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We consider the minimal super-solution of a backward stochastic differential equation with constraint on the gains-process. The terminal condition is given by a function of the terminal value of a forward stochastic differential equation. Under boundedness assumptions on the coefficients, we show that the first component of the solution is Lipschitz in space and 1 2 -Hölder in time with respect to the initial data of the forward process. Its path is continuous before the time horizon at which its left-limit is given by a face-lifted version of its natural boundary condition. This first component is actually equal to its own face-lift. We only use probabilistic arguments. In particular, our results can be extended to certain non-Markovian settings.

Introduction

The aim of this paper is to establish new stability results for the minimal super-solution ( Ŷζ , Ẑζ ) of a backward differential equation of the form

U t = g(X ζ T ) + T t f (X ζ s , U s , V s )ds - T t V s dW s , t ≤ T, satisfying the constraint Ẑζ σ(X ζ ) -1 ∈ K dt ⊗ dP-a.e. 1 
In the above, W is a d-dimensional Brownian motion and X ζ solves a forward stochastic differential equation with volatility parameter σ, indexed by the initial conditions ζ = (t, x) ∈ [0, T ] × R d : X ζ t = x. Estimates on the regularity can be of important use in many applications, in particular in the design of probabilistic numerical schemes which, to the best of our knowledge, are missing for such constrained backward differential equations.

When K = R d , i.e. there is no constraint, and the coefficients are Lipschitz continuous, it is well-known that Ŷζ has continuous path and that the (deterministic) map (t, x) → Ŷ(t,x) t is 1/2-Hölder in time and Lipschitz in space:

| Ŷ(t,x) t - Ŷ(t ′ ,x ′ ) t ′ | ≤ C (|t -t ′ | 1 2 + |x -x ′ |). (1.1) 
See e.g. [START_REF] Pardoux | Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic pdes of second order[END_REF]. This basically follows from standard estimates using Itô's and Gronwall's Lemma.

In the general case, such a minimal super-solution solves an equation of the form Ŷζ

t = g(X ζ T ) + T t f (X ζ s , Ŷζ s , Ẑζ s )ds - T t Ẑζ s dW s + Kζ T -Kζ t , t ≤ T,
in which Kζ is an adapted non-decreasing process, see [START_REF] Cvitanić | Backward stochastic differential equations with constraints on the gains-process[END_REF][START_REF] Peng | Monotonic limit theorem of bsde and nonlinear decomposition theorem of doob-meyers type[END_REF]. Because little is known on the regularity of this process, the technics used in the unconstrained case can not be reproduced. Nevertheless, it is well-known that such a minimal super-solution can be approximated by a sequence of penalized unconstrained stochastic backward differential equations, see [START_REF] Cvitanić | Backward stochastic differential equations with constraints on the gains-process[END_REF][START_REF] Peng | Monotonic limit theorem of bsde and nonlinear decomposition theorem of doob-meyers type[END_REF]. It is therefore tempting to use the estimates associated to each element of the approximating sequence and to pass to the limit. Unfortunately, the Lipschitz continuity coefficients of the approximating sequence blow-up.

Another way to proceed consists in using the dual formulation of [START_REF] Cvitanić | Hedging contingent claims with constrained portfolios[END_REF][START_REF] Cvitanić | Backward stochastic differential equations with constraints on the gains-process[END_REF]. In their representation, the component Ŷζ is identified to the value of the optimal control problem of a family of backward stochastic differential equations written under a suitable set of equivalent probability measures, see Section 4.1. The main difficulty is that it is singular: each of the controls is bounded, but the bound is not uniform.

In this paper, we essentially make use of this dual formulation, but we use a strong version: the controls are directly incorporated in the dynamics rather than through changes of measures. See Section 3. Space stability is essentially obvious for this strong version, while it is not in its original 'weak' form. Still, the singularity of the optimal control problem makes estimates on the stability in time quite delicate a-priori.

The key idea of this paper is to use the fact that the solution is automatically 'face-lifted' in the sense of Proposition 3.3 below. This 'face-lifting' phenomenon is well-known as far as the terminal condition is concerned, this goes back to [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF] in the specific setting of mathematical finance, see also [START_REF] Bouchard | The obstacle version of the geometric dynamic programming principle: Application to the pricing of american options under constraints[END_REF][START_REF] Cvitanić | Super-replication in stochastic volatility models under portfolio constraints[END_REF] and the references therein. We use probabilistic arguments to show that it holds also in the parabolic interior [0, T ) × R d of the domain, which can be guessed in the setting of [START_REF] Bouchard | The obstacle version of the geometric dynamic programming principle: Application to the pricing of american options under constraints[END_REF][START_REF] Cvitanić | Super-replication in stochastic volatility models under portfolio constraints[END_REF] from their pde characterization. This 'face-lifting' phenomenon allows to absorb the singular control, and to extend (1.1) to the constrained case. See Theorem 2.1.

The paper is organized as follows. The setting and the main results are stated in Section 2. Comments on our assumptions and possible extensions are discussed at the end in Section 5. Section 3 is dedicated to the strong version of the dual formulation for which our estimates are established. This part contains the main ideas of this paper. In Section 4, we show that the strong dual formulation coincides with its weak version, and that the latter actually provides (as well-known when the driver is convex) the first component Ŷζ of the constrained backward stochastic differential equation.

Notations: All over this paper, we let Ω = C([0, T ], R d ), d ≥ 1, T > 0, be the canonical space of continuous d-dimensional functions ω on [0, T ] such that ω 0 = 0. It is endowed with the Wiener measure P. We let W be the coordinate process, W t (ω) = ω t , and we denote by F = (F t ) t≤T the augmentation of its raw filtration under P. Random variables are defined on (Ω, F T , P). For the expectation under P, we simply use the symbol E, while we write

E Q if it is taken under a different measure Q. Given a probability measure Q, G ⊂ F T , p ≥ 1 and A ⊂ R n , we denote by L p (A, Q, G) the set of G-measurable A-valued random variables whose p-moment under Q is finite. We let S 2 (Q) (resp. H 2 (Q))be the set of R n -valued progressively measurable processes V such that E Q [sup t≤T |V t | 2 ] < ∞ (resp. E Q [ T t |V t | 2 dt] < ∞)
, in which |v| denotes the Euclydian norm of v ∈ R n and n is given by the context. The set of stopping times with values in [0, T ] is T , while T τ is the set of stopping times a.s. greater than τ ∈ T . Finally,

D 2 (Q) denotes the set of couples (τ, ξ) ∈ T × L 2 (Q, R d , F T ) such that ξ is F τ -measurable. For ζ ∈ D 2 , we write (τ ζ , ξ ζ ) = ζ.
In all these definitions, we omit the arguments that can be clearly identified by the context. When nothing else is specified, inequalities between random variables or convergence of sequences of random variables hold in the P-a.s. sense.

Main regularity and stability results

As a first step of analysis, we concentrate on a Markovian setting with rather stringent boundedness assumptions. Possible extensions will be discussed in Section 5 at the end of this paper. They include another type of constraint, certain non-Markovian settings and optimal control problems.

