) , ∀x ∈ (0, L) (15)

satisfies

‖(ξ1(·, t), ξ2(·, t))‖L2((0,L);R2) ≤Me−νt‖(ξ01 , ξ02)‖L2((0,L);R2).

The proof of the previous result is given in [4] by noting that (14) is equiv-
alent to [4, Condition (9)].

2.3 Problem statement

Assume now that we want to use this study to compute a stabilizing control
for a real-life channel. In this case, a legitimate question to ask is whether the
controls computed using the theoretical model and Propositions 1 and 2 are
accurate enough to stabilize the real-life channel. More specifically, most of
the physical parameters in this problem are measured quantities, potentially
endowed with measurement errors. Thus the theoretical channel may differ
from the real-life one. And as the control has been designed on the theoretical
channel, it may lead to a difference in the quality of the stabilization of the
real-life (or uncertain) channel. In this paper, we want to find which physical
parameters have the largest influence on this quality of stabilization.

Indeed, if there are measurement errors, the real-life model is still governed
by (9), but the true values for the parameters are unknown, a priori different
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from the nominal values used to model the theoretical channel. Moreover some
parameters in (1) are not well modeled, e.g., the friction slope Sf , given by (4),
for which others models exist in the literature (see e.g. [4] and [14]). The only
way to design the control is to use for each parameter its nominal value. It
leads to nonlinear boundary conditions, which we linearize in order to keep the
resolution simple. Let us denote with nom in subscript the nominal value of
a parameter. For instance, zup,nom is the nominal value of zup. The quantities
V ?nom and H?

nom are defined by (5), with all parameters fixed to their nominal
values. We obtain the following proposition (see Appendix A.2 for the proof):

Proposition 3 Given any constant values k0 and kL, let us define the controls
U0 and UL by, for all t ≥ 0,

U0(t) =

H(0, t)

(
V ?nom − 1+k0

1−k0 (H(0, t)−H?
nom)

√
g

H?nom

)
µ0

√
2g(zup,nom −H(0, t))

(16)

UL(t) = −

H(L, t)

(
V ?nom + 1+kL

1−kL (H(L, t)−H?
nom)

√
g

H?nom

)
√

2gµL


2
3

+H(L, t)− hs,nom. (17)

Then the boundary conditions (2) and (3) for the real-life model (9) are lin-
earized as: (

1−
B +

√
g/H?

2
√
g/H?

)
ξ1(0, t) +

B +
√
g/H?

2
√
g/H?

ξ2(0, t) = A (18)

−
D −

√
g/H?

2
√
g/H?

ξ1(L, t) +

(
1 +
D −

√
g/H?

2
√
g/H?

)
ξ2(L, t) = C (19)

where A, B, C and D are values defined in Appendix A.2.

Remark 1 We remark that if the nominal parameters coincide with the true
ones, Proposition 1 and Proposition 3 provide the same boundary conditions.

Let us define by µ =
(
hs, B, Sb, C, zup, ξ

0
1 , ξ

0
2 , µ0, µL

)
the vector of uncertain

parameters. We consider in the following that the uncertainties on these pa-
rameters can be considered independent of each other. We then assume that
the errors in measurement for parameters hs, B, Sb, zup, µ0 and µL are gov-
erned by independent Gaussian random variables. For each of these Gaussian
variables, the expectation is the nominal value of the parameter and the stan-
dard deviation reflects the precision of the measurements. A small standard
deviation is chosen if we consider that measurements are precise. Initial condi-
tions (ξ01 , ξ

0
2) and parameter C (defining the friction slope in (4)) are modeled

by uniform distributions. It is a common choice when only bounds on the un-
certainty distribution is assumed. However, it is important to note here that
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the whole methodology we develop in this paper can be generalized to any
choice of probability distributions for the parameters, as soon as the uncer-
tainties on the various parameters can be assumed independent of each other.
For measurements errors, we could also have considered truncated Gaussian
distributions to ensure the positivity of the parameters. In many fields of ap-
plication (e.g., meteorological, oceanography, . . . ), it happens that the data
are observed indirectly through some nonlinear observation mapping, and af-
ter some preprocessing. In that case, uncertainty modeling may involve non
trivial probability distributions. In Section 4, we arbitrarily choose numerical
values for the expectations and variances of the probability distributions mod-
eling the uncertainty of parameters hs, B, Sb, C, zup, ξ

0
1 , ξ02 , µ0 and µL (see

Table 1).
The stability of the system is then evaluated by the so-called to-be-controlled

output:

f(µ) =

√∫ T?

t=0

∫ L

x=0

ξ1(x, t)2 + ξ2(x, t)2 dxdt , (20)

where T ? is a given time horizon. In our study, the parameters (k0, kL) will be
fixed by the controller. Recall that ξ is governed by Equation (9) with bound-
ary conditions given by Proposition 3. The sensitivity of the to-be-controlled
output to the input parameters µ will be derived by performing a global sen-
sitivity analysis whose bases are recalled in the next section. The closed-loop
system is sketched out in Figure 2, and in Figure 3 where the uncertainties
appear.

