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1 

Increases in CO2 atmospheric concentrations may lead to changes in temperature, rainfall, and 

humidity (IPCC 2007). A changing climate may also result in more intense an/or frequent tropi-

cal cyclones and storms, more intense rain events and flooding, sea level rise, and other climate-

related hazards. Moreover, increases in CO2 atmospheric concentrations, temperature and hu-

midity will increase corrosion of concrete and steel structures (Bastidas-Arteaga et al. 2010, 

2013, Wang et al. 2012, Stewart et al. 2012a, Nguyen et al. 2013) and affect timber decay 

(Wang et al. 2012). The performance of existing infrastructure may degrade if subject to more 

extreme climate-related hazards or accelerated degradation of material properties. In fact, the 

Climate Adaptation Engineering and Risk-based Design and Management of Infrastructure

Stewart M. G., Val D. V., Bastidas-Arteaga E., O'Connor A. J., Wang X.

In Maintenance and Safety of Aging Infrastructure, Dan M. Frangopol and Yiannis Tsompanakis (Ed.) (2014) 

641-684



impact of climate change on infrastructure performance is a temporal and spatial process, but 

most existing models of infrastructure hazard and performance are based on a stationary cli-

mate. Moreover, relatively little attention has been paid to quantifying the costs and benefits of 

adaptation strategies (retrofitting, strengthening, enhanced designs) and assessing at what point 

in time climate adaptation becomes economically viable. There is increasing research that takes 

into account the changing climate risk in engineering to reduce the vulnerability of infrastruc-

ture - we define this as ‘climate adaptation engineering’. The chapter will describe how risk-

based approaches are well suited to optimising climate adaptation strategies related to the design 

and maintenance of existing infrastructure. 

 Importantly, there has also been significantly more emphasis on impact modelling than cli-

mate adaptation engineering modelling. This is understandable when the current political and 

social environment is focused on mitigating (reducing) CO2 emissions as the 'best' way to re-

duce the impact of a changing climate. However, even under an optimistic scenario where CO2 

emissions are abated to reduce temperature increases to 2˚C by 2100, IPCC (2007) reports that 

such a scenario (B1 or A1T) is likely only if non-fossil energy sources dominate. Latest research 

shows that CO2 emissions continue to track at the high end of emission scenarios, with mean 

temperature increases of 4-5˚C more likely by 2100 (Peters et al. 2013). The impacts on people 

and infrastructure will be considerable if there is no climate adaptation engineering to existing 

and new infrastructure. For example, the 2007 Stern Review found that rising sea levels will re-

sult in tens to hundreds of millions more people flooded each year with a warming of 3 or 4˚C, 

and climate change may reduce GDP by up to 3% by 2100 (or $2.1 trillion per year based on 

2011 GDP). The potential enormity of impacts of climate change leads some to posit that cli-

mate change can be a threat to national security (CNA 2007). On the other hand, higher tem-

peratures in higher latitude regions such as Russia and Canada can be beneficial through higher 

agricultural yields, lower winter mortality, lower heating requirements, and a potential boost to 

tourism (Stern 2007). Lomborg (2009) assembled a group of international experts who found 

that climate change action ranked very low when compared with other hazard and risk-reducing 

measures, in this case the benefit-to-cost ratio for CO2 mitigation was only 0.9 (not cost-

effective), but increased to 2.9 for a mix of mitigation and adaptation strategies. This highlights 

the cost-effectiveness of adaptation when compared to CO2 mitigation. 

 The terms 'risk' and 'risk management' appear in the titles and text of many climate impact 

and adaptation studies (e.g. VG 2007, ATSE 2008, EEA 2012). However, these reports dwell on 

lists of vulnerabilities and consequences, and on qualitative measures such as risk ranking. 

There is seldom mention of probabilities, or quantitative measures of the likelihood or extent of 

losses. While useful for initial risk screening, intuitive and judgement-based risk assessments 



are of limited utility to complex decision-making since there are often a number of climate 

scenarios, adaptation options, limited funds and doubts about the cost-effectiveness of adapta-

tion options. In this case, the decision-maker may still be uncertain about the best course of ac-

tion. This led the Australian Academy of Technological Sciences and Engineering (ATSE) in 

2008 to conclude that there "is a need to assess the impact of climate change on Australia’s 

physical infrastructure on a regional basis by using risk assessment methods to provide over-

views of the likelihood, consequence, risk and adaptation capacity of Australia’s physical infra-

structure" and that "information in the form of probability distributions is required for the ca-

pacity of infrastructure components after adaptation." For this reason, there is a need for sound 

system and probabilistic modelling that integrates the engineering performance of infrastructure 

with the latest developments in stochastic modelling, structural reliability, and decision theory.  

 The impact of climate change is discussed, with emphasis on increases in economic (loss) 

risks expected for existing infrastructure subject to climate-induced changes in wind field, 

floods and heatwaves, and increases in corrosion damage risks of steel and concrete infrastruc-

ture due to a changing climate. The risks are temporal and spatially dependent. Moreover, in an 

era where many governments and societies aim to reduce their carbon footprint, it is important 

that embodied energy be minimised in selecting, ranking, and optimising adaptation strategies. 

Changes to design and construction standards and retrofitting can reduce the vulnerability of 

new and existing infrastructure - but these can cost up to 40% of their original construction cost.  

 Sustainable construction and maintenance, and reducing energy consumption and CO2 emis-

sions are undoubtedly the greatest challenge of the present century for those involved in infra-

structure provision and life cycle maintenance planning/optimisation. The cement industry alone 

contributes 5-7% of the total global emissions (Worrell et al. 2001, Mehta 2004). Moreover, the 

construction sector is responsible for 17% of greenhouse emissions in India and between 8 - 

12% in Western Europe. Another concern is the need for new infrastructure in both developing 

and developed countries, which adds extra pressure towards the efficient use of construction 

materials in relation to their carbon footprint.  

 Risk-based decision support is described to assess the risks and economic viability of climate 

adaptation measures, especially on the aspect of life-cycle costs during their service - which in-

cludes embodied and operating energy costs. An important aspect is assessing when climate ad-

aptation becomes economically viable, if adaptation can be deferred, and decision preferences 

for future costs and benefits (many of them intergenerational). Stochastic methods are used to 

model infrastructure performance, effectiveness of adaptation strategies, exposure, and costs. 

The concepts will be illustrated with state-of-the research of risk-based assessment of climate 



adaptation strategies including (i) resilience of interdependent infrastructure systems to floods, 

(ii) design of new houses in Queensland subject to tropical cyclones and severe storms, (iii) ev-

aluation of effects of climate change and cost-effectiveness analysis of adaptation strategies in 

reinforced concrete structures subjected to chloride ingress,  (iv) designing on- and offshore 

wind energy installations to allow for predicted evolutions in wind and wave loading, and (v) 

impact and adaptation to coastal inundation. This will pave the way for more efficient and re-

silient infrastructure, and help 'future proof' existing infrastructure to a changing climate. 

2 

The performance of infrastructure facilities such as bridges, buildings, dams, offshore struc-

tures, etc. is affected by environmental conditions, which are characterised by climate/weather 

variables (e.g. temperature, humidity, precipitation, wind speed). It may be affected by mean 

values of these variables as well as their variability, in particular extreme weather events (e.g. 

floods, storms, heat and cold waves). In the following, current approaches to modelling weather 

variables and extreme weather events in conditions of climate change are briefly described. 

2.1 

Atmosphere-Ocean General Circulation Models (AOGCMs) are currently the main tool for cli-

mate change studies. AOGCMs are numerical models based on differential equations, which de-

scribe physical processes in the atmosphere and ocean (and usually land-surface and sea ice as 

well) and interactions between them. The differential equations are discretised over the globe 

using a three-dimensional grid with horizontal resolution between 125 and 400 km. It has been 

demonstrated that AOGCMs are capable to reproduce past observed climate changes. This gives 

confidence in their ability to provide credible projections of future climate change, in particular 

at continental and large regional scales (Randall et al. 2007). 

 AOGCMs are very computationally demanding which limits their spatial resolution. As a re-

sult, they cannot consider explicitly many important small-scale processes (e.g., clouds, convec-

tion, land surface processes). The processes are taken into account via parameterisation, i.e., 

they are estimated from the model large-scale variables (e.g., temperature, humidity) based on 

semi-empirical relationships. This introduces major uncertainty in the models’ projections. Low 

spatial resolution of AOGCMs creates difficulties in predicting extreme weather events since es-

timates of weather variables are averaged over a grid cell. For example, AOGCMs are able to 



simulate reasonably well extreme temperatures; however, they underestimate extreme precipita-

tion predicting more days of light rainfall and reduced magnitude of its extremes compared with 

point observations. The climate models provide sufficiently reliable estimates for weather 

events with dimensions of four grid cells and above which means that phenomena smaller than 

at least 500 km (e.g., tropical cyclones, tornados) cannot be represented well by AOGCMs (Fe-

ser et al. 2011). Thus, to assess impacts of climate change on infrastructure the resolution of 

AOGCMs is, in many cases, insufficient. 