The forward component is the unique strong solution X ζ on [0, T ] of the stochastic differential equation

X ζ t∨τ ζ = ξ ζ + t∨τ ζ τ ζ b s (X ζ s )ds + t∨τ ζ τ ζ σ s (X ζ s )dW s , (2.1) 
in which the initial data ζ ∈ D 2 , and the parameters (b, σ)

: [0, T ] × R d → R d × R d×d are measurable maps.
They are assumed to be bounded, and Lipschitz in their space variable, uniformly in their time argument. We also assume that σ is invertible with bounded inverse. Namely, there exists L > 0 such that

|(b t , σ t )(x) -(b t , σ t )(x ′ )| ≤ L|x -x ′ | and (|b t | + |σ t | + |σ -1 t |)(x) ≤ L, (2.2) for all (t, x, x ′ ) ∈ [0, T ] × R d × R d .
The backward equation is defined by two measurable maps f :

[0, T ] × R d × R × R d → R and g : R d → R such that, for all (t, x, θ), (t, x ′ , θ ′ ) ∈ [0, T ] × R d × (R × R d ), |f t (x, θ) -f t (x ′ , θ ′ )| ≤ L (|x -x ′ | + |θ -θ ′ |) , |f t (x, θ)| ≤ L(1 + |θ|) , (2.3) 
|g(x)| ≤ L, and g is lower-semicontinuous.

(2.4)

A supersolution of BSDE(f, g, ζ) is a process (U, V ) ∈ S 2 × H 2 satisfying U t∨τ ζ ≥ U t ′ ∨τ ζ + t ′ ∨τ ζ t∨τ ζ f s (X ζ s , U s , V s )ds - t ′ ∨τ ζ t∨τ ζ V s dW s , t ≤ t ′ ≤ T. U T = g(X ζ T ).
(2.5)

The constraint on the V coordinate is associated to a family

(K t ) t≤T of closed convex sets of R d : V σ(X ζ ) -1 ∈ K dt ⊗ dP-a.e on [[τ ζ , T ]]. (2.6)
When it is satisfied, we say that (U, V ) is a super-solution of BSDE K (f, g, ζ). This supersolution is said to be minimal if U ′ s∨τ ζ ≥ U s∨τ ζ for all s ≤ T and any other super-solution

(U ′ , V ′ ) ∈ S 2 × H 2 of BSDE K (f, g, ζ).
We require that 0 ∈ K t for all t ≤ T (2.7)

∪ t≤T K t is bounded, (2.8) 
and that, for all u ∈ R d , 

t ∈ [0, T ] → δ t (u) := sup{ k ⊤ u, k ∈ K t } is left-continuous at T , (2.9) 
•∨τ ζ = g(X ζ T ) + T •∨τ ζ f s (X ζ s , Ŷζ s , Ẑζ s )ds - T •∨τ ζ Ẑζ s dW s + Kζ T -Kζ •∨τ ζ .
We do not impose any Lipschitz continuity assumption on g, although it is used in the unconstrained case K = R d to obtain the Lipschitz continuity of the map ξ → Ŷ(τ,ξ) τ . Instead, we assume that the map ĝ :

x ∈ R d → sup u∈R d (g(x + u) -δ T (u)) , x ∈ R d is L-Lipschitz continuous.
(2.12)

This map is usually referred to as the 'face-lift' of g for the constraint K T , compare with e.g. [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF][START_REF] Bouchard | The obstacle version of the geometric dynamic programming principle: Application to the pricing of american options under constraints[END_REF][START_REF] Cvitanić | Super-replication in stochastic volatility models under portfolio constraints[END_REF]. We shall see below that it provides the correct time-T boundary condition for our constrained backward differential equation. Intuitively, this means that assuming that g is Lipschitz is useless, whenever ĝ is, which is a weaker condition1 .

Our main result shows that the map ζ ∈ D 2 → Ŷζ τ ζ satisfies similar regularity properties in time and space as in the unconstrained case. It also shows that the non-decreasing process Kζ is continuous on [0, T ) with a final jump of size (ĝ -g)(X ζ T ). In particular, Ŷζ T -= ĝ(X ζ T ) on {τ ζ < T }. From now on, we denote by C L a generic constant which depends only on L, and may change from line to line. 

(a) If τ ζ ≤ τ ζ ′ < T , then | Ŷζ τ ζ -E τ ζ [ Ŷζ ′ τ ζ ′ ]| ≤ C L E τ ζ [|τ ζ ′ -τ ζ |] 1 2 + E τ ζ [|ξ ζ ′ -ξ ζ |] . (2.13) (b) If τ := τ ζ = τ ζ ′ < T , then -δ τ (ξ ζ ′ -ξ ζ ) ≤ Ŷζ τ -Ŷζ ′ τ ≤ δ τ (ξ ζ -ξ ζ ′ ). (2.14) (c) If τ ζ < T , then Kζ •∧ϑ has continuous path for each stopping time ϑ < T . Moreover, if (ϑ n ) n≥1 is a sequence of stopping times with values in [τ ζ , T ) such that ϑ n → T , then Ŷζ ϑn → ĝ(X ζ T ).

Estimates via the strong dual formulation

As explained in the introduction, the constrained backward differential equation BSDE K (f, g, ζ) admits a dual representation which is formulated as an optimal control problem on a family of unconstrained backward stochastic differential equations written under a suitable family of equivalent laws, see Section 4 for a precise formulation. Although, each unconstrained backward stochastic differential equation satisfies the usual Hölder and Lipschitz regularity properties, this does not seem to allow one to obtain the estimates of Theorem 2.1. The reason is that the optimal control problem is of singular type: constants may blow up when passing to the supremum.

The main idea of this paper is to start with a strong version of this dual optimal control problem. Strong meaning that the probability measure is fixed, but we incorporate the control directly in the dynamics. It turns out to be much more flexible. In particular, space stability is essentially trivial in this setting, see Corollay 3.1. More importantly, we can show that the corresponding value process is itself automatically 'face-lifted', see Proposition 3.3 below. This will be the key result to obtain the time regularity estimates of Proposition 3.4.

