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ABSTRACT

This paper presents an elaboration of the ICA based ICTD,

proposed in [1]. The method is applied on three different

datasets and three distinctive aspects of its performances are

considered. Firstly, we challenge the initial choice of the ICA

algorithm, by testing the suitability of two representative ten-

sorial (fourth-order) and one second-order algorithm. Further,

we demonstrate the invariance of the proposed decomposition

with respect to both the rotation around the line of sight and

the change of polarisation basis. Finally, we analyse the po-

tential of supplementary information contained in the second

most dominant component.

Index Terms— ICA, ICDT, invariance, distributed targets

1. INTRODUCTION

Two essentially used algebraic Incoherent Target Decom-

position (ICTD) methods: the H/α decomposition [2] and the

Touzi decomposition [3], are both relying on the eigenvector

decomposition (EVD) of the target coherence (or covariance)

matrix. Under certain constraints, the EVD can be consid-

ered equivalent to the Principal Component Analysis (PCA).

Thus, strictly speaking, the conventional ICTD methods re-

sult in deriving statistically independent components only in

case of a Gaussian homogeneous POLSAR clutter. On the

other side, given the improvement in spatial resolution, the

POLSAR data are rather characterized by Non-Gaussian het-

erogeneous clutter [4], in which case the conventionally de-

rived components are uncorrelated but not statistically inde-

pendent. Therefore, in order to derive independent compo-

nents by exploiting higher order statistical moment, in [1, 5]

we presented an alternative approach dedicated to the analysis

of very-high resolution POLSAR images, by introducing the

Independent Component Analysis (ICA) instead of the EVD.

In this article, we elaborate the proposed ICA based

ICTD, by applying it on three different datasets and by con-

sidering three different aspects of its performances.

This work was supported by the French National R&DProgram TSEN-X

PEPS UJF-CNRS 2013.

First of all, we challenge the initial choice of the Complex

NC FastICA algorithm [6], by observing, in the context of the

ICTD, suitability of the most representative tensorial methods

[7] and one second order method. After employing the Forth-

Order Blind Identification (FOBI) [8], the Joint Approximate

Diagonalization of Eigenmatrices (JADE) [9] and the Second-

Order Blind Identification (SOBI) [10] in deriving indepen-

dent backscattering mechanisms, we compare the estimated

entropy and Target Scattering Vector Model (TSVM) param-

eters with their counterparts emerging from classical (PCA

based) method. Although the FOBI exhibits some interesting

properties, the initial choice seems to be justified.

As well, we demonstrate the invariance of the ICA based

ICTD under the rotation of the line of sight and under the

change of polarization basis. For the latter we use the pro-

jection of the observations onto the circular polarization ba-

sis, coupled with the Circular Polarization Scattering Vector

(CPSV) model [11].

Finally, we analyse the potential of supplementary infor-

mation contained in the second most dominant component

of the proposed ICTD method, based on the ICA [1]. The

method is applied on two POLSAR ALOS L-band images,

where the helicity of the second most dominant component

allows a discrimination between the classes corresponding to

dry snow, wet snow and bare ground.

2. THE ICA BASED ICDT

The method [5] principally consists of three steps. The first

step assumes the selection of the observation data. This is

done either globally (statistical classification, e.g. [12]), or

locally (sliding window). Further, we apply the ICA algo-

rithm on the selected set of target vectors, obtaining a mixing

matrix and corresponding sources. The columns of the esti-

mated mixing matrix are the target vectors of the independent

backscattering mechanisms, while their squared ℓ2 norms de-

fine the contribution to the total backscattering. The third step

is the parametrization of the obtained target vectors, done by

means of the TSVM [3].
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Fig. 1: RAMSES X-band, Brétigny, France. Comparison of different methods based on the Poincaré representation of dominant scatterers (1st row), the

entropy (2nd row) and the helicity of the first component (3rd row): (a) PCA, (b) FastICA-C2, (c) FOBI, (d) JADE, (e) SOBI, (f) normalized RMSE with

respect to the parameters obtained using PCA.

In [1] the estimation of the independent components is

done through the maximization of their Non-Gaussianity, by

applying the Complex FastICA algorithm [6]. The compari-

son between different criteria [1] resulted in choosing the log

function as the most suitable non-linearity. In this article,

two tensorial methods (FOBI, JADE) and one second-order

method (SOBI) are applied in the second step and their per-

formances analysed with respect to the same gauges as in [1].

Forth-Order Blind Identification (FOBI) is one of the

simplest ICA methods [8]. The independent backscattering

mechanisms are derived as eigenvectors of the kurtosis ma-

trix, estimated using whitened set of target vectors (k̃c):

KI(k̃) = E

[

(k̃H
Ik̃)k̃k̃H

]

−2I−tr(I)I = E

[

|k̃|2k̃k̃H
]

−(n+2)I (1)

The most notable drawback of this method would be the con-

dition that all the sources must have quite distant kurtosis val-

ues, implicating the failure in case of having several mecha-

nisms characterized with the same distribution.