PDE for (H,V )bound. conditions

to-be-controlled

to-be-measured

control U0, UL

initial conditions

output f(µ)

outputs

H(0, t) and H(L, t)

Fig. 2 Control loop in case when are no uncertainties.

3 Sensitivity analysis

In the following, one wants to measure the sensitivity of the to-be-controlled
output f(µ) with respect to the uncertainties on the parameter vector µ.
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PDE for (H,V )bound. conditions

to-be-controlled

to-be-measured

control U0, UL

uncertainty

initial conditions

output f(µ)

outputs

H(0, t) and H(L, t)

Fig. 3 Control loop in case of uncertainties.

3.1 Global sensitivity: a variance-based approach

We adopt a stochastic framework. Input parameters µ1, . . . , µp (here p =
9) are assumed to be independent and are thus modeled by one-dimensional
distributions, as detailed in Section 2.3. The to-be-controlled output can then
be considered as a scalar random variable Y = f(µ). We assume that Y is
square integrable and non deterministic in the sense that Var(Y ) 6= 0.

The conditional expectation E(Y |µi) is a random variable which gives the
mean of Y over the distributions of the µj (j 6= i), when µi is fixed. It is
the best approximation in the mean square sense of Y which depends on µi
only. Its variance quantifies the influence of µi on the dispersion of Y . The
Sobol’ sensitivity indices are obtained by normalizing this variance, by the
total variance of the to-be-controlled output, Y . Thus, the Sobol’ first order
sensitivity index of input parameter µi is defined by

S{i} =
Var
(
E(Y |µi)

)
Var(Y )

.

It belongs to the interval [0, 1].

More generally, one can define sensitivity indices of any order r ∈ {1, . . . , p},
starting from the functional Analysis Of Variance (ANOVA) decomposition
(see [25] and [15]). Let us first introduce some notations. We assume that f
is a real square integrable function, u is a subset of {1, . . . , p}, uc stands for
its complement, its cardinal is denoted r = |u|, and µu represents the random
vector with components µi, i ∈ u. The ANOVA decomposition then states
that Y = f(µ) can be uniquely decomposed into summands of increasing
dimensions

f(µ) =
∑

u⊆{1,...,p}

fu(µu) (21)
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where f∅ = E[Y ] and the other components have zero mean value and are
mutually uncorrelated. From (21) and its properties, we deduce that

E (f(µ)− f∅)
2

= Var(Y )
=
∑

u⊆{1,...,p}, u 6=∅Var (fu(µu)) .

For any v ⊆ {1, . . . , p}, let |v| denote the cardinal of v. The Sobol’ index
[43] of order r = |u| with respect to the combination of all the variables in
u ⊆ {1, . . . , p} is then defined as

Su =
σ2
u

σ2
=

Var
[
fu(µu)

]
Var[Y ]

. (22)

The main effect of the ith factor is measured by S{i}. Then, for i 6= j, the

interaction effect due to the ith and the jth factors, that cannot be explained
by the sum of the individual effects of µi and µj , is measured by S{i,j}, and so
on (see [39]). Note that the Sobol’ index of order r = |u| with respect to the
combination of all the variables in u ⊆ {1, . . . , p} can also be written in the
following more intuitive form

Su =

∑
v⊆u(−1)|u|−|v|Var

[
E(Y |µi, i ∈ v)

]
Var[Y ]

.

It is straightforward to prove that, ∀ u ⊆ {1, . . . , p},

0 ≤ Su ≤ 1 ,
∑

u⊆{1,...,p}

Su = 1 .

For any i ∈ {1, . . . , p}, we also define a total sensitivity index Stot
{i} [26] to

express the overall output sensitivity to an input µi by

Stot
{i} =

∑
v⊆{1,...p} such that i∈v

Sv . (23)

From (23) we deduce that

0 ≤ S{i} ≤ Stot
{i} ≤ 1 .