Generating climate data below the grid scale of AOGCMs (or shorter GCMs) is called down-

scaling. There are two main methods of downscaling, dynamical and statistical (e.g., Murphy 

1999). Dynamical downscaling is achieved by using regional climate models (RCMs), which 

have a higher resolution than GCMs and nested within them, i.e., outcomes of GCM runs pro-

vide boundary conditions for a RCM that ensures dynamical consistency between the different 

scale models. A typical RCM can cover an area 5000 km × 5000 km (e.g., western Europe) and 

has a horizontal resolution 25-50 km so it can account more accurately for such features as sur-

face topography and land use. The spatial resolution of RCMs means that they are able to de-

scribe reasonably accurately weather events with dimensions of about 100 km or larger. This 

may still be insufficient to realistically model local extreme weather events like tornadoes or ex-

treme rainfall.  

Statistical downscaling is referred to a group of methods based on establishing statistical rela-

tionships between observed large-scale climate variables (i.e., at the scale of GCMs) and those 

at a local scale. The relationships can then be applied to GCM (or RCM) outputs to obtain the 

local variables. One of the methods of statistical downscaling is weather generators, which are 

intended to provide high spatial (e.g., 5-km gridded) and temporal (daily or even hourly) resolu-

tion time series of internally consistent weather variables. Such data may be very useful in vari-

ous applications related to the infrastructure adaptation to climate change, especially when ef-

fects of more than one weather variable need to be considered.   

Weather generators are usually based on stochastic precipitation models, i.e., precipitation is 

treated as the primary weather variable which is generated first, while other weather variables 

(e.g., temperature, humidity, wind speed) are determined by regression relationships with pre-

cipitation and values of the variables on the previous day (e.g., Kilsby et al. 2007). There are a 

number of stochastic precipitation models that have been employed in weather generators, in-

cluding simple models using a Markov chain for occurrence and an exponential or gamma dis-

tribution for quantity (e.g., Chen et al. 2010) and more advanced models based on Poisson clus-

ter processes, which represent precipitation occurrence and quantity as a single continuous 



process and are able to simulate the observed temporal clustering nature of rainfall (e.g., Burton 

et al. 2010). The Neyman-Scott Rectangular Process model, which belongs to the latter group, is 

used, for example, in the UKCP09 weather generator (Jones et al. 2010). One of major short-

comings and sources of uncertainty associated with weather generators (as well as other meth-

ods based on statistical downscaling) comes from a founding unverifiable assumption that rela-

tionships between large-scale climate variables and weather variables at a local scale remain 

unchanged under future climate change. 

There are numerous sources of uncertainty associated with future climate modelling, which 

can be broadly divided into the following groups: 

(i)   Natural climate variability, i.e., caused by natural factors (e.g., variations in solar ra-

 diation, aerosol loading due to major volcanic eruption) 

(ii)   Uncertainty in future emission scenarios 

(iii)  Modelling uncertainty (e.g., parameterisation). 

The main approach to quantification of the uncertainties is based on ensemble simulations, 

which can be generated by (IPCC 2012): (i) obtaining data from a range of GCMs (or RCMs) 

(multi-model ensembles) to account for the model differences, which reflect incomplete under-

standing of underlying physical processes forming the climate system (i.e., modelling uncer-

tainty); (ii) generating data with different initial conditions (intra-model ensembles) to account 

for uncertainties due to natural climate variability; and (iii) varying internal model parameters 

within plausible ranges (perturbed or stochastic physics ensembles) also to account for model-

ling uncertainty. Uncertainties associated with future emission scenarios are usually not quanti-

fied and future climate projections are produced separately for individual scenarios. The UK 

Climate Projections (UKCP09) can serve as an example of the quantification of uncertainties 

associated with future climate modelling and producing probabilistic climate projections (Mur-

phy et al. 2009). The multi-model ensemble in UKCP09 includes 12 different climate models 

that were considered in international model comparisons. Single climate projections provided by 

these models are then combined with the perturbed physics ensemble, which consists of 280 

variants of the Met Office Hadley Centre (UK) climate model HadSM3, within a Bayesian stat-

istical framework, to produce the UKCP09 probabilistic climate projections. 

2.2 

Extreme weather events (e.g., wind storms, floods, heatwaves) pose a major threat to infrastruc-

ture. As a result of climate change, their frequency and intensity may increase and infrastructure 

needs to be adapted accordingly. To this purpose, it is essential to have models of extreme 



events, which are able to take into account future trends due to climate change, i.e., non-

stationarity of relevant stochastic processes. The main concepts of non-stationary extreme value 

analysis have been considered by Coles (2001). Methods for modelling extremes of non-

stationary processes are similar to those of stationary ones and include: (i) the generalised ex-

treme value (GEV) distribution for block maxima; (ii) the generalised Pareto distribution (GPD) 

for threshold exceedances; and (iii) a point process characterisations of extremes (PPE). 

2.2.1 

Let X be a random variable (or process), which represents a weather variable or event (e.g., 

average daily temperature, hourly amount of precipitation), and Xi’s (i =1,…,n) observations of 

this process at different points in time, which can be treated as independent and identically dis-

tributed random variables. Denote the maximum of these random variables as Mn, i.e., 

Mn=max{X1,…,Xn}. It can be proven that if there exists a sequence of constants an > 0 and bn 

such that Pr[(Mn  bn)/an  z]  G(z) as n  , where G is a non-degenerate distribution func-

tion, the latter has the following form 

G z( ) = exp 1+
z 
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where a+ = max{0,a},  is a location parameter,  > 0 a scale parameter, and  a shape param-

eter. This distribution is called the generalised extreme value (GEV) distribution and Eqn. (1) 

represents its classical formulation, when the underlying process is stationary. In order to esti-

mate the parameters of this distribution, observations are usually divided into blocks of a suffi-

ciently long length n, out of which the block maxima are selected and the GEV distribution is 

then fitted to them. 

To take into account effects of climate change, processes causing extreme weather events 

need to be treated as non-stationary. Thus, a random variable representing an extreme weather 

event should be time variant and will be denoted as Zt, where t is time (e.g., in years). In the 

context of the GEV distribution of Zt this means that its parameters become time variant as well. 

If to denote the GEV distribution given by Eqn. (1) as G( , , ) the distribution of Zt can then be 

expressed as 

Z
t
~ G t( ), t( ), t( )( )  (2) 

The distribution parameters in Eqn. (2) are functions of time, which should reflect future trends 

in the magnitude and frequency of the corresponding extreme event. For example, changes in 



the location parameter  can be described by a linear or parabolic function, while for the scale 

parameter  it may be an exponential function to ensure that  will remain positive; however, it 

may be very difficult to select a smooth function of time for  (Coles 2001). Parameters of these 

functions can be estimated by statistical downscaling. Non-stationary statistical approaches 

based on the GEV distribution have been employed, e.g., to model storm surge heights (Mud-

ersbach and Jensen 2010) and annual extreme minimum air temperatures (Blain 2011). 

2.2.2 

The use of the GEV distribution along with the block maxima approach for the parameter esti-

mation results in the loss of a large amount of data since out of each block only one data point, 

its maximum, is used. A more efficient approach in terms of the data use is to treat all observa-

tions Xi above a high threshold u as extreme events. It then can be proved that the distribution 

function of Y=(X u) conditional on X > u asymptotically approaches (as u increases) the gener-

alised Pareto distribution (GPD) given by the following formula (e.g., Coles 2001) 

H y( ) =1 1+
y 
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where  > 0 is a scale parameter, and  a shape parameter. The GPD and the GEV distribution 

based on the same series of observations are related in the sense that  =  + (u ) and the 

shape parameter  of the GPD is theoretically equal to that of the corresponding GEV distribu-

tion. In practice, changing the block size n affects the values of the GEV distribution param-

eters, while the parameters of the corresponding GPD remain unchanged. 

In the case of non-stationarity of a weather variable/event under consideration, the parameters 

of the GPD may be treated as functions of time, i.e., (t) and (t), in particular it may be appro-

priate to choose time-variant thresholds u(t) (Coles 2001). Statistical approaches based on the 

GDP have been used to analyse, e.g., temperature extremes (Lucio et al. 2010) and extreme hy-

drological events such as drought and flood (Xu et al. 2010). 

2.2.3 

Another statistical approach that can be employed to model extreme weather events is based on 

combining the GEV and the GPD approaches to obtain a point process characterisation for ex-

tremes (PPE) (Heaton et al. 2011). This is achieved by introducing a bivariate process (t, Z), 

where Z is a random variable representing values of Xi above a high threshold u, while a random 

variable t is the time at which such events (i.e., Xi > u) occur. It can be shown that if the maxi-



mum of Xi’s follows the GEV distribution (Eqn. (3)) then the process (t, Z) behaves as a non-

homogeneous Poisson process with intensity 

t,z( ) =
1
1+

z 
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where ,  and  are the parameters of the corresponding GEV distribution. The main advanta-

ges of the PPE approach are that the parameters of the GEV distribution are retained (and can be 

treated as time variant), not only block maxima but other observations above the threshold u are 

taken into account, while at the same time parameter estimates do not depend on u as in the 

GPD approach. Examples illustrating the use of the PPE approach in the context of statistical 

analysis and modelling of extreme weather events can be found in Coles (2001).  