The strong dual formulation

Let U denote the collection of R d -valued bounded predictable processes. Note that δ(ν) is bounded for each ν ∈ U , see (2.8). To each (ζ, ν) ∈ D 2 × U , we associate the stochastic driver

f ζ,ν : (t, y, z) ∈ [0, T ] × R × R d → f t (X ζ,ν t , y, z) -δ t (ν t ) 1 [[τ ζ ,T ]] (t)
where X ζ,ν is the solution of

X ζ,ν = ξ ζ + •∨τ ζ τ ζ b s (X ζ,ν s ) + ν s ds + •∨τ ζ τ ζ σ s (X ζ,ν s )dW s . (3.1) Given τ ∈ T τ ζ , ϑ ∈ T τ and G ∈ L 2 (F ϑ ), we set E ζ,ν τ,ϑ [G] := U τ where (U, V ) ∈ S 2 × H 2 is the solution of U = G + ϑ •∨τ ζ f ζ,ν s (U s , V s )ds - ϑ •∨τ ζ V s dW s on [0, T ]. (3.2) 
In the special case where ϑ ≡ T and

G = g(X ζ,ν T ), the solution of (3.2) is denoted by (Y ζ,ν , Z ζ,ν ). In particular, Y ζ,ν • = E ζ,ν •,T [g(X ζ,ν T )]. We next define our optimal control problem Y ζ τ = ess sup{Y ζ,ν τ , ν ∈ U , ν1 [[0,τ ]] ≡ 0} , ζ ∈ D 2 , τ ∈ T τ ζ . (3.3) Note that Y ζ τ = Y (τ,X ζ τ ) τ since X ζ,0 = X ζ . Remark 3.1. The conditions (2.2)-(2.3)-(2.4) imply that Y ζ,ν is bounded in L ∞ uniformly in ζ ∈ D 2 , for all ν ∈ U , see Lemma A.1. Moreover, Y ζ,ν ≤ y defined in (2.11), for all ν ∈ U , see Lemma A.2. In particular, Y ζ,0 ≤ Y ζ ≤ y, so that Y ζ is bounded in L ∞ uniformly in ζ ∈ D 2 .
The bound depends only on L.

Terminal face-lift and space stability

The first result of this section concerns the face-lift of the terminal condition. It shows that g can be replaced by ĝ in (3.3). Apart from being of self-interest, this property will be used latter on in the proof of the space stability in our setting where ĝ is assumed to be Lipschitz while g may not be. It will also be used to characterize the limit lim t↑T Y ζ t .

Proposition 3.1. Y ζ τ ζ = ess sup{E ζ,ν τ ζ ,T [ĝ(X ζ,ν T )], ν ∈ U } on {τ ζ < T }, for all ζ ∈ D 2 .
Proof. Since ĝ ≥ g by construction, one inequality is trivially deduced from Lemma A.2. We therefore concentrate on the difficult inequality. Fix ζ := (τ, ξ) ∈ D 2 . For sake of simplicity, we assume that τ < T a.s., the general case is handled by using the fact that

{τ < T } = ∪ n≥1 {τ ≤ T -n -1 }. For ν ∈ U , and u ∈ L ∞ (F T -ε• ), for some ε • > 0, we then define τ ε := (T -ε) ∨ τ , ν ε := ν1 [[τ,τε]] + u T -τ ε 1 ]]τε,T ]] , 0 < ε < ε • .
Then, (3.3) combined with the tower property for non linear expectations imply that

Y ζ τ ≥ E ζ,ν τ,τε Y ζ,ν ε τε .
We claim that, after possibly considering a subsequence,

lim inf ε→0 E ζ,ν τ,τε Y ζ,ν ε τε ≥ E ζ,ν τ,T g(X ζ,ν T + u) -δ T (u) . (3.4) By arbitrariness of ε • > 0 and u ∈ L ∞ (F T -ε• ), this implies that Y ζ τ ≥ ess sup u∈L∞(F T -) E ζ,ν τ,T g(X ζ,ν T + u) -δ T (u) . Since the map (x, u) ∈ R d × R d → g(x + u) -δ T (u) is Borel, it follows from [1, Proposition 7.40, p184], that, for each ι > 0, we can find a universally measurable map x ∈ R d → ũι (x) such that ĝ(x) = sup{g(x+ u)-δ T (u), u ∈ R d } ≤ g(x+ ũι (x))-δ T (ũ ι (x))+ ι for all x ∈ R d . By [1, Lemma 7.27, p173], we can find a Borel measurable map x ∈ R d → ûι (x) such that ûι (X ζ,ν T ) = ũι (X ζ,ν T ) a.s. Since X ζ,ν T ∈ L 2 (F T -) by left-continuity of its path, this implies that Y ζ τ ≥ E ζ,ν τ,T ĝ(X ζ,ν T )1 {|ûι(X ζ,ν T )|≤n} -ι + g(X ζ,ν T )1 {|ûι(X ζ,ν T )
|>n} , for each n ≥ 1 and ι ∈ (0, 1). The required result then follows from the stability principle, see Lemma A.2, by sending first n → ∞ and then ι → 0.

It remains to prove our claim (3.4). We first deduce from Lemma 3.1 stated at the end of this section that, after possibly passing to a subsequence,

X ζ,ν ε T → X ζ,ν
T + u a.s. as ε → 0, and therefore lim inf

ε→0 g(X ζ,ν ε T ) ≥ g(X ζ,ν T + u), by lower-semicontinuity of g. Moreover, if (H ε ) ε>0 is a sequence of positive processes such that sup [τε,T ] H ε → 1 a.s. as ε → 0, then lim inf ε→0 T τε H ε s f s (X ζ,ν ε s , 0) -δ s (ν ε s ) ds ≥ -lim ε→0 (T -τ ε ) -1 T τε H ε s δ s (u)ds ≥ -δ T (u) since t → δ t (u) is left-continuous at T and f (•, 0) is bounded. We can then combine Lemma A.1 and Lemma A.3 to obtain lim inf ε→0 Y ζ,ν ε τε ≥ g(X ζ,ν T + u) -δ T (u) =: G,
after possibly passing to a subsequence. Now observe that

E ζ,ν •,τε [Y ζ,ν ε τε ] coincides with the first component of the backward differential equation which driver is f ζ,ν 1 [[0,τε]] and which terminal condition is Y ζ,ν ε τε at T . It is constant on [[τ ε , T ]].
Then, by the stability and comparison principles in Lemma A.2, we obtain

E ζ,ν τ,τε Y ζ,ν ε τε ≥ E ζ,ν τ,T Y ζ,ν ε τε -C 1 E τ T τε |f ζ,ν s (Y ζ,ν ε τε , 0)| 2 ds 1 2 ≥ E ζ,ν τ,T [G] -C 2   E τ T τε |f ζ,ν s (Y ζ,ν ε τε , 0)| 2 ds 1 2 + E τ {(Y ζ,ν ε τε -G) -} 2 1 2   ,
in which the constants C 1 and C 2 do not depend on (u, ε), see Remark 3.1. Since ν ∈ U , it follows from Lemma A.1 together with (2.2) and ( 2.

3) that (Y ζ,ν ε τε , f ζ,ν (Y ζ,ν ε τε , 0)1 [[τε,T ]] ) is bounded in L 2 × S 2 uniformly in ε > 0.
Then, combining the above shows that, along a subsequence if necessary, the right-hand side term in the last inequality converges to 0 as ε ↓ 0. Hence, the claim (3.4) holds, which completes the proof.
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Since ĝ is assumed to be Lipschitz continuous, the stability in space is now an easy consequence of the representation given in Proposition 3.1

Corollary 3.1. Y ζ 1 τ -Y ζ 2 τ ≤ C L |ξ ζ 1 -ξ ζ 2 |, for all ζ 1 , ζ 2 ∈ D 2 with τ := τ ζ 1 = τ ζ 2 < T .
Proof. We simply use the fact that We conclude this section with the technical lemma that was used in the proof of Proposition 3.1. The proof is trivial under (2.2) and we omit it. It is not difficult to see that it remains correct without the boundedness assumption on (b, σ), they only need to be Lipschitz continuous in space, uniformly in time (but then the constant appearing in the bound depends on (u, ζ) as well).