If S{i} = Stot
{i}, then it means that the input µi has no interaction with other

inputs.
For practical purposes, we also define the closed Sobol’ index of order

r = |u| with respect to the combination of all the variables in u ⊆ {1, . . . , p}
as

Sclosed
u =

∑
v⊆u

Sv . (24)

We have

0 ≤ Sclosed
u =

Var
[
E(Y |µi, i ∈ u)

]
Var[Y ]

≤ 1 .
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Let us remark that for first-order indices, Sclosed
{i} and S{i} coincide. For

i 6= j, the interaction effect due to the ith and the jth factors, including the
part which can be explained by the sum of the individual effects of µi and µj ,
is thus measured by Sclosed

{i,j} .
In our context, as in many contexts, no analytical formula is available for

the Sobol’ indices, which we thus need to estimate.

3.2 An estimator for Sobol’ indices

In this subsection, we introduce the classical Monte Carlo estimator of Sobol’
indices first introduced in [43].

We first need some notation. Let Pµ be the probability distribution of
the random vector µ. Let u be a non-empty subset of {1, . . . p}. For any i ∈
{1, . . . , p}, let µ′i be a random variable distributed as µi and independent of
µi. Recall that the p parameters µ1, . . . , µp are independently distributed
according to Section 2.3. Define µu = (µi , i ∈ u), µ′uc = (µ′i , i ∈ uc).
Consider Yu = f(µu, µ

′
uc). From Lemma 1.2 in [28] we know that

Sclosed
u =

Cov
(
Y, Yu

)
Var[Y ]

. (25)

Then, to define an estimator of Sclosed
u , it seems intuitive to replace in (25)

the term Cov
(
Y, Yu

)
(resp. Var[Y ]) by some empirical version.

For that purpose, let us introduce, for any i ∈ {1, . . . , p}, µj,1i and µj,2i ,
j = 1, . . . , n two independent and identically distributed (i.i.d.) samples of size
n of the parameter µi. We now define

µju = (µj,1i , i ∈ u)

µj,1uc = (µj,1i , i ∈ uc)

µj,2uc = (µj,2i , i ∈ uc) .

Finally, for k = 1 and 2, consider

Y j,ku = f(µju, µ
j,k
uc ).

We define the estimator Ŝclosed
u,n of Sclosed

u as

Ŝclosed
u,n =

1

n

n∑
j=1

Y j,1u Y j,2u −

 1

n

n∑
j=1

Y j,1u + Y j,2u

2

2

1

n

n∑
j=1

(Y j,1u )2 + (Y j,2u )2

2
−

 1

n

n∑
j=1

Y j,1u + Y j,2u

2

2 (26)

with u = {i} for first-order indices and u = {i, j} for closed second-order in-
dices. This estimator was first introduced in [35]. Various choices were possible
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for the empirical version of Cov
(
Y, Yu

)
(resp. Var[Y ]). The choice considered

in (26) above ensures good asymptotic properties for the estimator Ŝclosed
u,n of

Sclosed
u . These asymptotic properties are stated in [28, Propositions 2.2 and

2.5].
This estimator requires a large number n of model evaluations. Therefore,

to reduce the cost, we opt for a metamodel approach, replacing Equation (9)
by a reduction of (9). We refer to Section 3.3 for more details on the reduction
procedure. Let us now define the respective estimators of S{i} and Stot

{i} as

Ŝ{i},n = Ŝclosed
{i},n , Ŝtot

{i},n = 1− Ŝclosed
{i}c,n .

Thanks to [28] we can state the following theorem, which gives asymptotic
confidence intervals for the Sobol’ indices:

Theorem 1 Assume that E(Y 4) < ∞. Let α ∈ (0, 1) (typically α = 0.05 or
0.10). Let u ⊆ {1, . . . , p} and i ∈ {1, . . . , p}.

(i) Let vu be defined by

v2u =
Var

(
(Y − EY )(Yu − EY )− Su

2

(
(Y − EY )2 + (Yu − EY )2

))
(VarY )

2 . (27)

Then, for any consistent estimator v̂u of vu, an asymptotic confidence in-
terval (CI) of level 1− α for Sclosed

u is given by[
Ŝclosed
u,n − z1−α2

v̂u√
n
, Ŝclosed

u,n + z1−α2
v̂u√
n

]
,

with z1−α2 is the 1− α
2 quantile of the N (0, 1);

(ii) Let v2∼i be defined by (27) with u = {1, . . . i−1, i+ 1, . . . , p}. Then, for any
consistent estimator v̂∼i of v∼i, an asymptotic CI of level 1−α for Stot

{i} is
given by [

Ŝtot
{i},n − z1−α2

v̂∼i√
n
, Ŝtot
{i},n + z1−α2

v̂∼i√
n

]
,

with z1−α2 is the 1− α
2 quantile of the N (0, 1) distribution.