3 

3.1 

One of the consequences of an increase in CO2 concentration and temperature, and changes in 

relative humidity and rainfall, is an acceleration of deterioration (corrosion) processes that con-

sequently affect the durability, safety, and serviceability of existing concrete, steel and timber 

infrastructure. In particular, many existing structures, for which the design has not taken into 

account the effect of changing climate, are likely to suffer from decreased durability and incur 

more damage and increased life cycle maintenance costs. The annual cost of corrosion world-

wide is estimated to exceed $1.8 trillion, which translates to 3% to 4% of the Gross Domestic 

Product (GDP) of industrialized countries (Schmitt 2009). Since the direct and indirect costs of 

corrosion are immense, a climate-change induced acceleration of the corrosion process by only 

a few percent can result in increased maintenance and repair costs of hundreds of billions of dol-

lars annually. 

 Until recently all corrosion research assumed constant average climatic conditions for the de-

velopment of models. This is still the case but some efforts have been made to consider the ef-

fect of changes in the parameters involved. For example, for atmospheric corrosion models CO2 

levels, time of wetness, temperature, humidity, etc. typically are modelled as stationary vari-

ables. An increase in temperature will increase the rate of infiltration of deleterious substances 

(increased material diffusivity) and increase the corrosion rate of steel. For example, short-term 

corrosion rates for steel reinforcement increase by up to 15% if the atmospheric temperature in-



creases by only 2˚C (Stewart et al. 2012a). The A1FI emission scenario predicts CO2 concentra-

tions increasing by more than 160% to 1,000 ppm by 2100, and this will increase carbonation 

depths of concrete by up to 36% (Stewart et al. 2012a). An increase in relative humidity may 

increase the ‘time of wetness’ which will increase short-term atmospheric corrosion rates of 

steel (Nguyen et al. 2013). Changes in temperature and rainfall can increase fungi decay of 

wood-based materials by up to 10% by 2080, and timber strength decrease by almost 25% after 

50 years (Wang and Wang 2012). 

3.2 

Climate change may involve sea level rise, temperature increase as well as changes in weather 

patterns such as wind and rainfall (IPCC 2007). While the general trend in change of climate 

variability has yet been clearly known, it is in agreement that the increase in the mean value of 

climate variables along their long term trend raises the likelihood of more extreme events. As 

shown in Figure 1 the increase in average temperature over time may increase the probability of 

temperature exceeding a specified threshold, which defines an extreme weather and could be re-

lated to those such as public health, energy consumption, and serviceability of infrastructure. In 

fact, an increase in the average value of climate variables may also push up the intensity of the 

weather event with the same exceedance probability or return period.  
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This becomes more evident for the storm tide described in relation to its return period, as shown 

in Figure 2. A sea level rise may increase the intensity of storm tide at the same return period, 

leading to a reduced return period or more frequent occurrence in the future for the same level 



of storm tides. In another words, it is likely that we would incur more frequent or more intense 

costal inundation if we take into account sea level rise in the future. 

 

 

 

Climate change leads to the warming of tropical sea surface temperature that is considered to be 

related to tropical cyclone activities (Knutson et al. 2010), and it may cause an increase in the 

frequency of storms and cyclones with high-intensity (Mendelsohn et al. 2012). However, there 

are many uncertainties around global warming on tropical cyclones and hurricanes. A lack of a 

reliable and consistent dataset and simulation platform of tropical cyclones over sufficient long 

periods of time and spatial space is a central issue to ascertain the existence of climate change 

impact on tropical cyclones. Having said that, it is valid to take the precautionary approach to 

consider the likely change in extreme winds in the design of engineering structures.  

3.3 

The World Commission on Environment and Development (1987) defines sustainable devel-

opment as: “development that meets the needs of the present without compromising the ability 

of future generations to meet their own needs”. According to Struble and Godfrey (2004), there 

are three components of sustainability: environment, economy and society. To meet its goal, 

sustainable development must provide a balance between these components (Sánchez-Silva and 

Rosowsky 2008). The main challenge in sustainable management of existing structures is to 

formulate maintenance strategies and/or adaptation measures technically and economically feas-

ible, that reduce the environmental impact and that ensure optimal levels of serviceability and 

safety during the operational life. Recent advances in management aim to improve the perform-

ance of repair strategies by optimizing agency costs (Frangopol 2010). However, multiple re-



quirements imposed nowadays by environmental and societal constraints undergo sustainable 

maintenance optimisation into a major challenge to designers, owners and users of structures. 

Infrastructure investment/development will not only bring a large amount of energy consump-

tion directly but will also result in energy consumption indirectly through the use of materials 

which are energy intensive in their production, i.e. cement, steel, etc.  

 Not only is concrete an important source of CO2 emissions, but concrete has been recognised 

as the largest and most visible component of construction and demolition waste. According to 

estimates presented in the Environmental Resource Guide (American Institute of Architects, 

1999), concrete accounts for up to 67% by weight of construction and demolition waste (53% 

by volume), with only 5% currently recycled. Therefore, waste generation should also be in-

cluded as a selection criterion for sustainable management. 

 Although alternative and more ‘environmentally friendly’ materials, such low CO2 cements, 

cement replacement materials with improved life-cycle durability characteristics, protective 

coatings etc. are now key areas of research and development (DuratiNet 2012), CO2 reductions 

can also be achieved by more efficient structural design and rehabilitation using more advanced 

assessment/planning techniques, including risk based approaches. This quantification of the 

possible CO2 savings has been made possible as a result of the compilation of data on the envi-

ronmental impact of most construction materials (Hammond and Jones 2011). 

Clearly, material and structural design optimisation, cost curtailment, embodied energy and 

carbon footprint minimisation are important parameters to be considered in infrastructure provi-

sion/maintenance. Considering embodied energy, for example, the embodied energy for in-situ 

concrete is approximately 0.7 - 1.1 GJ/t whereas for structural steel it is 23 - 35 GJ/t (McCaffrey 

et al. 2010). Significantly, newer and better materials are coming on stream with increased fre-

quently. Estimates now count the number of engineering materials at more than 80,000 (Rashedi 

et al. 2012). Although these materials are meeting demand, there is still an opportunity to opti-

mise material selection processes in infrastructure provision and/or maintenance. Green and re-

cyclable materials are increasingly entering the market and their per unit cost is steadily declin-

ing due to advanced manufacturing and process technologies. This stands in clear contrast with 

the prices of the traditional materials such as concrete and steel which are simultaneously esca-

lating due to inflationary onslaughts caused by developing markets. 

Several life cycle analysis (LCA) techniques are readily available that can evaluate cradle to 

grave inventory and impact assessment of the entire infrastructure (McCaffrey et al. 2010). 

These LCA techniques lead to environmentally more sensible designs by engaging in a thor-

ough material selection process exploring/identifying materials that can withstand short term as 



well as whole life structural demands from the combined perspectives of mass, performance, 

cost and environmental impact. 

4 

4.1 

Risk (expected loss) for a system exposed to a climate hazard is 

  
E L( ) = Pr C( )Pr HC( )Pr DH( )Pr L D( )L  (5) 

where Pr(C) is the annual probability that a specific climate scenario will occur, Pr(H|C) is the 

annual probability of a climate hazard (wind, heat, etc.) conditional on the climate, Pr(D|H) is 

the annual probability of infrastructure damage or other undesired effect conditional on the haz-

ard (also known as vulnerability or fragility) for the baseline case of no extra protection (i.e. 

‘business as usual’), Pr(L|D) is the conditional probability of a loss (economic loss, loss of life, 

etc.) given occurrence of the damage, and L is the loss or consequence if full damage occurs. 

The product Pr(D|H)Pr(L|D)L refers to the expected loss given the occurrence of the hazard. In 

some cases, ‘damage’ may equate to ‘loss’ and so a vulnerability function may be expressed as 

Pr(L|H) which is equal to the product Pr(D|H)Pr(L|D). The summation sign in Eqn. (5) refer to 

the number of possible climate scenarios, hazards, damage levels and losses. If the loss refers to 

a monetary loss, then E(L) represents an economic risk. 

 If we modify Eqn. (5) where R is the reduction in risk caused by climate adaptation meas-

ures then expected loss after climate adaptation is 

  
Eadapt L( ) = 1 R( )E L( ) B  (6) 

where R is the reduction in risk caused by climate adaptation (or other protective) measures, 

E(L) is the ‘business as usual’ expected loss (risk) given by Eqn. (5), and B is the co-benefit of 

adaptation such as reduced losses to other hazards, increased energy efficiency of new 

materials, etc. Climate adaptation measures should result in risk reduction ( R) that may arise 

from a combination of reduced likelihood of hazard, damage states, safety hazards and and/or 

people exposed to the safety hazard. For any climate adaptation measure the risk reduction R 

can vary from 0% to 100% (or even a negative number for an ill-suited adaptation measure). 