Joint Approximate Diagonalization of Eigenmatrices

(JADE) is a generalization of FOBI [9]. By considering co-

variance matrix to be a second order cumulant tensor, the kur-

tosis matrix (Eq. 1) can be considered as a fourth order cu-

mulant tensor of the identity matrix (KI = F(I)). Replacing

the identity matrix with a set of tuning matrices (eigenmatri-

ces of the cumulant tensor:{M1, ...Mp}) results in a set of

cumulants {KM1, ...KMp}. The whitened de-mixing matrix

D̃ is estimated by jointly diagonalizing these matrices, which

reduces to the maximization problem:

max
D̃

J (D̃) = max
D̃

p
∑

i=1

||diag
(

D̃KMpD̃
H
)

||2 (2)

where ||diag(.)||2 is the squared ℓ2 norm of the diagonal.

Given that the maximization of the diagonal elements is

equivalent to the minimization of the off-diagonal ones, the

resulting de-mixing matrix D̃ jointly diagonalize the set of

cumulants. This algorithm overcomes the mentioned draw-

back of FOBI, but stays limited to low-dimensional problems.

Second-Order Blind Identification (SOBI) estimates

mixing matrix by jointly diagonalizing a set of sample co-

variance matrices of whitened observations [10]. The obser-
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Fig. 2: RAMSES X-band, Toulouse, France. 1st most dominant components in terms of: (a) entropy (H), (b) Hel, (c) α, (d) Υ, for three different cases: (i) no

applied rotation in Pauli basis, (ii) applied rotation (15◦) in Pauli basis, (iii) circular basis.

vation data are divided into several series (in our case spatial

series - subclasses) and each of them is represented by one

covariance matrix.

3. INVARIANCE

The invariance with respect to the rotation around of line of

sight and to the change of polarization basis represents one

of the most appreciated properties of the classical ICTD. In

our case, the first property is analysed through the rotation

of the observed target vectors, by multiplying them with the

orthogonal rotation matrix.

The second property is assessed by applying the proposed

ICTD on the data projected on circular polarization basis. The

estimated components are parametrized using CPSV parame-

ters: helicity (Hel) and the angles αc and Υ [11]. The compar-

ison with the decomposition running in the Pauli basis is pos-

sible due to the fact that the appropriate counterparts of these

CPSV parameters can be derived from the estimated TSVM

parameters: αc = αs and Υ = (π/2 − Φαs
)/4 if τm = 0,

while:

Hel =
cos 2γH sin 2τm

cos4 γH (1 + tan4γH)
. (3)

4. RESULTS AND DISCUSSION

Firstly, we have applied the ICA based method on the RAM-

SES POLSAR X-band image, acquired over Brétigny in

France, in order to compare performances obtained using

several different ICA algorithms. The criteria for comparison

are: the estimation of the entropy and the helicity of the first

most dominant component with the ones obtained with PCA

and the identification of trihedral in the class corresponding

to corner reflectors placed for the purpose of calibration.

As it can be seen in Fig. 1, the initial choice [1], complex

non-circular FastICA using logarithmic non-linearity (C2)

[6], appears to be the best one with respect to the chosen

criteria. Both the entropy and the first component differ sig-

nificantly in case of applying other ICA algorithms. As well,

as we move away from the referent entropy estimation, the

second most dominant component seems to converge toward

trihedral, implying poor decomposing performances.

RAMSES X-band image acquired over Toulouse in

France was used in analysing robustness with respect to the

rotation around the line of sight (Fig. 2b) and to the change

of polarization basis (Fig. 2c). In both cases we observe

the complete (Hel) or the approximate (α) matching of the
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Fig. 3: ALOS L-band, Chamonix, Mont Blanc, France. (a) classification, (b) helicity (τm) of the 2nd component (FastICA-C2), (c) symmetric scattering

magnitude (αs) of the 2nd component (FastICA-C2), (d) symmetric scattering phase (Φαs
) of the 2nd component (FastICA-C2).

parameters characterizing the estimated components in two

considered basis, which effectively demonstrate the invari-

ance i.e. robustness. The differences in case of angle Υ are

not affecting this assessment, given that the validity of this

parameter happens to be strongly conditioned by the values

of helicity and angle α. Namely, we should expect the cor-

respondence only in the case of symmetric target (τm = 0),

characterized by α which does not converge neither to 0, nor

to π/2.

Image/Class Class description τm[◦] αs[◦] Φαs
[◦]

I/1 bare ground -2.4214 20.3308 -58.2046

I/2 wet snow -14.8296 72.5023 8.8705

II/1 wet snow -7.7216 3.4504 -48.0882

II/2 dry snow 6.5860 18.4891 12.1675

II/3 dry snow 9.3047 5.4987 -62.8036

Table 1: ALOS L-band, Chamonix, Mont Blanc, France: roll-invariant

parameters of the 2nd dominant component for the labelled classes.

By applying the method based on the FastICA-C2 algo-

rithm on two ALOS POLSAR L-band images, we have no-

ticed an interesting potential information, emerging from the

second most dominant component. Namely, using helicity we

are able to discriminate between the bare ground, the dry and

the wet snow, which doesn’t appear as possible neither with

the PCA counterpart, neither with other ICA algorithms.

5. CONCLUSION

In this paper, we additionally challenged the form of the ICA

based ICDT proposed in [1], by analysing the performances

obtained with some different ICA algorithms. However, the

initial choice, with respect to the adopted criteria, seems to be

the best one. We demonstrated the invariance with respect to

both the rotation around the line of sight and the change of

polarization basis. As well, we anticipated the utility of the

second most dominant component in discriminating between

different distributed targets.
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