Proof of Theorem 1. From [28, Proposition 2.2], we get that

√
n
(

Ŝclosed
u,n − Sclosed

u

)
D−−−−−→

n→+∞
N
(
0, v2u

)
with v2u defined by (27). Then, using Slutsky’s Lemma, we get the result in
Item (i) of Theorem 1 for Su. Moreover, note that Stot

{i} = 1 − Sclosed
∼i with

∼ i = {1, . . . i− 1, i+ 1, . . . , p}. We thus get the result in Item (ii) for Stot
{i}. �

Assume now that we approximate the true model f by a metamodel f̃ .
In the following we will consider reduced basis metamodeling (see Section 3.3
below). For k = 1 and 2, we now consider

Ỹ j,ku = f̃(µju, µ
j,k
uc ) . (28)
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We define S̃closed
u,n as in (26) by replacing Y by Ỹ . Using the results in [28] we

have the following confidence intervals for the Sobol indices, using now the
estimator based on the metamodel:

Corollary 1 Assume that the metamodel f̃ depends on the Monte-Carlo sam-

ple size n, that there exists c ∈ R such that f̃n(µ) − f(µ)
L2(Pµ)−−−−−→
n→+∞

c, and that

nVar
(
f̃n(µ)− f(µ)

)
−−−−−→
n→+∞

0. Assume that E(Y 4) < ∞. Let α ∈ (0, 1)

(typically α = 0.05 or 0.10). Let u ⊆ {1, . . . , p} and i ∈ {1, . . . , p}. Then,

(i) for any consistent estimator v̂u of vu, where v2u is defined by (27), an asymp-
totic CI of level 1− α for Sclosed

u is given by[
S̃closed
u,n − z1−α2

v̂u√
n
, S̃closed

u,n + z1−α2
v̂u√
n

]
,

with z1−α2 is the 1− α
2 quantile of the N (0, 1) distribution;

(ii) for any consistent estimator v̂∼i of v∼i, where v2∼i is defined by (27) with
∼ i = {1, . . . i− 1, i+ 1, . . . , p}, an asymptotic CI of level 1− α for Stot

{i} is
given by [

S̃tot
{i},n − z1−α2

v̂∼i√
n
, S̃tot
{i},n + z1−α2

v̂∼i√
n

]
,

with z1−α2 is the 1− α
2 quantile of the N (0, 1) distribution.

Proof of Corollary 1. Let u ⊆ {1, . . . , p}. From Item (1) of Theorem 3.4 in [28],
we know that √

n
(

S̃closed
u,n − Sclosed

u

)
D−−−−−→

n→+∞
N
(
0, v2u

)
as n ‖f̃n − f‖∞ −−−−−→

n→+∞
0, where v2u is the limit variance in Theorem 1. Then

applying Slutsky’s Lemma, it yields the result in Item (i).
Item (ii) for Stot

{i} is obtained by noting that Stot
{i} = 1− Sclosed

∼i . �

3.3 Discretized and reduced model

3.3.1 Discretization of the model

We use an implicit upwind scheme to discretize (9). We denote by k = 1, . . . , Nt
the discrete time index, by i = 1, . . . , Nx the space index (where Nx and Nt are
the numbers of discretization points in space and time respectively), and by

ξi,kj an approximation of ξj (j = 1, 2) at the ith point of the uniform space grid
on [0, L] with Nx points and at the kth timestep. We denote by ∆x = L/Nx
and ∆t = T ?/Nt the space and time steps, respectively.

Using a classical upwind scheme, we get the following approximations:

∂tξ1 + λ1∂xξ1 ≈

(
ξi,k+1
1 − ξi,k1

∆t
+ λ1

ξi,k+1
1 − ξi−1,k+1

1

∆x

)
i,k
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and:

∂tξ2 − λ2∂xξ2 ≈

(
ξi,k+1
2 − ξi,k2

∆t
− λ2

ξi+1,k+1
2 − ξi,k+1

2

∆x

)
i,k

,

which give, when combined to (9), the following implicit recurrence (in k)
relations: (

1

∆t
+

λ1
∆x

+ γ

)
ξi,k+1
1 − λ1

∆x
ξi−1,k+1
1 + δξi,k+1

2 =
ξi,k1
∆t(

1

∆t
− λ2
∆x

+ δ

)
ξi,k+1
2 +

λ2
∆x

ξi,k+1
2 + γξi,k+1

1 =
ξi,k2
∆t

.