 The challenging aspect of risk-based decision theory is predicting values of Pr(C), Pr(H|C), 

Pr(D|H), Pr(L|D) and R. This information may be inferred from expert opinions, scenario 



analysis, and statistical analysis of prior performance data, as well as system and reliability 

modelling. Since there is uncertainty associated with such predictions, the use of probability 

distributions to describe mean, variance and distribution type is recommended. 

 There are significant challenges in characterising (in probabilistic terms) climate impact and 

adaptation in time and space. Quite rightly, there has been substantial research on climate varia-

bility as this will be the driver to climate impact. Future climate is projected by defining carbon 

emission scenarios in relation to changes in population, economy, technology, energy, land use 

and agriculture - a total of four scenario families, i.e., A1, A2, B1 and B2 are defined (IPCC 

2000) and used in the IPCC’s Third and Fourth Assessment Reports in 2001 and 2007, respec-

tively. The A1 scenarios indicate very rapid economic growth, a global population that peaks in 

mid-century and declines thereafter, and the rapid introduction of new and more efficient tech-

nologies, as well as substantial reduction in regional differences in per capita income. Sub-

categories of A1 scenario include A1FI and A1B, which represent the energy in terms of fossil 

intensive and a balance across all sources, respectively. In addition, scenarios of CO2 stabilisa-

tion at 550 ppm by 2150 were also introduced to consider the effect of policy intervention (Wig-

ley 1996). The IPCC Fifth Assessment Report (AR5) to be released in 2014 will use Represen-

tative Concentration Pathways (RCPs) where RCP8.5, RCP6.0 and RCP4.5 are roughly 

equivalent to A1FI, A1B, and A1B to B1 CO2 emissions, respectively. 

 To project spatially dependent future climates under different emission scenarios, various 

climate models have been developed (see Section 2.1). The IPCC suggests that it is necessary to 

use multiple AOGCMs to take into account the uncertainties of models in any impact assess-

ment. The estimation of Pr(C) may be based on expert opinion about the likelihood of each 

emission scenario, and multiple AOGCMs may be used to infer the probabilistic characterisa-

tion of Pr(H|C) for future climate projections including temperature and relative humidity.  

 Figure 3 describes the projection of CO2 concentrations from 1990 based on the Model for 

Assessment of Greenhouse-gas Induced Climate Change, known as MAGICC (Wigley et al. 

1996), specifically related to A1FI, A1B and 550 ppm CO2 stabilisation scenarios. The coeffici-

ent of variation (COV) of CO2 atmospheric concentrations is approximately 0.06 for projections 

at 2100. The variability increases for projection of temperatures. For example, Figure 3 shows 

the projected median temperatures for the lowest and highest of nine GCM projections, for 

A1FI, A1B, 550 ppm and Year 2000 emission scenarios for Sydney. The COV increases with 

time from 0.3 to a maximum value of approximately 0.4 to 0.5 for all emission scenarios. 
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The stochastic modelling of infrastructure vulnerability (or fragility) is Pr(D|H) and is the 

probability of damage conditional on the occurrence of a specific hazard: 

Pr DH( ) = Pr R(X) H < 0( )  (7) 

where R(X) is the function for resistance or capacity, X is the vector of all relevant variables 

that affect resistance, and H is the known hazard level. The performance functions can be ex-

pressed in terms of structural damage or other losses, and is derived from engineering models. 

As a structure ages the effect of deterioration and other time-dependent processes may lead to 

higher values of Pr(D| ). For examples of fragility (or vulnerability) curves with respect to 

seismic risk see Ellingwood et al. (2007). 



 Vulnerability modelling will require probabilistic information on materials, dimensions, 

model errors, deterioration and other input variables (X) into engineering models which define 

the resistance function R(X) - these variables vary in time and space. The reliability analysis of 

components is relatively straightforward, however, a more demanding challenge is reliability 

modelling of structural systems in time and space. This will require advanced simulation model-

ling to accurately track component and member performance and failure, load sharing, failure of 

other components/members due to load redistribution, and progression of structural failure lead-

ing to economic and other losses. The outcome is an estimate of the probability of damage con-

ditional on a specific wind speed, flood level, temperature, or other hazard. Another challenge is 

that infrastructure, particularly houses, are very complex systems comprising of hundreds to 

thousands of components and members of differing materials. Poor detailing and workmanship 

issues contribute to most damage - so the engineering and stochastic models need to consider 

these variables - such as screw fasteners being spaced too far apart, or some not connected to 

purlins and battens, etc. These are more challenging to model stochastically than more conven-

tional 'engineered' constructions such as bridges, towers, etc. where materials are more uniform, 

and workmanship subject to more quality control measures. Henderson and Ginger (2007) have 

conducted structural reliability analyses to assess the vulnerability Pr(D|H) of timber-framed 

houses built in the 1960s and 1970s in northern parts of Australia subject to cyclonic wind 

speeds, see Figure 5. The roof envelope is clearly the most vulnerable structural component. 
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The relationship between damage and loss often depends on the hazard and item of infrastruc-

ture being considered. For example, insurance or building performance data may be used to de-

rive vulnerability models which are often expressed in terms of Pr(L|H). Examples of vulnera-



bility models for Australian houses subject to wind and floods are shown in Figures 6 and 7. In 

these cases, the hazard H is the water depth above the floor, and peak gust wind speed, respec-

tively. For example, Figure 7 shows that houses designed to resist higher wind forces (such as 

Cairns in a cyclonic region Far North Queensland) have reduced vulnerability compared to 

houses in Brisbane which is a non-cyclonic region and so have less stringent design require-

ments. 
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Exposure and loss data relates to direct and indirect loss or consequence due to location and ex-

tent of infrastructure damage, for existing exposure and future projections. Most existing studies 

consider direct losses related to building damage and contents losses. While these direct costs 



can be substantial, indirect losses caused by business interruption, clean-up, loss during recon-

struction, extra demands on social services, and changes to demand and supply of intermediate 

consumption goods, etc. can also be significant (e.g. NAS 1999, Hallegatte 2008, Cavallo and 

Noy 2010). Moreover, post-disaster inflation can be up to 100% following a major natural dis-

aster (e.g., Walker 2011). 

 Direct costs are the immediate consequences of the hazard - generally those associated with 

building damage and contents losses at the present price level (Hallegatte 2008). Most, if not all, 

direct loss models show damage and contents loss as a direct proportion (linear) of vulnerability 

Pr(D|H). 

 Input-output (I-O) models are used to predict how a disaster (shock) on one or more sectors 

(e.g., construction, retail trade, utilities, manufacturing, professional and business service, edu-

cational services, health care, and government services) affect the demand and supply of inter-

mediate consumption goods that cause a reduction in economic production (e.g. Greenberg et al. 

2007, Hallegatte 2008). In other words, damage to capital stock will lower growth in the short-

run by reducing productivity and sector outputs. The I-O model is the most widely used tool for 

regional economic impact analysis, and its use for natural hazard loss estimations dates from the 

1970s (Rose 2004). While the I-O model is not without its difficulties, it can provide an excel-

lent starting point for assessing indirect losses due to extreme natural events.  

 Indirect losses were estimated for Hurricane Katrina using an adaptive regional I-O model 

where damage to houses was $20 billion, contents $7 billion, $17 billion damage to gov-

ernment, and $63.5 billion to the private sector - total damage to fixed capital was $107 billion 

(Hallegatte 2008). The total indirect loss is $42 billion or 39% of direct losses. Hallegatte 

(2008) estimates that indirect losses could exceed 100% of direct losses for a damaging event 

twice as bad as Hurricane Katrina. A Bureau of Transport Economics (BTE) assessment of di-

rect and indirect costs for five natural disasters in Australia shows indirect costs of 9-40% of di-

rect losses for bushfire, cyclones and floods (BTE 2001).  

 There is often a high level of post-disaster inflation (or demand surge) of building costs in 

Australia (e.g., Walker 2011) which can lead to higher insurance and home owner losses. 

Walker (2011) estimates that the post-disaster inflation was close to 100% for Cyclone Tracy.   

 A probability of loss Pr(L|D) and loss L needs to consider direct and indirect losses, but data 

is very limited to accurately quantify these trends. Figure 8 shows a typical loss function for 

wind vulnerability, where indirect losses start to accumulate for vulnerabilities that exceed 18%, 

and total loss is twice the direct losses for a catastrophic event where Pr(D|H)=100%. 
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Risk reduction ( R) may result from reduced vulnerability Pr(D|H), Pr(L|D) or exposure (L). 

For instance, changes to planning may reduce the number of new properties built in a flood 

plain which will reduce L, or more stringent design codes may reduce the vulnerability of new 

infrastructure. Systems and reliability modelling are essential tools to quantify the level of risk 

reduction, and the extent of risk reduction due to adaptation measures will depend on the haz-

ard, location, and timing of adaptation.  

