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ABSTRACT

In this paper, we propose a new method aiming at re-

ducing the noise in hyperspectral images. It is based on the

nonlinear generalization of Principal Component Analysis

(NLPCA). The NLPCA is performed by an autoassociative

neural network that have the hyperspectral image as input and

is trained to reconstruct the same image at the output. Thanks

to its bottleneck structure, the AANN forces the hyperspectral

image to be projected in a lower dimensionality feature space

where noise as well as both linear and nonlinear correlations

between spectral bands are removed. This process permits to

obtain enhancements in terms of hyperspectral image quality.

Experiments are conducted on different real hyperspectral

images, with different contexts and resolutions. The results

are qualitatively and quantitatively discussed and demonstrate

the interest of the proposed method as compared to traditional

approaches.

Index Terms— nonlinear PCA, noise reduction, image

quality, hyperspectral images, NLPCA

1. INTRODUCTION

One of the most important parameters in the design of hy-

perspectral imagers is the signal-to-noise ratio (SNR), that

determine the quality of the images. More in particular, in the

process of hyperspectral image acquisition the noise is gener-

ated by several factors and some of them can have a negative

impact on the processing of hyperspectral images. A high

SNR can be obtained using components that are generally

expensive, particularly in the case of spaceborne instruments.

An alternative cost-effective solution is offered by the use of

noise reduction, or de-noising algorithms that operate directly

on the images. In the literature many hyperspectral remote

sensing image de-noising algorithms have been proposed,

most of them combine correlation of spatial and spectral do-

main. Among de-noising methods, those based on wavelet

are widely used [1]. In general the basic procedure of wavelet

de-noising is to transform the noisy data cube into wavelet

coefficients in the wavelet domain, threshold the wavelet co-

efficients, and then perform the inverse wavelet transform

to obtain the de-noised data cube. In [2] a hybrid approach

based on wavelets has been used. The algorithm works in the

spectral derivative domain, where the noise level is elevated,

and takes advantage of the dissimilarity of the signal regu-

larity in the spatial and spectral domains. Tensor-filters have

been used in [3], while a filter based on anisotropic Diffusion

is proposed in [4]. The use of Principal Component analy-

sis has been proposed in [5], where the low-energy principal

components was de-noised with wavelet shrinkage de-noising

processes. However, all those techniques present good results

for the removal of white uncorrelated noise, but they usually

fail when applied to images with correlated noise [6]. A

possible solution to this problem is presented in [7] where

a projection in a nonlinear feature space, obtained through

the use of Kernel Principal Component Analysis (KPCA),

permits to remove most of the noise affecting an image.

Recently, a further improvement to the KPCA denoising ap-

proach has been obtained by applying classical denoising

techniques in the nonlinear feature space obtained using the

KPCA [8]. In this paper we propose a novel quality enhance-

ment method for hyperspectral images performed through the

use of Nonlinear Principal Component Analysis (NLPCA).

The remainder of the paper is organized as follows: section

2 presents a brief description of the NLPCA while in section

3 the results from the conducted tests are reported and dis-

cussed. Finally, section 4 concludes the paper and gives some

ideas for future works.

2. NONLINEAR FEATURE EXTRACTION

Many methods have been proposed in the literature for the

decorrelation of hyperspectral images in order to represent the

inherent information content in lower dimensionality domain.

One of the most popular feature extraction method for data

representation is Principal Component Analysis (PCA) that

generates a set of uncorrelated transformed features. Since

the components obtained with PCA are ranked in terms of in-

creasing variance, it is possible to suppose that the first com-

ponents contain most of the information, while the last ones

are characterized only by noise. The dimensionality reduction



is then obtained discarding the components with the lowest

variance. Moreover, as PCA is a linear method, the result-

ing components are linearly uncorrelated. However, due to

the non completely linear nature of hyperspectral data, rele-

vant information content may be retained in the low variance

components and consequently be lost. In order to deal with

nonlinearities numerous techniques have been developed. Lo-

cally linear embedding (LLE) [9] and Isomap [10] visualize

high dimensional data by projecting (embedding) them into

a two or three-dimensional space, while self organising maps

(SOM) [11] describe data by nonlinear curves and nonlinear

planes up to two dimensions. One of the main limitation of

these methods is related to the low number of features that

can be obtained that may be not sufficient to describe the

inherent information of the data. In this regard, KPCA and

NLPCA present a higher degree of freedom in terms of fea-

ture dimensionality [12]. KPCA first performs a nonlinear

transformation of the data into a higher dimensional space,

not necessarily of finite dimension, where the projected data

is no more affected by nonlinearities. Then a linear PCA can

be performed as in the input space [13][12]. However, one

of the limitations of the KPCA is related to the non invertible

mapping function. In particular, with KPCA only an estima-

tion of the de-noised image can be obtained [14].