The boundary conditions (18) and (19) can readily be incorporated so as to
write, at each time step, a linear system of equations that has to be solved so
as to find ξk+1

1 and ξk+1
2 from ξk1 and ξk2 .

3.3.2 Discrete output

An approximation of the to-be-controlled output can then be obtained by dis-
cretizing the double integral in (20):

fdiscrete(µ) =

√√√√Nx∑
i=1

Nt∑
k=0

(
ξi,k1

)2
+
(
ξi,k2

)2
Notice that we do not include the 1/(Nx × (Nt + 1)) normalization factor, as
this will not change the Sobol indices.

3.3.3 Model reduction and error bound

As the experimental model will have to be numerically solved for a large num-
ber of parameter values, we use the reduced basis technique (see e.g., [36], and
[31] for space-time reduction) so as to accelerate the resolutions of the above
mentioned systems. We use a space-time reduced basis approach, which can be
summed up as follows: we introduce the vector ξ = (ξ01 , ξ

0
2 , ξ

1
1 , ξ

1
2 , . . . , ξ

Nt
1 , ξNt2 )

in RN (with N = 2× (Nt + 1)×Nx), which is the solution of the large dimen-
sional problem A(µ)ξ = b(µ), where A(µ) and b(µ) are appropriate functions
of the true parameter values µ. One can check that A(µ) and b(µ) satisfy the
so-called affine decomposition hypothesis (as described in [36]), hence the clas-
sical reduced basis algorithms (op. cit.) can be readily applied to this system,
leading to a reduced solution ξ̃ of the linear system:

Ã(µ)ξ̃ = b̃(µ),

where Ã(µ) is a square matrix of dimension m � N , and ξ̃, b̃(µ) ∈ Rm. An
approximation of ξ(µ) can then be recovered from ξ̃(µ) from the reduced basis
map Z:

ξ(µ) ≈ Zξ̃(µ), (29)
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where Z is a suitable matrix with m columns and N lines (see [31]). The Z
matrix will be assumed, without loss of generality, to have unit and orthogonal
column vectors, which are the vectors of the reduced basis.

We define the standard Euclidean norm: ‖x‖ =
√
xTx. Since the discrete

output can be written as

fdiscrete(µ) = ‖ξ(µ)‖ , (30)

the reduced approximation of the output reads:

f̃discrete(µ) =
∥∥∥ξ̃(µ)

∥∥∥ . (31)

A fully-computable error bound between the solution of the reduced model
and the solution of the model is available (op. cit.), which means that the error
in (29) can be quantified. This error bound is given in the theorem below:

Theorem 2 [36] For any µ, we have:∥∥∥ξ(µ)− Zξ̃(µ)
∥∥∥ ≤ ρ(µ)

α(µ)
, (32)

where
ρ(µ) =

∥∥∥A(µ)Zξ̃(µ)− b(µ)
∥∥∥

and α(µ) is any real number which satisfies:

0 < α(µ) ≤ inf
v,‖v‖=1

|vTA(µ)v|. (33)

The papers [36] and [27] give efficient methods to compute ρ(µ), and an
α(µ) which satisfies (33), respectively.

Corollary 2 For any µ, we have:∣∣∣fdiscrete(µ)− f̃discrete(µ)
∣∣∣ ≤ ρ(µ)

α(µ)
,

where ρ(µ) and α(µ) are as in Theorem 2.

Proof of Corollary 2 The proof follows from the reverse triangle inequality,
(30), (31) and (32) in Theorem 2. �

Remark 2 The bound in Corollary 2 depends on the size m of the reduced
basis. Hence, we are in the framework of Section 3.2, where our “true” output
is Y = fdiscrete(µ), and where the metamodel output is Ỹ = f̃discrete,m(µ).
The upper bound for the metamodel error is given by

δm(µ) =
∣∣∣fdiscrete(µ)− f̃discrete,m(µ)

∣∣∣ ≤ ρm(µ)

α(µ)
.

In the numerical experiments, we will calibrate the reduced basis size m with
respect to the Monte-Carlo sample size n, in order that δm(µ) satisfy the
assumptions of Corollary 1 as the Monte-Carlo sample size n grows to infinity.
Note that the calibration of m does not require the evaluation of the true
model f , just of the error bound, for which efficient algorithms are available,
see e.g. [36] or [27].
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4 Numerical results

4.1 Parameters

In Table 1 below, we fix numerical values for the expectations and variances
of the probability distributions modeling the uncertainty of parameters hs, B,
Sb, C, zup, ξ

0
1 , ξ02 , µ0 and µL (see Section 2.3 for more details).