 The co-benefits of adaptation ( B) may include reduced embodied energy and reduced car-

bon footprint over the life cycle of the facility. This might consider the initial embodied energy 

associated with the dwelling including footings, structure and fit-out together with the recurrent 

embodied energy associated with refurbishment over the life cycle and the operational energy 

needed to operate a building. 

 Costs of adaptation, timing of adaptation, discount rates, future growth in infrastructure and 

spatial and time-dependent increase in climate hazards need to be included in any risk analysis. 

Of particular interest is uncertainty about the level of discount rates. Infrastructure Australia rec-

ommends that for a cost-benefit analysis of infrastructure projects the discount rate should be set 

at 4-10% to assess the sensitivity of discount rates (IA 2008). Discount rates are generally 

assumed constant with time. However, this may not be appropriate when considering intergen-

erational effects often associated with climate change policy decisions. For example, the U.K. 

Treasury recommends time-declining discount rates (e.g., Boardman et al. 2011) which places 

more emphasise on future benefits by reducing the discount rate. 



4.2 

Three criteria may be used to assess the cost-effectiveness of adaptation strategies: 

1. Net Present Value (NPV) 

2. Probability of cost-effectiveness or Pr(NPV>0) 

3. Benefit-to-cost ratio or BCR 

The ‘benefit’ of an adaptation measure is the reduction in damages associated with the adapta-

tion strategy, and the ‘cost’ is the cost of the adaptation strategy. The net benefit or net present 

value (NPV) is equal to benefit minus the cost which is also equivalent to the present value or 

life-cycle cost of an adaptation strategy (sum of damage and adaptation costs) minus the ‘busi-

ness as usual’ or ‘do nothing’ present value. The decision problem is to maximise the net pres-

ent value 

  
NPV = E(L) R + B Cadapt

 (8) 

where Cadapt is the cost of adaptation measures including opportunity costs that reduces risk by 

R, B is the co-benefit from the adaptation measure not directly related to mitigating vulnera-

bility or hazard (such as improved energy efficiency, reduced embodied energy, etc.), and E(L) 

is the ‘business as usual’ expected loss (risk) given by Eqn. (5). The benefit-to-cost ratio is: 

  

BCR =
E(L) R + B

Cadapt

 (9) 

If parameters Pr(C), Pr(H|C), Pr(D|H), Pr(L|D) L, R, B and/or Cadapt are random variables 

then the output of the analysis (NPV or BCR) are also variable. This allows confidence bounds 

of NPV or BCR to be calculated, as well as the probability that an adaptation measure is cost-

effective at time T denoted herein as Pr(NPV>0). If NPV>0 or BCR>1 then there is a net ben-

efit and so the adaptation measure is cost-effective. Other notations and formulae can be used to 

provide optimal adaptation, but ultimately these also mostly rely on maximising NPV (e.g., Hall 

et al. 2012).  

 If the probability that a specific climate scenario will occur Pr(C) is too unreliable, then a de-

cision analysis based on scenario analysis where climate scenario probability is decoupled from 

Eqn. (5) provides an alternative decision-making criteria based on expected costs. The above 

equations can be generalised for any time period, discounting of future costs and more detailed 

time-dependent cost and damage consequences. If the loss refers to the fatality of an individual, 



then E(L) represents an individual annual fatality risk which can be compared with appropriate 

societal risk acceptance criteria (Stewart and Melchers 1997).  

 Governments and their regulatory agencies normally exhibit risk-neutral attitudes in their de-

cision-making as described by Eqns. (8-9) above. This is confirmed by the U.S. Office of Man-

agement and Budget (OMB) which specifically states that “the standard criterion for deciding 

whether a government program can be justified on economic principles is net present value - the 

discounted monetized value of expected net benefits (i.e., benefits minus costs)” and that “ex-

pected values (an unbiased estimate) is the appropriate estimate for use” (OMB 1992), and also 

by many practitioners and researchers (e.g., Sunstein 2002, Faber and Stewart 2003, Ellingwood 

2006). This entails using mean or average estimates for risk and cost-benefit calculations, and 

not worst-case or pessimistic estimates. Paté-Cornell (2002) elaborates on this point by stating 

“if risk ranking is recognized as a practical necessity and if resource limitations are acknow-

ledged, the maximum overall safety is obtained by ranking the risks using the means of the risk 

results (i.e., expected value of losses).”  

 This type of “rational” approach to risky decision making is challenging to governments and 

their agencies which might have other priorities and political concerns. Hardaker et al. (2009) 

note that “policy-making is a risky business”, and that “Regardless of the varied desires and po-

litical pressures, we believe that it is the responsibility of analysts forcefully to advocate rational 

decision methods in public policy-making, especially for those with high risk. We believe that 

more systematic analysis of risky policy decisions is obviously desirable.” If rational ap-

proaches to public policy making are not utilised, then politically driven processes “may lead to 

raising unnecessary fears, wasting scarce resources, or ignoring important problems.” (Paté-

Cornell 2002). Probability neglect is a form of risk aversion as decision-makers are clearly 

averse to events of large magnitude irrespective of the probability of it actually occurring. 

Utility theory can be used if the decision maker wishes to explicitly factor risk aversion or 

proneness into the decision process (e.g. Jordaan 2005, Stewart et al. 2011).  

 It is important to note that the issue of risk aversion is not a new one, but has been well re-

searched and documented for politically sensitive and controversial decisions associated with 

nuclear power safety, aviation safety, pharmaceutical benefits scheme, environmental pollution, 

etc. In these cases, risk acceptance criteria has been developed based on annual fatality risks and 

net benefit analysis using expected (mean) values. In principle, decisions related to climate ad-

aptation measures should be made with similar risk-based methodologies. 



5 

5.1 

One of the most vivid examples of the potential danger of weather-related hazards to the UK 

infrastructure occurred in the summer of 2007 when floods from extreme rainfall caused clos-

ures of electricity substations and water treatment plants, and severed arterial roads critical to 

the delivery of public services (Pitt 2008). In particular, the floods caused a shutdown of the 

Castlemeads primary electricity substation and the Mythe water treatment works in Gloucester-

shire. The latter left 350,000 people without water supply for 9 days and without drinking water 

for 17 days. 

 It is essential to develop efficient strategies for improving the resilience of essential infra-

structure systems that will ensure their continuous and reliable performance in the future, both 

at national and local levels. Simulation of the performance of such systems using numerical 

models may be of major assistance in developing such strategies. In order to provide a realistic 

prediction of the performance of various infrastructure systems, especially when they are sub-

ject to weather-related hazards, it is important to account for their interdependencies, i.e., when 

failure in one system causes severe disruptions and failures in other systems. It is also important 

to take into account uncertainties associated with the prediction of hazard effects and with the 

performance of infrastructure assets subject to these effects. 

A model to simulate the performance of interdependent infrastructure systems under normal 

and hazardous conditions at the local scale has been developed by Holden et al. (2013). The 

model is based on an extended net flow approach, in which infrastructure systems are con-

sidered as a network of nodes connected by directed edges. The nodes represent physical infra-

structure assets (e.g., electricity substations, water treatment works, water pumping stations, 

hospitals, residential areas) associated with production, consumption, transhipment and storage 

of resources (e.g., water, wastewater, electricity, fuel), which are referred to as commodities. 

The edges model the flow of commodities between the nodes and may represent, e.g., power 

transmission and distribution lines, water and wastewater pipelines, roads, etc. The model al-

lows optimization of infrastructure performance by minimizing the total operational cost - i.e., 

the sum of costs associated with production, storage and flow of commodities. Since the model 

has been developed to simulate the infrastructure performance at the local scale it has higher 

node resolution compared to typical models of infrastructure systems at the national level, e.g., 

it has capabilities to account for local infrastructure components such as storage facilities and 

emergency generators. In order to simulate the operation of damaged infrastructure it may be 



necessary to deal with unsatisfied demand. For this purpose, a variable representing unsatisfied 

demand (or shortage) is introduced along with the corresponding cost (or penalty). 

The following example illustrates the application of the model to examine the performance of 

two interdependent infrastructure systems (energy and water) at the local level during a flood 

event (see Figure 9). The energy system includes four electricity substations - a national grid 

substation (node 2: maximum capacity is 20 MWh/day) and three distribution substations 

(nodes 4 and 7: maximum capacity 5 MWh/day; node 5: maximum capacity 10 MWh/day). The 

water system includes a water treatment plant (node 1: maximum capacity 1000 m
3
/day), a wa-

ter tower (node 3: maximum storage capacity 550 m
3
) and a water pumping station (node 6: 

maximum capacity 200 m
3
/day); 1 kWh is required to pump 7.5 m

3
 of water. There are three 

nodes representing consumers: a hospital (node 8), a care home and surrounding residential area 

(node 9) and a residential area (node 10); their daily demands for electricity and water are given 

in Table 1. Two options are considered: (i) without emergency generators; (ii) with emergency 

generators at the nodes 3, 6 and 8. Each generator has a power of 12 kW, a storage tank for 100 

l of fuel, and can produce 3 kWh per litre of consumed diesel. 