Y ζ 1 τ -Y ζ 2 τ ≤ ess sup ν∈U E ζ 1 ,ν τ,T [ĝ(X ζ 1 ,ν T )] -E ζ 2 ,ν τ,T [ĝ(X ζ 2 ,
Lemma 3.1. Fix ζ ∈ D 2 , ϑ ∈ T τ ζ and u ∈ L ∞ (R d , F τ ζ ). Set ν := ε -1 u1 {ε>0} 1 [[τ ζ ,ϑ]] , with ε := ϑ -τ ζ . Then, sup t≤T E τ ζ X ζ,ν t∨τ ζ ∧ϑ -ξ ζ -ε -1 u(t ∨ τ ζ ∧ ϑ -τ ζ )1 {ε>0} 2 ≤ C L E τ ζ [ε].

Dynamic programming and face-lifting on [0, T )

We first recall the dynamic programming principle for the optimal control problem (3.3).

It will be used later on in this section to prove that the value process is automatically face-lifted, see Proposition 3.3.

Proposition 3.2. For all ζ ∈ D 2 and ϑ ∈ T τ ζ , Y ζ τ ζ = ess sup ν∈U E ζ,ν τ ζ ,ϑ [Y (ϑ,X ζ,ν ϑ ) ϑ ]. Proof. The proof is standard. Since Y ζ,ν τ ζ = E ζ,ν τ ζ [Y (ϑ,X ζ,ν ϑ ),ν ϑ ] ≤ E ζ,ν τ ζ [Y (ϑ,X ζ,ν ϑ ) ϑ
] by the tower property for non-linear expectations and by the comparison principle, see Lemma A.2, one inequality is trivial. As for the reverse inequality, we observe that the family

{Y (ϑ,X ζ,ν ϑ ),ν ′ ϑ , ν ′ ∈ U } is directed upward. Then [8, Proposition VI.1.1] ensures that we can find a sequence (ν ′ n ) n≥1 ⊂ U such that Y n ϑ := Y (ϑ,X ζ,ν ϑ ),ν ′ n ϑ ↑ Y (ϑ,X ζ,ν ϑ ) ϑ =: Y ϑ a.s. as n → ∞. Since, Y 1
ϑ and Y ϑ are bounded in L 2 , see Remark 3.1, the convergence holds in L 2 as well. Moreover, we can find a constant C > 0 which does not depend on n and such that

E ζ,ν τ ζ ,ϑ [Y n ϑ ] ≥ E ζ,ν τ ζ ,ϑ [Y ϑ ] -C E τ ζ [|Y n ϑ -Y ϑ | 2 ] 1 2 ,
see Lemma A.2. The latter combined with (3.3) implies that

Y ζ τ ζ ≥ E ζ,ν τ ζ ,ϑ [Y ϑ ] -lim n→∞ C E τ ζ [|Y n ϑ -Y ϑ | 2 ] 1 2 = E ζ,ν τ ζ ,ϑ [Y ϑ ],
and we conclude by arbitrariness of ν ∈ U . 2

We can now show that ξ ∈ L 2 (F τ ) → Y (τ,ξ) τ is itself automatically face-lifted in the following sense.

Proposition 3.3. For all ζ ∈ D 2 , Y ζ τ ζ = ess sup u∈L∞(R d ,Fτ ζ ) (Y (τ ζ ,ξ ζ +u) τ ζ -δ τ ζ (u)) a.s. on {τ ζ < T }. (3.5) 
Proof. Take ζ := (τ, ξ) ∈ D 2 . One inequality follows from the fact that δ τ (0) = 0. Fix u ∈ L ∞ (F τ ), ε > 0, and set τ ε := (τ + ε) ∧ T and

ν ε := ε -1 u1 [[τ,τε]] . It follows from Lemma 3.1 that E τ [|X ζ,ν ε τε -ξ -u| 2 ] 1 2 ≤ C L ε 1 2 .
Then, by appealing to Proposition 3.2, Lemma A.1, (2.3) and Corollary 3.1 successively, we can find a family of non-negative continuous processes (H ε ) ε>0 , uniformly bounded in S 2 , such that

H ε τε → 1 in L 1 as ε → 0 and Y ζ τ ≥ E τ H ε τε Y (τε,X ζ,ν ε τε ) τε + τε τ H ε s f ζ,ν ε s (0)ds ≥ E τ H ε τε Y (τε,X ζ,ν ε τε ) τε - τε τ H ε s δ s (ν ε s )ds -C L ε ≥ E τ H ε τε Y (τε,ξ+u) τε -ε -1 τε τ H ε s δ s (u)ds -C L ε 1 2 .
Since H ε ≥ 0, we can use (2.10) and Remark 3.1 to obtain

Y ζ τ ≥ E τ H ε τε Y (τε,ξ+u) τε -δ τ (u)ε -1 τε τ H ε s ds -C L ε 1 2 ≥ E τ Y (τε,ξ+u) τε -δ τ (u)ε -1 τε τ H ε s ds -C L (ε 1 2 + E τ [|H ε τε -1|])
where ε -1 τε τ H ε s ds and H ε τε converge to 1 in L 1 , so that

Y ζ τ ≥ lim inf ε→0 E τ Y (τε,ξ+u) τε -δ τ (u).
It remains to show that

lim inf ε→0 E τ Y (τε,ξ+u) τε ≥ E (τ,ξ+u),ν τ,T [ĝ(X (τ,ξ+u),ν T )]. (3.6)
Then, the arbitrariness of ν ∈ U will allow one to conclude by appealing to Proposition 3.1.

In order to alleviate notations, we set Ŷ τ 1 ,ξ 1

τ 2 := E (τ 1 ,ξ 1 ),ν τ 2 ,T [ĝ(X (τ 1 ,ξ 1 ),ν T )] for any τ 1 , τ 2 ∈ T and ξ 1 ∈ L 2 (F τ 1 ). By Proposition 3.1, E τ [Y (τε,ξ+u) τε ] ≥ E τ [ Ŷ τε,ξ+u τε ] = Ŷ τ,ξ+u τ + E τ [ Ŷ τε,ξ+u τε ] -Ŷ τ,ξ+u τ .
We now observe that By the same assumptions combined with Lemma A.1,

E τ [ Ŷ τε,ξ+u τε ] -Ŷ τ,ξ+u τ = E τ [ Ŷ τε,ξ+u τε - Ŷ τε,X (τ,ξ+u),ν τε τε ] + E τ [ Ŷ τε,X (τ,ξ+u),ν τε τε ] -E (τ,ξ+u),ν τ,τε [ Ŷ τε,X (τ,ξ+u),ν
lim ε→0 E τ [ Ŷ τε,X (τ,ξ+u),ν τε τε ] -E (τ,ξ+u),ν τ,τε [ Ŷ τε,X (τ,ξ+u),ν τε τε ] = 0.
This proves (3.6) and completes the proof. 2

Stability in time

We now turn to the proof of the stability in time. 