Name Nominal value Comment
hs 4m uncertainty: N (4, 0.03)
B 80m uncertainty N (80, 1.03)
Sb 0.0002 uncertainty N

(
2× 10−4, 2.5× 10−6

)
C 0.001 uncertainty U

(
[9× 10−4, 0.0011]

)
zup 10m uncertainty N (10, 0.13)
ξ01 0 initial value, uncertainty U ([−0.01, 0.01])
ξ02 0 initial value, uncertainty U ([−0.01, 0.01])
µ0 0.65 uncertainty N (0.65, 0.0066)
µL 0.65 uncertainty N (0.65, 0.0066)
k0 0.6 known
kL 0.7 known
Q? 50 known
g 9.81 acceleration of gravity, known

Table 1 Uncertainty on input parameters. N (m,σ) is a normal distribution of mean value
m and standard deviation σ, and U([a, b]) is the uniform distribution on [a, b].

For the numerical implementations, we have chosen the channel length L =
250m, and the time horizon T ? = 75s. The parameters k0 and kL have been
fixed to 0.6 and 0.7, satisfying condition (14) for the stability of the nominal
closed-loop system. The discretization parameters were set to ∆t = 5s, ∆x =
5m, and for the reduction, a reduced basis obtained from proper orthogonal
decomposition [42] of size m (to determine, see the next Subsection), obtained
from a snapshot of size 100. For the estimation of Sobol’ indices, the Monte-
Carlo sample size was fixed equal to n = 30000. We provide asymptotic CI of
level 0.95.

Note that the length of a CI is a direct measurement of the estimation
precision.

4.2 Calibration of m

In this section, we see how to choose the reduced basis size m depending on
the Monte-Carlo sample size n, in order to get asymptotic confidence intervals
for the sensitivity indices. The idea is to fix m as a function of n so as to
satisfy the condition of Corollary 1. We first need to estimate the variance of
the error:

δ(µ,m) = f̃m(µ)− f(µ)



Global sensitivity analysis for the boundary control of an open channel 17

as a function of m. To do so, we compute samples of δ’s:

Sm = {δ(µ,m), µ ∈ Ξ}

where Ξ is a random sample of size 1000, and m = 3, 4, . . . , 14, and we esti-

mate Varδ(µ,m) by its empirical estimator ̂Varδ(µ,m). The result is given in
Figure 4.

Fig. 4 Plot of ln ̂Varδ(µ,m) as a function of the reduced basis size m.

The plot suggests of a log-linear regression of Varδ(µ,m) as a function of
m. We suppose that the following approximation holds:

Var
(
f̃discrete,m(µ)− fdiscrete(µ)

)
≈ cqm (34)

where c = 0.2414, q = 0.5070 (obtained by least-square fitting).
Set m = m(n), and f̃n = f̃discrete,m(n). We have, for n→ +∞:

nVar
(
f̃n(µ)− fdiscrete(µ)

)
→ 0

as soon as

ncqm(n) ≤ 1/γ(n),

for any γ function such that limn→+∞ γ(n) = +∞, that is to say

m(n) ≥ − log(ncγ(n))

log q
.
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To illustrate our asymptotic, we take n = 30000, and γ(n) = log log(n).
Hence, we choose m according to:

m = m(n) = − log(nc log(log(n)))

log q
≈ 14.

4.3 Indices estimations

hs B µ0 µL Sb

0.
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0.
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Fig. 5 First-order (left) and total (right) Sobol’ indices with 95% CI for for each labelled
uncertain parameter: hs, B, µ0, µL, Sb (from left to right on the horizontal axis).
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Fig. 6 First-order (left) and total (right) Sobol’ indices with 95% CI for for each labelled
uncertain parameter: C, zup, ξ01 , and ξ02 (from left to right on the horizontal axis).
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On Figures 5 and 6 the results read as follows. For each uncertain param-
eter, the bold centered line on the left part of the figure (respectively on the
right part) gives, on the vertical axis, the estimation of the first-order (resp.
total) Sobol’ index. The upper and lower thin lines define the upper and lower
bounds of the 95% CI. Note that, by definition, the first-order index is smaller
than the corresponding total index. We conclude with a confidence level of 95%
that the influence of the parameters zup and µ0 are not significant for this to-
be-controlled output. As expected from the choice of T ? and the exponential
control rate, the initial conditions (ξ01 , ξ

0
2) are not significant as well. The pa-

rameter C is the parameter having the most significant effect, parameters Sb
and B are influent as well but to a less extent.