 

Figure 9:   Network model of considered infrastructure (solid lines - water pipelines, dashed 

lines – distribution power lines). 

 

 



Flood modelling is not explicitly considered in this example. It is merely assumed that the 

probabilities of shutdown (i.e., failure) of the distribution electricity substations due to a particu-

lar flood (i.e., hazard), i.e. Pr(D|H), have been estimated as: 0.6 for the node 4, 0.3 for the node 

5, and 0.1 for the node 7. The infrastructure network will function in a partially damaged condi-

tion until the electricity substations will return to operation, which may take several days. The 

example examines what happens with the supply of electricity and water to the consumers when 

it takes up to 6 days to restore these substations. The analysis is carried out using a daily time 

step. The costs of flow, storage, production and shortage do not represent actual costs in this ex-

ample and are assigned to ensure that the commodities are distributed between the consumers as 

intended. The hospital has the highest priority in receiving required commodities, followed by 

the care home and then the residential area. The costs of shortages of water and electricity for 

these consumers are set accordingly, i.e., the highest costs for the hospital, a lower costs for the 

care home and the lowest ones for the residential area. 

 

  

 

There are a number of parameters characterising the performance of the infrastructure network 

that can be estimated. However, results for only one parameter – the expected relative satisfied 



demand, are presented herein in Figure 10. As can be seen, the emergency generators are very 

useful in preventing disruptions in water supply. It has further been checked that with the rela-

tively small amount of stored fuel they are capable to ensure continuous supply of water to the 

consumers for up to 11 days when the electricity substations are not functioning. The model can 

be used to examine the performance of much more complicated infrastructure networks, with 

higher temporal resolution (e.g., hourly) and also enables to treat, if necessary, parameters of the 

network (e.g., demands, production and/or flow capacities) as continuous random variables. 

 

5.2 

Cyclone Larry caused over $1 billion in damages in North Queensland in 2006, and approxi-

mately 60–80% of losses arose from damage to residential construction in houses built before 

enhanced building standards were implemented in North Queensland from the early to mid-

1980s (Ginger et al. 2007). To reduce housing damage in the future it may be preferable to 

strengthen or retrofit existing construction. However, Stewart and Wang (2011) found such 

strategies often failed to be cost-effective, and if cost efficient, then only marginally so. More-

over, the existing regulatory framework in Australia constrains retrofitting existing buildings 

due to varying local and state government regulations, and industry would prefer to rely on 

changes to deemed-to-comply provisions because such provisions provide a higher level of cer-

tainty (Maddocks 2011). Other adaptation strategies may restrict construction of new housing in 

vulnerable (exposed) locations. Hence, an appropriate adaptation strategy may be one that in-

creases design wind loads for new houses leading to long-term reduction of vulnerability (and 

damages) of houses in Queensland (Stewart et al. 2012b).  

 The annual probability of winds Pr(H|C) is derived from the Generalised Pareto Distribution 

to model the annual probability of exceedance of cyclonic winds (winds associated with tropical 

cyclones), and the shifted exponential distribution to model non-cyclonic gust speed (Wang and 

Wang 2009). Since there are still many uncertainties to properly define the future trend of ex-

treme winds in Australia, three possible climate scenarios (C) are: 

1. ‘No Change’ - no change in climate 

2. ‘Moderate Change’ - 25% reduction in cyclone frequency, and 10% increase in wind 

speeds by 2100. 

3. ‘Poleward Shift’ - 4 degree poleward shift in cyclones to South East Queensland by 

2100 



We assume that Pr(C)=100%. The variability of peak wind loads is significant with COV of up 

to 50%. The number of existing houses in Cairns, Townsville, Rockhampton and South East 

Queensland are 1.1 million, which is forecast to increase to over 2.2 million by 2100. The aver-

age replacement cost per new house (including contents) in Queensland is L=$320,000. Wind 

vulnerability functions are identical to those shown in Figure 7, and the loss function is given by 

Figure 8. 

 The adaptation strategy considered herein is to design new houses by enhanced design codes, 

in this case, increasing the current AS4055-2006 wind classification by one category (see Table 

2). These enhanced building requirements will result in additional costs of new construction 

(Cadapt), see Table 2, and these adaptation costs are only 1-2% of the value of a house. Designing 

new houses to enhanced wind classification will reduce vulnerability considerably, and that the 

risk reduction ( R) due to adaptation measures depends on wind field characteristics and lo-

cation and in most cases R=90-94%. 

 

Results are calculated using event-based Monte-Carlo simulation methods where all (foreshore 

and non-foreshore) new housing is designed to enhanced design standards. Any proposal to 

change building regulation within the Building Code of Australia would take many years. 

Hence, we assume an earliest time of adaptation is 2015. Costs are in 2010 Australian dollars 

and the discount rate is 4%. For convenience, we assume that B=0. 

The ‘business as usual’ cumulative mean damage costs E(L) given by Eqn. (5) can increase 

the average of total direct and indirect losses to residential housing by $5.0 billion by 2100, and 

up to $20.5 billion if tropical cyclones experience a poleward shift to Brisbane by 2100. The 

variability of cumulative damages is also high. There is clearly a high likelihood of large poten-

tial economic losses and suggest that climate adaptation strategies may be needed to ameliorate 

these losses. 



Figure 11 shows if there is moderate climate change then the mean NPV can reach $3.4 bil-

lion by 2100. Most of the benefit of adaptation strategies comes from South East Queensland 

due to its large population and higher vulnerability. Moreover, Pr(NPV>0) is 92.1% indicating a 

very high likelihood that the adaptation strategy is cost-effective. The BCR is also quite high, 

for example, for moderate change the BCR is 3.02 - this means that $1 buys $3.02 of benefits - 

which is a highly cost-effective outcome. Figure 11 also shows that the 10
th

 and 90
th

 percentiles 

of NPV can be considerable. However, they also show that there is more than 90 percent proba-

bility that NPV will exceed $158 million for moderate change at 2100, and that there is 10 per-

cent probability that NPV will exceed $7.2 billion by 2100. Not surprisingly, the net benefit in-

creases dramatically for the poleward shift scenario. 
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If there is no change in wind patterns, then some adaptation strategies are still cost-effective. 

For example, applying the adaptation strategy to South East Queensland will result in a mean 

NPV of $1.4 billion with 70% likelihood that this benefit will occur. Hence, reduction in vul-

nerability, at modest cost, is a worthwhile endeavour. This is a ‘no regrets’ policy (Susskind 

2010) even if climate predictions are wrong. 

There may be economic and political benefits in deferring implementation of a climate adap-

tation strategy. Figure 12 shows the effect of deferring adaptation to 2020, 2030 or 2050 on 

mean NPV, for moderate change. It is observed that if timing of adaptation is deferred to 2020 

or 2030 that the mean NPV at 2100 reduces, but that Pr(NPV>0) is still approximately 90% for 



moderate change and for time of adaptation to 2030. The reason is that the effects of adverse 

climate change will become most evident later in the century, so a delay in implementing an ad-

aptation strategy may result in immediate savings in adaptation costs, but will not reduce dam-

age costs significantly in the short term.  
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The results are not particularly sensitive to changes in cyclone frequency, confidence interval of 

wind vulnerability, and non-linear time-dependent increase in wind speed. For more details see 

Stewart et al. (2012b). 

 

5.3 

RC structures are subjected to environmental actions affecting their performance, serviceability 

and safety. Among these actions, chloride ingress leads to corrosion initiation and its interaction 

with service loading could reduce its operational life. Experimental evidence indicates that chlo-

ride ingress is highly influenced by weather conditions in the surrounding environment (Saetta 

et al. 1993). On the other hand, studies on global warming announce several changes in climate 

that could affect RC durability (Bastidas-Arteaga et al. 2010, 2013, Stewart et al. 2012a). 

Therefore, both structural design and maintenance should be adapted to these new envi-

ronmental conditions.  

A preliminary cost-benefit assessment of climate adaptation measures for RC structures sub-

ject to carbonation-induced corrosion is described by Stewart and Peng (2011). This case study 

focuses on the assessment of the costs and benefits of a climate adaptation strategy for RC struc-



tures placed in a chloride-contaminated environment under a more comprehensive range of cli-

mate change scenarios and structural configurations. It is supposed that the studied RC structure 

will be exposed to chlorides in a splash and tidal zone. According to Eurocode 2 (European 

Standard 2004), this condition corresponds to a XS3 exposure for which the design cover (in-

cluding the allowable execution tolerance) is ct0=55 mm if the structural lifecycle is 50 years. 

The Eurocode 2 also recommends a minimum compressive strength of f’c=35 MPa for this ex-

posure. 