Y ζ τ ζ -E τ ζ [Y (ϑ,ξ ζ ) ϑ ] ≤ C L E τ ζ [ϑ -τ ζ ] 1 2 .
Proof. 1. By Proposition 3.2, Remark 3.1, (2.3) and Lemma A.1 

Y ζ τ ζ ≥ E ζ,0 τ ζ ,ϑ [Y (ϑ,X ζ,0 ϑ ) ϑ ] ≥ E τ ζ [Y (ϑ,X ζ,0 ϑ ) ϑ ] -C L E τ ζ [ϑ -τ ζ ]
E τ ζ [Y (ϑ,X ζ,0 ϑ ) ϑ ] ≥ E τ ζ [Y (ϑ,ξ ζ ) ϑ ] -C L E τ ζ [ϑ -τ ζ ] 1 2 .
2. We now turn to the reverse inequality. Set ζ = (τ, ξ) and let U ζ,ν := βY ζ,ν

•∨τ -

•∨τ τ β s δ s (ν s )ds, where β s := e L(s-τ ) + , recall (2.3). Then,

U ζ,ν t 1 = U ζ,ν t 2 + τ ∨t 2 τ ∨t 1 β s f s (X ζ,ν s , Y ζ,ν s , Z ζ,ν s ) -LY ζ,ν s ds - τ ∨t 2 τ ∨t 1 β s Z ζ,ν s dW s for t 2 ≥ t 1 . Since y ∈ R → f (•, y, •) -Ly is non-increasing by (2.
3), and δ ≥ 0 by (2.7), it follows that

U ζ,ν t 1 ≤ U ζ,ν t 2 + τ ∨t 2 τ ∨t 1 β s f s (X ζ,ν s , β -1 s U ζ,ν s , Z ζ,ν s ) -LU ζ,ν s ds - τ ∨t 2 τ ∨t 1 β s Z ζ,ν s dW s . (3.7)
On the other hand, we can use (3.3), the fact that δ ≥ 0 is sublinear and β ≥ 1, (2.10), Remark 3.1 and Proposition 3.3 to deduce that

U ζ,ν ϑ ≤ β ϑ Y (ϑ,X ζ,ν ϑ ) ϑ - ϑ τ β s δ s (ν s )ds ≤ C L (β ϑ -1) + Y (ϑ,X ζ,ν ϑ ) ϑ -δ ϑ ϑ τ ν s ds ≤ C L (β ϑ -1) + Y (ϑ,X ζ,ν ϑ -ϑ τ νsds) ϑ .
(3.8)

The last inequality combined with (3.7), Lemma A.1 and (2.3) leads to

Y ζ,ν τ = U ζ,ν τ ≤ E τ Ĥτ ϑ C L (β ϑ -1) + Y (ϑ,X ζ,ν ϑ -ϑ τ νsds) ϑ + C L (ϑ -τ ) in which Ĥτ ϑ := sup [τ,ϑ] e • τ (κ 1 s -2 -1 |κ 2 s | 2 )ds+ • τ κ 2 s dWs
for some predictable processes κ 1 , κ 2 that are uniformly bounded by a constant which only depends on L. We next use Corollary 3.1 together with standard estimates, recall (2.2), to deduce from the above that

Y ζ,ν τ -E τ Ĥτ ϑ Y (ϑ,ξ) ϑ ≤ C L E τ Ĥτ ϑ |X ζ,ν ϑ - ϑ τ ν s ds -ξ| + E τ [(ϑ -τ )] 1 2 ≤ C L E τ [(ϑ -τ )] 1 2 .
Then, Remark 3.1 implies that

E τ Ĥτ ϑ Y (ϑ,ξ) ϑ -E τ Y (ϑ,ξ) ϑ ≤ C L E τ | Ĥτ ϑ -1| ≤ C L E τ [(ϑ -τ )] 1 2 .
Combining the two last inequalities and using the arbitrariness of ν ∈ U leads to the required result. 2

For later use, we state the following corollary of Proposition 3.4 and Corollary 3.1, recall (2.2).

Corollary 3.2. For all ζ ∈ D 2 and ϑ ∈ T τ ζ Y ζ τ ζ -E τ ζ [Y (ϑ,X ζ ϑ ) ϑ ] ≤ C L E τ ζ [ϑ -τ ζ ] 1 2 .

Path continuity and boundary limit

The following is deduced from Proposition 3.1 and Corollary 3.2.

Proposition 3.5. Fix ζ ∈ D 2 such that τ ζ < T . Then, Y ζ is continuous on [0, T ) and satisfies Y ζ T -:= lim s↑T,s<T Y ζ s = ĝ(X ζ T ) .
In particular, the process

Y ζ 1 [0,T ) + ĝ(X ζ T )1 {T } is continuous. Proof. 1. We first show that Y ζ is right-continuous. Fix ϑ ∈ T τ ζ and let (ϑ n ) n≥1 ⊂ T ϑ be such that ϑ n ↓ ϑ. Since Y ζ ϑ = Y (ϑ,X ζ ϑ ) ϑ , Y ζ ϑn = Y (ϑn,X ζ ϑn ) ϑn
, and Assume on the contrary that the set A := {η > η} has positive probability.

X ζ ϑn = X (ϑ,X ζ ϑ ) ϑn , it follows from Corollary 3.2 applied to the time intervalle [ϑ, ϑ n ] that Y ζ ϑ = lim n→∞ E ϑ [Y ζ ϑn ]. ( 3 
Note that A ∈ F ϑ , by right-continuity of the filtration. Then, define k1 = k 1 = 1 and

kn+1 := min{k > kn : Y ζ ϑ k ≥ 2η/3 + η/3} k n+1 := min{k > k n : Y ζ ϑ k ≤ η/3 + 2η/3}
for k ≥ 1, and set θn :

= ϑk n 1 A + ϑ n 1 A c and ϑ n := ϑ k n 1 A + ϑ n 1 A c for n ≥ 1.
It follows from the definition of A that θn , ϑ n are well-defined. They decrease to ϑ. Applying (3.9)

to the two sequences ( θn ) n≥1 and (ϑ n ) n≥1 and recalling the uniform bound of Remark 3.1 leads to

(2η/3 + η/3)1 A ≤ lim n→∞ E ϑ [Y ζ θn ]1 A = Y ζ ϑ 1 A = lim n→∞ E ϑ [Y ζ ϑ n ]1 A ≤ (η/3 + 2η/3)1 A , a contradiction. 2. It follows from Proposition 3.2 that Y ζ is a f ζ,0
-supermartingale in the strong sense in the terminology of [START_REF] Peng | Monotonic limit theorem of bsde and nonlinear decomposition theorem of doob-meyers type[END_REF]. Since it is right-continuous, it follows from [START_REF] Peng | Monotonic limit theorem of bsde and nonlinear decomposition theorem of doob-meyers type[END_REF]Theorem 3.3] that it admits left-limits. It is clear from Corollary 3.2 that it can not have jumps on [0, T ).