The influence of µL is clearly greater than the influence of µ0. Therefore
as far as the to-be-controlled output is concerned, a precise knowledge on the
value of physical parameter µL is necessary, in contrast to the knowledge of
µ0 which seems to have a smaller impact on the control objective.

For each parameter, as the difference between the total and the first-order
indices is not significant, it means that the interactions are negligible. Thus
the to-be-controlled output is additive in the parameters.

4.4 Additive modeling of the output

The previous results suggested that the to-be-controlled output can be well-
approximated by an additive function:

fdiscrete ≈
∑
x∈V

gx (35)

where V is a subset of all the parameters’ symbols:

V ⊂ V0 = {hs, B, µ0, µL, Sb, C, zup, ξ
0
1 , ξ

0
2},

and the gx are appropriate univariate functions, that will be fitted using a
random iid. sample of 3000 outputs.

There are two possible choices for V: the “full” choice V = V0, and the
“reduced” choice:

V = V0 \ {µ0, zup, ξ
0
2}

consisting of all the parameters detected as the most influent by our sensitivity
analysis.

The gx functions can be chosen, either as linear functions (leading to linear
regression) or splines (leading to generalized additive modeling (GAM) by
splines).

These two-by-two possible choices hence give rise to four possible models.
The Akaike information criterion (AIC) is used to compare these four mod-
els and select the best one. AIC indeed deals with the trade-off between the
goodness of fit of the model and its complexity, see [1]. The computations have
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Model AIC
Full + Linear -9938
Full + Spline -10837
Reduced + Linear -9536
Reduced + Spline -10319

Table 2 Fitted Akaike information criterions for the different considered models. The
smaller the AIC, the better the model, in terms of bias/variance compromise.

been made by using the packages gam [23] and stats [38] packages of the R
statistical software [38]. The computed AICs are reported in Table 2.

Table 2 shows the superiority of the GAM (spline) model, compared with
the simple linear model. However, using the full set of variables also gives a
better AIC than using the reduced one. We hence try:

V = V0 \ {µ0, zup}, (36)

as ξ02 is the “least negligible” parameter pointed out by sensitivity analysis.
The reported AIC for this choice of V is -10847, which is the best AIC obtained.
Hence we decide to retain GAM and (36) to model fdiscrete.

The fitted functions gx are gathered in Figure 7. We see that all the pa-
rameters have a monotonic effect on the output (increasing for hs, B, µL,
decreasing for the other), and also that all the effects are very close to linear,
except for the B parameter, which has a significantly nonlinear (convex) effect.

5 Conclusion

In this paper, the global sensitivity analysis has been performed when con-
sidering probabilistic distribution functions standing for the uncertainty in
some unknown physical parameters. It allows us to describe the impact of the
parameters on a to-be-controlled output in a boundary control problem. This
boundary control is motivated by an application for the flow control in an open
channel where water height and velocity are described by the Shallow Water
equations, in presence of friction and bottom slopes. The to-be-controlled out-
put has been defined as the norm of the state at a given large time. We deduce
from the numerical studies that some parameters have a nonlinear effect (such
as B) whereas other parameters have a linear effect, such as the parameter C
appearing in the friction slope Sf , which is usually not well modeled in the
literature. Concerning the physical parameters µ0 and µL, it appears that a
precise knowledge of µL is more important than the knowledge of µ0 (since
the latter parameter is less influent on the to-be-controlled output).

This work lets many research lines open. In particular, it could be interest-
ing to optimize the control parameters k0 and kL by adding them in the global
sensitivity analysis. Another open question is to provide the a posteriori error
estimator for the reduced basis approach with a nonlinear output. This latter
study is currently under investigation.
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Fig. 7 The fitted gx spline functions in (35), for x ∈ V defined by (36): hs, B, µL, Sb, C,
ξ01 , and ξ02 (from top left to down, line by line). The dotted lines are the 95% confidence
bands.
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A Technical proofs

A.1 Proof of Proposition 1

Proof of Proposition 1. Let us first note that it follows from (2) and Q = BHV that (by
omitting the time variable)

BH(0)V (0) = U0Bµ0

√
2g(zup −H(0))

which is equivalent to

V (0) = U0
1

H(0)
µ0

√
2g(zup −H(0)) . (37)

On the other side the first line of (13) yields with (7) and the definitions of v and h, the
following

V (0)− V ? + (H(0)−H?)
√

g
H?