As mentioned in Section 2, there are many uncertainties and factors influencing climate pre-

dictions. IPCC (2007) projections of global temperature rises from the baseline of 1990 range 

from 1.1˚C (lower bound for 550 ppm by 2150 emission scenario) to 6.8˚C (upper bound for 

A1FI emission scenario). Projections for changes in relative humidity (RH) are less precise, 

however, the CSIRO Mk3.5 climate model predicts RH changes of -16.4% to +1.2% for Austra-

lia (Wang et al. 2012), and IPCC (2007) predicts reduced RH for Europe. For this reason, a sce-

nario-based approach is used herein where results are presented for temperature changes, T, of 

0˚C to 6˚C in 100 years, and relative humidity changes, RH, of -10% to +20% in 100 years. A 

scenario of no change in climate is also considered as engineering adaptation may make eco-

nomic sense as a ‘no regrets’ policy even if climate predictions are wrong. It is also supposed 

that the structure is placed into a middle latitude (e.g., Europe, Australia, North America) for 

which the mean ranges of variation of temperature and relative humidity during one year are 

[5ºC, 25ºC] and [60%, 80%], respectively. 

Deterioration modelling allows estimating the effects of chloride ingress with regard to ser-

viceability and ultimate limit states. Ultimate limit states are highly dependent on both, geomet-

rical characteristics (cross-sectional dimensions, span length, etc.) and loading (dead, live, seis-

mic, etc.). Therefore, to generalise the results, this work focuses on a serviceability limit state in 

which the cost-effectiveness of adaptation measures is evaluated in terms of its effect on the 

time to corrosion damage (severe cracking or spalling of the concrete cover). This time is com-

puted by summing the times to ‘corrosion initiation’, ‘crack initiation’ and ‘crack propagation’. 

The time to corrosion initiation is computed using a comprehensive probabilistic model of 

chloride ingress that accounts for the environmental temperature and relative humidity (Basti-

das-Arteaga et al. 2011). The times to crack initiation and crack propagation are computed using 

the models proposed by El Maaddawy and Soudki (2007) and Mullard and Stewart (2011), re-

spectively. These times were estimated using a time-variant corrosion rate model that considers 

the influence of temperature and consequently global warming. A complete description of the 

models and their statistical parameters is presented in (Bastidas-Arteaga and Stewart 2013). 



If severe damage occurs, a likely maintenance strategy is a patch repair where the damaged 

concrete cover is replaced with new concrete. In addition, the time-dependent damage risks of 

the repaired material will not be the same as the original material due to changed temperature 

and humidity at the time of repair (i.e. when the concrete is new). Hence, the damage risk for 

repaired (new) concrete exposed to the environment for the first time at time of repair, trep, will 

change depending on the new climatic conditions and time of repairs. Figure 13 clearly shows 

that the rate of damage risk is highly dependent on climate change effects. If climate change re-

duces the environmental relative humidity, i.e. RH=-10% in 100 years, the chloride ingress 

mechanism slows down, and consequently, the probability of severe cracking decreases. An op-

posite behaviour is observed when climate change increases temperature and relative humidity. 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

t
rep

 = 0 yr

t
rep

 = 10 yr

t
rep

 = 30 yr

t
rep

 = 50 yr

t
rep

 = 70 yr

t
rep

 = 90 yr

P
ro

b
ab

il
it

y
 o

f 
se

v
er

e 
cr

ac
k

in
g

Time after repair (yr)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
ro

b
ab

il
it

y
 o

f 
se

v
er

e 
cr

ac
k

in
g

Time after repair (yr)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
ro

b
ab

il
it

y
 o

f 
se

v
er

e 
cr

ac
k

in
g

Time after repair (yr)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
ro

b
ab

il
it

y
 o

f 
se

v
er

e 
cr

ac
k

in
g

Time after repair (yr)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
ro

b
ab

il
it

y
 o

f 
se

v
er

e 
cr

ac
k

in
g

Time after repair (yr)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
ro

b
ab

il
it

y
 o

f 
se

v
er

e 
cr

ac
k

in
g

Time after repair (yr)

RH=-10%, T=0ºC RH=-10%, T=6ºC

RH=0%, T=0ºC RH=0%, T=6ºC

RH=20%, T=0ºC RH=20%, T=6ºC

 



 

For the modelled environmental conditions (splash and tidal zone in a middle latitude), damage 

risks are more sensitive to changes in relative humidity. Different sensitivities will be observed 

if the structure is subjected to other climate conditions. For instance, in tropical environments 

where there are no significant seasonal variations in temperature and relative humidity the ef-

fects of both on the probability of severe cracking will be different. Therefore, the time-

dependency of damage risks should be considered for a comprehensive cost-benefit analysis of 

adaptation measures.  

The adaptation strategy consists of increases in design cover by 5 or 10 mm – i.e., ct1 = 60 

mm and ct2 = 65 mm. It aims to reduce the impact of chloride-induced corrosion damage by in-

creasing the length of the corrosion initiation time and time to severe cracking. Their cost-

effectiveness will be measured in terms of BCR (equation 9) and the probability Pr(BCR>1). 

Given the complexity of the models, the following results have been computed using Monte 

Carlo simulations.  

Costs and benefits may occur at different times so in order to obtain consistent results it is 

necessary for all costs and benefits to be discounted to a present value. If it is assumed that cor-

rosion damage is always detected when the structure is inspected then the expected damage cost 

Edamage(Tt) is the product of probability of corrosion damage and damage costs, i.e.,   

   

Edamage Tt( ) = ps,n i t( ) ps,n i t t( )[ ]
Cdamage

1+ r( )
i t

i=n

Tt / t

n=1

Tt / t

 

(10)

 

 

where Tt is the design structural lifecycle, t is the time between inspections, n is the number of 

damage incidents, i is the number of inspection, ps,n(t) the probability of the n
th

 damage inci-

dence before time t, Cdamage is the cost of damage including maintenance and repair costs, user 

delay and disruption costs, and other direct or indirect losses arising from damage to infrastruc-

ture. For example, an asset owner should be able to quantify the unit repair cost ($/m
2
), and if 

the area of damage is known then repair cost can be estimated. 

The cost of repair or replacement and associated user losses, etc. are considerable and for 

some structures user losses are often much greater than direct repair, replacement and mainte-

nance costs. The estimated cost for concrete patch repair using ordinary Portland cement is 

$440/m
2
 (Yunovich et al. 2001, BRE 2003, Mullard and Stewart 2012). User losses and other 

user disruption costs are site and structure specific, but for many RC structures such costs will 

be minimised if the RC element to be repaired is an external structural member such as walls, 

columns or facade panels. However, for bridges closure of one lane for a four lane bridge can 



cause user delay costs of $61,000 per day (Yunovich et al. 2001). To allow for a minor user dis-

ruption cost the total failure cost is assumed as Cdamage=$500/m
2
. 

Figure 14 presents the expected damage costs for existing cover and the two adaptation strat-

egies for various climate change scenarios. For illustrative purposes, these results were com-

puted for a discount rate r=4%. This value is within the range used by various government ag-

encies – i.e. Australia 7%, U.S. 2-3%, UK Department of Transport, Sweden 4% and Finland 

6% (Val and Stewart 2003). The case without climate change, RH=0% and T=0ºC, is also 

presented in Figure 14a. It is observed that the repair costs increase when both the variations in 

temperature and relative humidity are most important for the existing cover and the adaptation 

solutions. This is explained by the increase of chloride ingress rate when the structure is ex-

posed to higher temperature and relative humidity (Bastidas-Arteaga et al. 2010). It is also noted 

that adaptation strategies reduce the mean repair costs because the number of repairs is reduced 

and/or the time to repair is longer when there is an increase of the concrete cover. It seems that a 

10 mm increase of the design cover is the more cheaper adaptation strategy. However, these re-

sults cannot be used to compare the cost-effectiveness of an adaptation strategy because they do 

not include the adaptation costs. The adaptation costs will be considered in the following BCR 

study.  
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Tables 3 and 4 present the mean BCR and Pr(BCR>1) for various climate change scenarios. As 

indicated in Eqn. (9), the BCR is computed in terms of adaptation cost Cadapt. The ‘benefit’ is the 

reduction in expected damage cost due to increased cover. The value chosen in this example 

was computed considering that an increase in design cover would increase cost of forms, con-



crete, reinforcement, finishing and labour by an amount proportional to the extra volume of 

concrete needed. These costs will also vary depending of the type of structural element and the 

exposed surface. For illustrative purposes, this study considers an adaptation cost of $2.4/m
2
 per 

mm of extra cover that corresponds to a square column (300 × 300 mm) with all surfaces ex-

posed to chlorides. For both adaptation strategies, Tables 3 and 4 indicate that the mean BCR is 

higher than one indicating that these adaptation measures provide benefits when compared to 

existing cover. When the uncertainties are included in the analysis, the results also show that 

Pr(BCR>1) are all higher than 63%. This indicates that the benefits of increasing concrete 

cover, for this aggressive environment, are important. For instance, even if no climate change is 

expected, i.e. RH=0% and T=0˚C, the mean BCR>2 with a Pr(BCR>1)>80%.  