3. We finally prove the limit behavior at T . It follows from Proposition 3.1, Lemma A.1, (2.12) and the fact that Y ζ is làg without positive jumps, see 1. and 2. above, that

Y ζ T -≥ ĝ(X ζ T ). On the other hand, since g(X ζ T ) ≤ ĝ(X ζ T ) and ĝ(X ζ T + u) -δ T (u) ≤ ĝ(X ζ T
) by construction and the fact that δ T is sub-linear, we can follow the arguments of the proof of Proposition 3.4 to deduce that

Y ζ τ ζ ∨(T -ε) ≤ E τ ζ ∨(T -ε) ĝ(X ζ T ) + C L ε 1 2 .
By continuity of the filtration, this implies that

Y ζ T -≤ ĝ(X ζ T ). 2 

Weak versus strong formulation of the dual problem

The aim of this section is to prove that Y ζ as defined in (3.3) actually provides the minimal super-solution of BSDE K (f, g, ζ). Then, the statements of Theorem 2.1 will be a consequence of the results obtained in Section 3. To this purpose, we first introduce the weak formulation associated to the optimal control problem (3.3) and show that the value coincides. Then, we use standard arguments to show that this weak formulation actually provides the minimal super-solution of our constrained backward stochastic differential equation.

Weak formulation

Given ν ∈ U and ζ ∈ D 2 , we define the equivalent probability measure P ζ,ν by

dP ζ,ν dP = e -1 2 T τ ζ |σ -1 s (X ζ s )νs| 2 ds+ T τ ζ σ -1 s (X ζ s )νsdWs .
Recall that σ -1 is bounded by assumption. Then,

W ζ,ν := W - τ ζ ∨• τ ζ σ -1 s (X ζ s )ν s ds (4.1) is a P ζ,ν -Brownian motion. Given ϑ ∈ T τ ζ and G ∈ L 2 (P ζ,ν , F ϑ ), we set Ẽζ,ν t,ϑ [G] := U t∨ϑ in which (U, V ) ∈ S 2 (P ζ,ν ) × H 2 (P ζ,ν ) satisfies U t∨τ ζ = G + ϑ t∨τ ζ f s (X ζ s , U s , V s ) -δ s (ν s ) ds - ϑ t∨τ ζ V s dW ζ,ν s , t ≤ T. (4.2) 
We finally define for

τ ∈ T τ ζ Ỹζ τ := ess sup{ Ẽζ,ν τ,T [g(X ζ T )] : ν ∈ U , ν1 [[0,τ ]] ≡ 0} . (4.3) 
4.2 Equivalence of the strong and weak formulations

Proposition 4.1. Ỹζ τ ζ = Y ζ τ ζ , for each ζ ∈ D 2 .
Proof. We write ζ = (τ, ξ). For sake of simplicity, we restrict to the situation τ = 0 so that x 0 := ξ ∈ R d . The general case is obtained by a conditioning argument. Let U simple denote the set of processes ν ∈ U of the form

ν = σ(X ζ,ν ) n-1 i=0 φ i 1 (t i ,t i+1 ] (4.4) in which 0 = t 0 < • • • < t n = T and φ i ∈ L ∞ (F t i ) for i ≤ n. Note that (ν, X ζ,ν
) is well-defined for any (φ i ) i≤n ⊂ L ∞ satisfying the previous measurability condition. This follows from (2.2). We define accordingly Ũ simple as the set of processes ν ∈ U of the form

ν = σ(X ζ ) n-1 i=0 φ i 1 (t i ,t i+1 ] (4.5) in which 0 = t 0 < • • • < t n = T and φ i ∈ L ∞ (F t i ) for i ≤ n.
1. We first show that for each ν ∈ U simple we can find ν ∈ U such that

E ζ,ν τ,T [g(X ζ,ν T )] = Ẽζ,ν τ,T [g(X ζ T )].
Let ν ∈ U simple be as in (4.4) and note that we can identify φ i to a Borel measurable map

ω ∈ Ω → φ i (ω) = φ i (ω •∧t i ), up to P-null sets. Let us define ν by ν(ω) = σ(X ζ )φ i ω φ •∧t i on (t i , t i+1 ]
where ω φ is defined recursively by

ω φ s := ω s - j-1 k=0 (t k+1 -t k )φ k (ω φ •∧t k ) -(s -t j )φ j (ω φ •∧t j ) for s ∈ (t j , t j+1 ],
with ω φ 0 = 0. Then, for t ∈ (t i , t i+1 ],

X ζ,ν t = X ζ,ν t i + t t i (b s (X ζ,ν s ) + σ s (X ζ,ν s )φ i (W •∧t i ))ds + t t i σ s (X ζ,ν s )dW s
where W is a Brownian motion under P, while

X ζ t = X ζ t i + t t i (b s (X ζ s ) + σ s (X ζ s )φ i (W ν •∧t i ))ds + t t i σ s (X ζ s )dW ν s
where W ν is a Brownian motion under P ζ,ν . This implies that the law of (X ζ,ν , ν) under P is the same as the law of (X ζ , ν) under P ζ,ν . In view of Lemma A.4,

E ζ,ν 0,T [g(X ζ,ν T )] and Ẽζ,ν 0,T [g(X ζ
T )] can be approximated by the same sequence of real numbers and are therefore equal.

2. The fact that for each ν ∈ Ũ simple we can find ν ∈ U such that

E ζ,ν τ,T [g(X ζ,ν T )] = Ẽζ,ν τ,T [g(X ζ T )]
follows from similar arguments. 3. To conclude the proof it remains to show that

Y ζ τ = sup{E ζ,ν τ,T [g(X ζ,ν T )], ν ∈ U simple } and Ỹζ τ ζ = sup{ Ẽζ,ν τ,T [g(X ζ T )], ν ∈ Ũ simple }.
We only prove the first identity, the second one being derived similarly. One inequality is trivial. Conversely, given any predictable and bounded process φ, we can find a bounded sequence of simple adapted processes (φ n ) n≥1 such that E[

T 0 |φ n s -φ s | 2 ds] → 0. By (2.2)- (2.8), ν n := σ(X ζ,ν n )φ n ∈ U .
In particular, it follows from (2.2) that X ζ,νn converges in S 2 to X ζ,ν in which ν := σ(X ζ,ν )φ. Hence, after possibly passing to a subsequence, lim inf

n→∞ g(X ζ,νn T ) ≥ g(X ζ,ν T )
since g is assumed to be lower-semicontinuous. By the comparison principle, Lemma A.2, we have

E ζ,ν n τ,T [g(X ζ,ν n T )] ≥ E ζ,ν n τ,T [g(X ζ,ν T ) ∧ g(X ζ,νn T )]
in which g(X ζ,ν T ) ∧ g(X ζ,νn T ) → g(X ζ,ν T ) a.s. and in L 2 by dominated convergence, recall (2.4). We also have 