= k0(V (0)− V ?)− k0(H(0)−H?)
√

g
H?

,

which may be rewritten as

V (0) = V ? −
1 + k0

1− k0
(H(0)−H?)

√
g

H?
. (38)

Therefore, with (37) and (38), (2) and the first line of (13) are equivalent as soon as the
first control is defined by (11).

Let us compute the control UL in a similar way. To do that, we first deduce from (3)
the following

(H(L)− hs − UL)3 =
H(L)2V (L)2

2gµ2L

and thus

V (L) =

√
2gµ2L(H(L)− hs − UL)3

H(L)
(39)

Moreover from the second line of (13), with (7) and the expressions of v and h, it holds

V (L)− V ? − (H(L)−H?)

√
g

H?

= kL(V (L)− V ?) + kL(H(L)−H?)

√
g

H?

and also

V (L) = V ? +
1 + kL

1− kl
(H(L)−H?)

√
g

H?
(40)

From (39) and (40) we get that (3) and the second line (13) are equivalent as soon as the
control UL is defined by

√
2gµ2L(H(L)− hs − UL)3

= H(L)(V ? + 1+kL
1−kL

(H(L)−H?)
√

g
H?

)

which is equivalent to (12). This concludes the proof of Proposition 1. �
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A.2 Proof of Proposition 3

Proof of Proposition 3. For sake of conciseness, we omit the time variable: for instance H(0)

stands for H(0, t) for each t. Let us define α = 1+k0
1−k0

, β =
√

g
H?nom

.

At x = 0, we take, from the proof of Proposition 1:

H(0)V (0) = U0µ0

√
2g(zup −H(0))

with

U0 =
H(0)(V ?nom − α(H(0)−H?

nom)β)

µ0
√

2g(zup,nom −H(0))

that is:

v(0) =

√
zup −H(0)

zup,nom −H(0)
(V ?nom − α(H(0)−H?

nom)β)− V ?.

Now, given the change of variables between (V,H), (v, h), this equation could be rewritten
as a nonlinear relation between v(0) and h(0), hence, as a nonlinear relation between ξ1(0)
and ξ2(0). However, to keep the resolution simple, we have to linearize this equation. This
linearization is made in accordance with the linearization of the Shallow-Water equation for
(H,V ) near (H?, V ?), hence for (h, v) near the origin. We do the same here; hence by Taylor
expansion around h = 0, we get v(0) = A+ Bh(0) + o(h(0)) with

A =
µ0

µ0,nom

√
H? − zup

H? − zup,nom
(V ?nom − αβ(H? −H?

nom))− V ?,

and
B =

µ0
µ0,nom

√
H?−zup

H?−zup,nom

(
−αβ +

(zup−zup,nom)(V ?nom−αβ(H
?−H?nom))

2(H?−zup)(H?−zup,nom)

)
.

Similarly, at x = L, we have

V (L) =

√
2gµL

H(L)

(
eh +

(
H(L)(V ?nom + αLβeH)

√
2gµL

)2/3
)3/2

where αL = 1+kL
1−kL

, and

eh = hs,nom − hs, eH = H(L)−H?
nom.

Therefore,
v(L) = C +Dh(L) + o(h(L)),

with
C =

√
2g
4
µL (2hs,nom − 2hs

+2
2
3

(
−H? (−V ?nom+αLβnom×H?nom)

(
√
gµL,nom)

) 2
3

)
√√√√√
4hs,nom−4hs+2×2

2
3

(
−H?× (−V ?nom+αLβnomH

?
nom)

(√gµL,nom)

) 2
3


H?

D = − 1
2

(
2

1
6

(
−H? (−V ?nom+αLβnomH

?
nom)

(
√
gµL,nom)

) 2
3

αLβnomH
?

−
√

2V ?nomhs,nom +
√

2V ?nomhs +
√

2αLβnomH
?
nomhs,nom

−
√

2αLβnomH
?
nomhs

)√√√√(4hs,nom − 4hs + 2× 2
2
3

(
−H? (−V ?nom+αLβnom×H?nom)

(
√
gµL,nom)

) 2
3

)
µL

√
g

((−V ?nom+αLβnomH?nom)H?2)
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Thus, the linearized boundary relations satisfied by ξ1 and ξ2 in the real-life model are given
by (18) and (19). �
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