2.1. Nonlinear Principal Component Analysis

Similarly to KPCA, NLPCA performs a nonlinear projection

of the original data into a feature space. However, a substan-

tial difference between KPCA and NLPCA is that the latter

one provides the inverse transformation thus enabling the ac-

tual reconstruction of the denoised image. Firstly introduced

by Kramer [18], NLPCA is commonly based on multi-layer

perceptrons (MLP) and performed by Autoassociative Neu-

ral Network (AANN) (or autoencoder) [15]. An AANN is

a conventional feedforward NN having sigmoidal activation

functions in each node and trained with by the Standard Con-

jugated Gradient (SCG) [16] in order to minimize the mean

sum-of-squares error (MSE). Generally, the nonlinear AANN

sees the use of three hidden layers, including an internal bot-

tleneck layer of smaller dimension than either input or output

(Fig. 1).

The AANN is trained to perform identity mapping, where

the input X has to be equal to the output X ′. This means

that if the training phase finds an acceptable solution, i.e.,

a solution that gives an error below a predefined threshold,

a good compressed representation of the input must exist in

the bottleneck layer. Since there are fewer nodes in the bot-

tleneck layer than in the input/output, the bottleneck nodes

must represent or encode the information obtained from the

inputs for the subsequent layers to reconstruct the input. The

use of autoencoder to project the data into a feature space

has been introduced in [17], where an AANN having only

the bottleneck layer between input and output was used. In

Fig. 1. A typical AANN structure.

particular, it has been demonstrated that if the nodes of the

bottleneck layer were linear, this would correspond exactly

to (linear) PCA. However, changing the activation functions

of the bottleneck layer to nonlinear, only linear combinations

of the inputs compressed by the activation function could be

represented. In order to obtain optimal nonlinear feature ex-

traction through the use of AANN three hidden layers are

essential[18]. One of the main difficulties in designing the

AANN relies in the selection of the correct number of nodes

that minimizes the loss of information produced in the three

hidden layers, and in particular in the bottleneck layer. Since

the training of the AANN is based on the reconstruction er-

ror, the optimal NN topology can be retrieved by varying re-

cursively the number of nodes of the three hidden layers and

evaluated the respective MSE errors. However, an AANN is

effective only if the number of mapping/demapping nodes is

greater then the number of nodes in the bottleneck layer, on

the contrary there will not be enough data to effectively ex-

tract N nonlinear components. It has to be noted that, as the

output has to simply replicate the input, no independent tar-

get data are provided, and there is no need to have an a priori

knowledge for the implementation of the learning phase. This

implies that the AANN training can be performed in a fully

automatic way and that all pixels in the image can be consid-

ered for this task. In the literature, Nonlinear Principal Com-

ponent Analysis, and has been proposed as an effective instru-

ment for dimensionality reduction and decorrelation of differ-

ent types of data. In [19][20] NLPCA has been used to reduce

the dimensionality of different hyperspectral images. Com-

pared to linear decorrelation techniques, NLPCA has many

advantages. First of all, with the PCA or similar approaches

the information content is firstly reprojected in a orthogonal

space and then the obtained component are ordered in terms

of variance. The compression through PCA can be obtained

by discarding the less relevant components in terms of vari-

ance. Since this kind of approaches detect only linear correla-

tions among spectral bands, a relevant part of the original in-

formation can be retained by the last components and conse-



quently lost during the compression phase. With NLPCA this

is not necessary, being the information content compressed by

the bottleneck nodes of the AANN. Moreover, in NLPCA the

information content is equally distributed among the compo-

nents [21], avoiding unbalanced components. The advantage

of NLPCA over linear decorrelation approaches and its abil-

ity to retain all the relevant information in few components

allowing an almost ideal reconstruction of the original image

has been proved in [22].

3. EXPERIMENTS

In this work we will use the NLPCA approach described

above to enhance the quality of two hyperspectral images.

The two images have different characteristics in terms of

spectral range, spatial/spectral resolution, acquisition mode

and consequently in the type of noise. For each image an

AANN is trained using 60% of the available pixels. The

complete image is then processed by the trained AANN.

For sake of comparison, the quality of de-noised images ob-

tained using NLPCA and linear PCA have been evaluated in

terms of mean squared error (MSE), Spectral Angle Mapper

(SAM) [23] and signal-to-noise ratio (SNR), as defined in

[24]. While a high SNR value indicate a low level of noise,

the SAM measures the angular distance between spectra. The

optimal value is 0◦ but values up to 3
◦ are usually considered

as good results. A numerical comparison with the KPCA

method is not considered since is only possible to have an

effective estimation of the de-noised pre-image. However,

a qualitative assessment has been carried out comparing the

principal components obtained using linear PCA, KPCA and

NLPCA, respectively.