E T τ |δ s (ν s ) -δ s (ν n s )| 2 ds → 0 since (δ t ) t≤T is equi-Lipschitz by (2.8). Then, Lemma A.2 implies that lim inf n→∞ E ζ,ν n τ,T [g(X ζ,ν n T )] ≥ lim n→∞ E ζ,ν n τ,T [g(X ζ,ν T ) ∧ g(X ζ,νn T )] = E ζ,ν τ,T [g(X ζ,ν T )].
ϑ = g(X ζ T ) + T ϑ f s (X ζ s , Ỹζ s , Zζ,ν s ) -δ s (ν s ) ds - T ϑ Zζ,ν s dW ζ,ν s + Kζ,ν T -Kζ,ν ϑ , ϑ ≥ τ ζ .
By identification of the Itô decomposition under each P ζ,ν , we obtain Zζ,ν = Zζ,0 =: Zζ . Moreover, (4.1) implies that for any ν ∈ U and ϑ ∈ T

τ ζ Kζ,0 T -Kζ,0 ϑ = Kζ,ν T -Kζ,ν ϑ + T ϑ ( Zζ s σ -1 (X ζ s )ν s -δ s (ν s ))ds ≥ T ϑ ( Zζ s σ -1 (X ζ s )ν s -δ s (ν s ))ds ,
since Kζ,ν is non-decreasing. By using a similar measurable selection argument as in the proof of Proposition 3.1, this shows that inf

|u|=1 (δ(u) -Zζ σ -1 (X ζ )u) ≥ 0 dt ⊗ dP-a.e. ⇔ Zζ σ -1 (X ζ ) ∈ K dt ⊗ dP-a.e.,
see e.g. [START_REF] Rockafellar | Convex analysis[END_REF]. Since Kζ,0 is non-decreasing, writing the above for ν = 0 implies that ( Ỹζ , Zζ ) is a super-solution of BSDE K (f, g, ζ).

2. We now prove the minimality property. If (U, V ) is a super-solution of BSDE K (f, g, ζ), then it follows from the definition of δ and (4.1) that it is also a super-solution of (4.2) with G = g(X ζ T ), for each ν ∈ U . In particular, U ≥ Ẽζ,ν •,T [g(X ζ T )], and we conclude by arbitrariness of ν ∈ U . 2

Possible extensions

In order to focus on the main ideas, we have restricted ourselves to a rather stringent framework. Some of the conditions used in this paper can certainly be weakened on a case by case basis. We discuss here some straightforward extensions or variations.

Invertibility condition

We have assumed that σ is invertible but all our arguments go through if we add a component X o to X which has a dynamic of the form

dX o t = b o t (X o t , X t )dt
with b o Lipschitz and bounded in space, uniformly in time. Then X ζ,ν has to be replaced by Xζ

,ν = (X o,ζ,ν , X ζ,ν ) with dynamics d Xζ,ν t = b o t ( Xζ,ν t ) b t ( Xζ,ν t ) + ν t dt + 0 σ t ( Xζ,ν t ) dW t .
The face-lift of g is defined accordingly

ĝ(x o , x) := sup u∈R d (g(x o , x + u) -δ T (u)) ,
and so on. The case of a general non-invertible coefficient σ can be treated along the lines of [START_REF] Bouchard | The obstacle version of the geometric dynamic programming principle: Application to the pricing of american options under constraints[END_REF], in which it is explained how the face-lift should then be performed.

Direct constraint on the gains-process

The contraint (2.6) is motivated by financial applications in which the component V can be interpreted as the number of risky assets X held in an hedging portfolio for the contingent claim g(X ζ T ), see [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF]. It can be replaced by

V ∈ K dt ⊗ dP-a.e on [[τ ζ , T ]], (5.1) 
when σ does not depend on x.

In this case, X ζ,ν must be taken of the form

dX ζ,ν t = b t (X ζ,ν t ) + σ t ν t dt + σ t dW t .
If one assumes that t → σ t is right-continuous on [0, T ) and left-continuous at T , then (2.12)-(3.5) become

ĝ(x) = sup u∈R d (g(x + σ T u) -δ T (u)) Y ζ τ ζ = ess sup u∈L∞(R d ,Fτ ζ ) (Y (τ ζ ,ξ ζ +στ ζ u) τ ζ -δ τ ζ (u)) a.s. on {τ ζ < T }.
The change of measure for the weak formulation is

dP ζ,ν dP = e -1 2 
T τ ζ |νs| 2 ds+ T τ ζ νsdWs .
In particular, we do not need σ to be invertible anymore. The results of Theorem 2.1 are obtained by following step by step the arguments used in this paper up to the modifications described above.

Moreover, the boundedness condition (2.8) can then be weakened. Indeed, it can be avoided by using (2.9)-(2.10) in all our proofs, except in the proof of Proposition 4.1 in which it is used twice. First to ensure that the controls ν constructed from the families (φ i ) i≤n satisfy δ(ν) < ∞. But in the case (5.1), the ν's are of the form n-1 i=0 φ i 1 (t i ,t i+1 ] . Taking δ t i (φ i ) < ∞ is then enough. It is also used in the approximation argument of Step 3, as it implies that (δ t ) t≤T is equi-Lipschitz, but for the constraint (5.1), it suffices to assume, for instance, that the domain of δ t does not depend on t, which means that the directions in which K t is bounded do not depend on t. This is not enough when ν is of the form used in the proof of Proposition 4.1 because of the transformation through the matrix σ, unless additional assumptions are made on it.

Our arguments are not valid if σ depends on x because the coefficients driving X ζ,ν are no more Lipschitz uniformly in the control. This is crucial for Corollary 3.1.

Optimal control of constrained BSDEs

One can allow the coefficients b, σ and f to depend on an additional control α in a set A of predictable processes with values in a compact set A ⊂ R d . Then, all our proofs go through whenever the conditions (2.2)-(2.3) are uniform with respect to this additional control, and the coefficients are continuous in this additional variable. The arguments used in Section 3 do not change. It is the same for Section 4.3, for α ∈ A given. However, a continuity assumption on the coefficients with respect to the control will be required to prove the counterpart of Proposition 4.1: the approximation by step constant processes has to be applied to (ν, α) in place of ν.

Random coefficients with delay

One can also assume that the coefficients b, σ and f are random, satisfying the usual predictability condition, whenever the conditions (2.2)-(2.3) are uniform in ω. Again, the arguments of Section 3 and Section 4.3 do not change. However, the proof of Proposition 4.1 can not be adapted unless the dependence holds with a fixed delay: there exists ι > 0 such that, for all t ≤ T , b t , σ t , f t depends on ω only through (ω s ) s≤t-ι . With this condition, Steps 1. and 2. remain correct for simple processes associated to a time grid {t i , i ≤ n} such that max{t i+1 -t i , i ≤ n -1} ≤ ι. As in the optimal control case, Step 3 also requires some continuity of the coefficient in ω, e.g. uniform continuity for the usual sup-norm topology.

A Auxiliary results

We collect here some standard results that have been used all over this paper.

In this section, we denote by D b the set of measurable maps ψ : Ω × [0, T ] × R d × R → R such that (ψ t (y, z)) t≤T is progressively measurable for all (y, z) ∈ R × R (a) We have

E ψ τ,ϑ (G) = E τ [H τ ϑ G + ϑ τ H τ s ψ s (0)ds]
where H τ solves

H τ = 1 + • τ κ Y t H τ t dt + • τ κ Z t H τ t dW t
for some predictable processes κ Y and κ Z that are bounded by a constant which only depends on L ψ .

In particular, if there exists a constant c > 0 such that E[|G| 2 ] ≤ c and |ψ(0)| ≤ c dt ⊗ dP, then then

|E ψ τ,ϑ (G) -E τ [G]| ≤ C E τ [ϑ -τ ]
U τ ≤ E τ [H τ ϑ G + ϑ τ H τ s ψ s (0)ds]
where H τ is defined as in (a).

Proof. This follows from a standard linearization argument, see e. Proof. We write

E τε [G ε ] = E τε [G] + E τε [G ε -G] ≥ E τε [G] -E τε [(G ε -G) -].
The first term on the right-hand side converges a.s. to E τ [G] by the continuity of the martingales in a Brownian filtration. The second term converges in L 1 to 0, and therefore a.s. along a subsequence. 2

Theorem 2 . 1 .

 21 The following holds for all ζ, ζ ′ ∈ D 2 :

Sections 3 and 4

 4 are devoted to the proof of these results. In view of Proposition 4.1 and Theorem 4.1: (a) is a consequence of Corollary 3.1 and Proposition 3.4, (b) follows from Proposition 3.3, and Proposition 3.5 implies (c).

. 9 )

 9 We claim that lim sup n→∞ Y ζ ϑn = lim inf n→∞ Y ζ ϑn a.s. Then, the above combined with Remark 3.1 and the dominated converge theorem implies that Y ζ ϑ = lim n→∞ Y ζ ϑn . It remains to prove our claim. Let us first define η := lim sup n→∞ Y ζ ϑn and η := lim inf n→∞ Y ζ ϑn .

2 4. 3

 23 Connection with the reflected backward stochastic differential equationWe now show that Ỹζ identifies as the first component of the minimal super-solution of the backward stochastic differential equation with constraint BSDE K (f, g, ζ).
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 1 d → R and |ψ(y, z) -ψ(0)| ≤ L ψ (|y| + |z|) for all (y, z) ∈ R × R d , dt ⊗ dP -a.e.for some constant L ψ > 0. Given (ϑ, G) ∈ D 2 and τ ∈ T such that τ ≤ ϑ, we set E ψ τ,ϑ (G) := U τ where (U, V ) ∈ S 2 × H 2 is the solution ofU t∨τ = G + ϑ t∨τ ψ s (U s , V s )ds -ϑ t∨τ V s dW s , t ∈ [0, T ]. (A.1) Fix ψ ∈ D b and (ϑ, G) ∈ D 2 .Then, for all τ ∈ T such that τ ≤ ϑ:

1 2 ,

 12 for some C > 0 which depends only on c and L ψ .(b) If (U, V ) ∈ S 2 × H 2 satisfies U t∨τ ≤ G + ϑ t∨τ ψ s (U s , V s )ds -ϑ t∨τ V s dW s , t ∈ [0, T ],

2 Lemma A. 2 .|κ s | 2 ds 1 2 where 2 Lemma A. 3 .

 22223 g. [9, Proof of Theorem 1.6]. Fix ψ 1 , ψ 2 ∈ D b and (ϑ, G 1 ), (ϑ, G 2 ) ∈ D 2 .(a) Assume that there exists a process κ such that|ψ 1 -ψ 2 |(θ) ≤ κ dt ⊗ dP for all θ ∈ R × R d . Then, for all τ ∈ T such that τ ≤ ϑ, |E ψ τ,ϑ (G 1 ) -E ψ 2 τ,ϑ (G 2 )| ≤ CE τ |G 1 -G 2 | 2 + T τ C > 0 is a constant which depends only on L ψ 1 and L ψ 2 . (b) Assume that G 1 ≤ G 2 and ψ 1 (θ) ≤ ψ 2 (θ) dt ⊗ dP for all θ ∈ R × R d . Then, E ψ 1 τ,ϑ (G 1 ) ≤ E ψ 2 τ,ϑ (G 2) for all τ ∈ T such that τ ≤ ϑ. Proof. The first assertion follows from[START_REF] Pardoux | Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic pdes of second order[END_REF] Theorem 1.5]. The second one is[START_REF] Pardoux | Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic pdes of second order[END_REF] Theorem 1.6]. Let (G ε ) ε>0 be a family of random variable, uniformly bounded in L 1 , and let G ∈ L 1 be such that lim inf ε→0 G ε ≥ G. Let (τ ε ) ε>0 be a sequence of stopping times such that lim ε→0 τ ε = τ ∈ T . Then, there exists a sequence (ε n ) n≥1 ⊂ (0, 1) such thatlim inf n→∞ E τε n [G εn ] ≥ E τ [G] and lim n→∞ ε n = 0.

  The lower estimate trivially follows from the dynamic programming principle of Proposition 3.2. The second one is much more delicate. It is obtained by a suitable use of the face-lifting phenomenon observed in Proposition 3.3. It allows one to absorb the singularity due to the control when passing to the supremum over U , see (3.8) below. For all ζ ∈ D 2 and ϑ ∈ T τ ζ

	Proposition 3.4.

  4.1. For all ζ ∈ D 2 , there exists Zζ ∈ H 2 such that ( Ỹζ , Zζ ) is the minimal supersolutionof BSDE K (f, g, ζ).Proof. The proof is standard and written in the spirit of [6, Proof of Proposition 2.5]. 1. Similar arguments as in the proof of Proposition 3.2 show that Ỹ satisfies a dynamic programming principle: for all ϑ 1 ≤ ϑ 2 ∈ T , such that τ ζ ≤ ϑ 1 , we have

	Ỹζ ϑ 1 = ess sup ν∈U	Ẽζ,ν ϑ 1 ,ϑ 2 [ Ỹζ ϑ 2 ].	(4.6)
	We also observe that Ỹζ is càd. This follows from Proposition 4.1 and Proposition 3.5.
	Then, the non linear Doob-Meyer decomposition of [10, Theorem 3.3] implies the existence
	of Zζ,ν ∈ H 2 (P ν,ζ ) and of a càdlàg non-decreasing adapted process Kζ,ν such that	
	Ỹζ		

The fact that ĝ inherits the Lipschitz-continuity property from g is by construction, whereas the converse is not valid: for d = 1, K = R+ and g : x ∈ R+ -→ 1 {x<1} , we have ĝ : x ∈ R+ -→ 1.
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Lemma A. [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF]. Fix ψ ∈ D b , G ∈ L 2 (F T ). Set t n i := iT /n for i ≤ n, n ≥ 1, and define recursively for i = n -1, . . . , 0

Proof. It suffices to repeat the argument of [2, Proof of Theorem 3.1] and observe that their estimate contained in [2, Lemma 3.2] is not needed if we are not interested by the speed of convergence. Indeed, one can simply use the fact that, if (U, V ) denotes the solution of (A.1) with = 0, then

The convergence of the left-hand side term is standard, it follows from the continuity of the path of U which belongs to S 2 . The convergence of the second term is also clear since V n provides the best approximation of V in L 2 (dt ⊗ dP) by a step constant process on