3.1. ROSIS-Pavia

A first experiment has been performed using a data set ac-

quired by the ROSIS sensor (0.43 to 0.86 µm with 103 bands)

over the University of Pavia, Italy. The image presents several

bands, characterized by uncorrelated noise. The image has

340X610 pixels, corresponding to 125.00 samples that have

been used to train the AANN. Several configurations of the

AANN has been evaluated in order to detect the best topol-

ogy. This step has been carried out by recursively varying

the number of nodes in the three hidden layers and evaluat-

ing the Mean Square Error (MSE) between the desired and

the obtained output. The network with the lowest value of

MSE, having 103 nodes in the input/output layers, 30 nodes

in the coding/decoding layers and 4 nodes in the bottleneck

layer, has been selected. The same number of components

has been selected for the linear PCA. The quality of the re-

constructed images, obtained with the two different methods

are then evaluated in terms of SAM and SNR. As reported in

Table 1, it can be seen that the NLPCA approach returns the

best values for both SAM and SNR. From a qualitative point

Fig. 2. ROSIS dataset: Detail of band 1of the original image(left)

and the reconstructed images using 4 components from the PCA

(center) and NLPCA (right) approaches, respectively.

of view, the quality enhancement introduced by the two meth-

ods can be appreciated analyzing band 1, that is strongly af-

fected by noise (Fig. 2). In particular, while the PCA-derived

image still presents a reduced amount of the original noise,

the image obtained using the NLPCA method is more defined

and seems to be not affected by any kind of noise. This is

also clear in Fig. 3 where the four principal components ob-

tained using PCA, KPCA and NLPCA, respectively, are de-

picted. While the components obtained with the nonlinear

approaches (KPCA and NLPCA) are not affected by any kind

of noise, a relevant part of noise is still present in the fourth

component of the linear PCA.

ROSIS Hyperion

PCA NLPCA PCA NLPCA

MSE 8.1 · 105 7.68 · 105 1.59 · 10−4
3.24 · 10−5

SNR 51.81 52.04 25.14 29.79

SAM 0.44 0.16 10,12 10,86

Table 1. Rosis dataset: SAM and SNR (dB) values obtained com-

paring the original image with the reconstructed ones obtained with

PCA and NLPCA, respectively, using 4 components.

3.2. Hyperion

The same approach has been applied to a Hyperion image

(220 hyperspectral bands from 0.4 to 2.5 µm) acquired in

2008 over the Campi Flegrei area, North-West of Naples,

Italy. From the original dataset only 155 spectrally unique

bands have been retained, discarding the bands without rele-

vant information [25]. In this case the de-noising of the image

is extremely challenging because several kinds of noise are

present at the same time. In particular, the image has been

acquired from a satellite, meaning that the atmospheric con-

tribution has a relevant role in the noise contribution of the

image. Moreover, the image is also strongly affected by

striping, a spatially correlated noise. The considered image

consists of 100X100 pixels, and also this time we trained the

AANNs using 60% of the total number of pixels of the image

(6000). As in the previous experiment, an iterative training

of the AANN has been performed in order to find the best

network configuration. The best topology has been found to



Fig. 3. ROSIS dataset: Detail on four principal components ob-

tained using PCA, KPCA and NLPCA, respectively.

Fig. 4. Hyperion dataset: Details of band 1 and 88 of the original

image(left) and the reconstructed images using 9 components from

the PCA (center) and NLPCA (right) approaches, respectively.

Fig. 5. Hyperion dataset: Detail on the first nine principal compo-

nents obtained using PCA, KPCA and NLPCA, respectively..

be 155-50-9-50-155. Table 1 reports the quality enhancement

obtained with NLPCA and PCA, respectively in terms of

MSE, SAM and SNR. As it can be noted, NLPCA presents

the best values in all the three indexes. The improvement

in terms of quality can be also deduced from a qualitative

analysis of the reconstructed images, in particular from bands

1 where the presence of additive noise is evident and band

88 that is strongly affected by striping, as reported in Fig.

4. In the image reconstructed using the PCA approach the

additive noise has been effectively filtered, but the stripe is

still present. On the other hand, the NLPCA-reconstructed

image both kind of noise are no more present. From this

point of view, being a nonlinear approach, the NLPCA can

achieve better results compared to linear methods in terms

of image enhancement. Analyzing the components depicted

in Fig 5 is possible to qualitatively appreciate the enhance-

ment introduced by the proposed method. In particular, noise

can be clearly noticed in component 5 and 6 of the PCA

transformation, and on components 7 and 9 of the KPCA

transformation. On the other hand, in the 9 components

obtained with the NLPCA, the noise is not present or not

relevant.
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5. CONCLUSIONS

This paper presented a novel approach for the enhancement

of the quality of hyperspectral data. The proposed approach

is based on NLPCA, defined as the nonlinear generalization

of the standard PCA performed by autoassociative neural net-

works. Real images presenting different kinds of noise have

been used to evaluate the ability of the NLPCA technique to

effectively suppress noise. MSE, SAM and SNR have been

used to quantify the improvement in image quality introduced

by the proposed method and the obtained results have been

compared with those obtained using the linear PCA. The re-

sults demonstrate that while linear PCA is able to reduce the

influence of gaussian noise, NLPCA permits to remove also

correlated noise. A further qualitative assessment has been

exploited analyzing the components obtained using PCA,

KPCA and NLPCA. Even if KPCA and NLPCA should re-

turn similar components, in one case the KPCA was not able

to detect all the data structure in the data. Moreover, the re-

projection into the original space is not always possible with

KPCA. In any case, both qualitative and quantitative results

demonstrated a good performance of the NLPCA approach

for noise suppression. Further analysis will be conducted in

order to evaluate the effectiveness of the proposed approach

in de-noising other type of images featuring different kind of

noise (i.e. SAR speckle).
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