 

 

On the other hand, as presented in Figure 13, some ‘positive’ effects of climate change on con-

crete durability could be attended if RH decreases with time. These positive effects will there-

fore reduce the costs-effectiveness of adaptation measures. For instance, if the relative humidity 



decreases (i.e., RH=-10%), the chloride ingress rate will also decrease diminishing the number 

of repairs and consequently repair costs. In such a case, Table 3 indicates that the mean BCRs 

computed when RH=-10% are generally lower than the computed for the case when RH=0%. 

This means that the benefits of the adaptation measures could be lower under some climate 

change conditions. However, mean BCR still exceeds one. Therefore, the effects of climate ad-

aptation measures should be carefully evaluated in order to decide if they provide benefits of 

losses with respect to the existing design.   

Finally, comparing both adaptation strategies, it is noted that an increase of 5 mm cover pro-

vides higher estimates of BCR and Pr(BCR>1). Therefore, for this configuration under the 

above-defined environmental conditions an increase in design cover of 5 mm is recommended 

as a cost-effective climate change adaptation measure. More details on this study including 

other structural elements and exposure conditions are described by Bastidas-Arteaga and Stew-

art (2013). 

 

5.4 

Wind energy is becoming ever more prominent around the globe with 237 GW of installed ca-

pacity at the end of 2011, an equivalent of providing for approximately 3% of the global electri-

city demand
 
(Gsänger and Pitteloud 2012). The European offshore wind target is 460 GW in-

stalled capacity by 2050, as compared to the worldwide target of 1150 GW, with a market for 

offshore energy investments in the European Union in the region of 360 billion. For the first 

decade of the 21
st
 century there has been an average annual growth of 30% and a long-term 

trend that sees the global installed capacity doubling every third year. Onshore wind turbines 

account for the majority of wind generated electricity in the global energy market, accounting 

for 99.5% of the installed capacity at the end of 2011 (Gsänger and Pitteloud 2012). It is noted 

by Hau (2006) that an energy yield of 30 - 40% higher than that on land can be expected from 

offshore applications due to the higher and more consistent wind speeds. Ferguson (1998) high-

lights the improved turbulence characteristics observed offshore with typical values of about 8% 

at a height of 60 - 70 m compared to turbulence intensities over land within a range of 10 - 20 

%. This has a major effect on the fatigue loading of the turbine structures.  

Despite the prospects of wind energy, there are many barriers that must be overcome in order 

to improve the extent of its viability as an energy source. One such barrier is accounting for the 

unpredictable nature of climate change and its effect on wind energy infrastructure in the future.

The rise in the average global temperature and its associated effects on global weather patterns 



with increased frequency of devastating storms and hurricanes poses the greatest threat to wind 

energy infrastructure installations due to the inherent requirement to locate wind turbines at ex-

posed locations in order to benefit from more reliable wind speeds. Typically, wind turbines 

start generating electricity once the wind speed has reached 3 - 4 m/s and meet their rated output 

at around 13 m/s, the shut-off condition is at about 25 m/s to prevent damage to generator and 

other components (Singh 2007). Clearly, the rated design wind speeds of these turbines, along 

with the maximum safe operating speeds, will have to adapt to accommodate changes in wind 

behaviour. In this context it should be borne in mind that, modern wind turbine designs aim to 

increase power output by reaching higher into the atmosphere, supported by taller towers, and 

by possessing larger rotor diameters in order to capture greater amounts of the passing airflow.  

 In considering the design of wind turbine installations the primary loading component is the 

force of the wind impacting on the structure. For offshore wind turbines the hydrodynamic load-

ing induced by waves is also a considerable component. Considering the wind conditions, the 

British and European standard of wind turbine design BS EN 61400-1 (2005) has specified 

three wind turbine classes dependent on the wind speed and turbulence parameters of the in-

tended site. Having specified a wind turbine class it is necessary to analyse the structure for a set 

of design load case (DLC) events. The standard requires the use of a structural dynamics model 

to predict the design load effects. Considered among the DLC events which must be analysed 

are environmental conditions represented by a Normal Wind Profile, Normal Turbulence 

Model, Extreme Wind Model, Extreme Turbulence Model, Extreme Coherent Gust With Direc-

tion Change, Extreme Wind Shear, Extreme Operating Gust, and Extreme Direction Change. 

The DLCs are configured to simulate a variety of situations including normal power production, 

power production with a fault occurrence, a start up event, normal shut down, emergency shut 

down, parked conditions, parked with a fault and transportation. While the turbine must be 

capable of resisting the most extreme wind conditions for the ultimate limit-state (ULS), it is of-

ten the fatigue loading of the turbine which dictates the design.  

 Offshore wind turbines are subjected to additional loading conditions which must be con-

sidered in the design. BS EN 61400-3 (2009) defines a wind turbine as an offshore wind turbine 

if the support structure is subject to hydrodynamic loading. These additional marine induced ef-

fects such as loads due to waves, sea currents, tidal fluctuation in water level, sea ice, marine 

growth, seabed movement and scour must be considered in the design. Noting the unpredictable 

nature of waves, it is suggested that the features of a real sea are best reflected by describing a 

sea state by means of a stochastic wave model. Considerable research has been conducted on the 

topic of wave modelling for offshore wind turbines (Marino et al. 2011a,b, Agarwal and Manuel 

2011, Jensen et al. 2011, Chella et al. 2012). BS EN 61400-3 (2009) and DNV-OS-J101 (2010) 



suggest the use of a spectral model for the simulation of the sea state. The Pierson-Moskowitz 

spectrum is applicable to a fully developed sea state while the JONSWAP spectrum pertains to a 

developing sea state for events such as a storm situation. The correlation of wind and wave con-

ditions must also be addressed (Colwell and Basu 2009). As these conditions are affected by 

local site factors such as fetch, water depth and bathymetry, the determination of parameters 

must be made from suitable long term measurements.  

 Due to the stochastic nature of both the loading on- and response of wind turbine support 

structures the implications of climate change for the design/assessment of infrastructure installa-

tions is best assessed in a structural reliability analysis framework. A primary facet of reliability 

based analysis is the development of fragility curves. Fragility curves describe the probability of 

a structure exceeding a prescribed limit-state given an input hazard intensity parameter, see Eqn. 

(7) and Figure 7. Dueñas Osorio and Basu (2008) developed wind-induced acceleration fragility 

curves in combination with an annual distribution of the wind hazard in order to predict the risk 

of malfunction of acceleration-sensitive equipment in wind turbines. 

In this context, for the purpose of illustrating the implications of climate change on wind tur-

bine design, it is intended to employ fragility curves in a simple example, which relates wind 

hazard intensity to a tower limit-state, as a method for comparing the relative structural per-

formance of the wind turbine towers considered. A displacement based fragility curve genera-

tion procedure is utilised, based upon a limit-state related to nacelle (tower-tip) displacement. 

The choice of displacement limit-state reflects the stability of the tower structure and its ability 

to resist the prescribed loading conditions. Mean hub-height wind speed has been chosen as the 

fragility hazard parameter as it is quite straightforward and it dictates the underlying turbulent 

parameters of the wind speed. The fragility term employed in this analysis is represented as:  

  
Pr DH( ) = Pr d tip > LSVhub = V( )  (11) 

where dtip is the maximum nacelle displacement, LS is the tower limit-state (maximum allow-

able deflection), and   V is the mean hub-height wind speed.  

The wind turbine model employed in the analyses is adapted from a model outlined by Han-

sen (2003) in a study of stall-induced vibrations in wind turbines. Similar formulations have 

been employed by Arrigan et al. (2011) and Quilligan et al. (2012). The current model is de-

rived as a two dimensional dynamic interpolation of the vibrational behaviour of the entire wind 

turbine system. Employing a modal approximation for the flexible blade and tower components, 

it also takes account of nacelle tilt, roll and yaw as well as rotor shaft rotation as described in 

Figure 15.  



The Lagrangian formulation is utilised to obtain the dynamic equations of motion by directly 

minimising the total energy functions of the dynamical system. Lagrange’s equation, as defined 

in Clough and Penzien (1993). This approach allows all elements of coupling to be accurately 

referenced in the system of differential equations describing the dynamics (Quilligan 2013). 

 

 

 

The external loading applied to the system is contributed by the fluctuating wind field. As the 

wind passes through a turbine it imparts both a lift and drag force upon the blades. The wind in-

flow,   V0 = V +V'(t) is modelled as a stochastic wind model with a fluctuating component 

  V
'(t), as well as a mean component,   V , which includes the effects of wind shear. As the blades 

rotate about the hub their vertical position above the ground varies periodically. This is signifi-

cant for large turbines where rotor diameters can extend beyond 100 m and a significant height 

difference exists between the bottom and top of the rotor arc. The effect of wind shear is ac-

counted for in this case by the log law:  

  

v Z( ) =
1

k
v

*
ln

Z

Z
0

 (12) 

in which Z is the height above the surface, 
  
v Z( ) is the mean wind velocity at height Z, 

  v*
 is the 

friction velocity, k is the Von-karman constant, and 
  Z0

 is the roughness length. Figure 16 pre-

sents a sample of a generated wind velocity time-history with a prescribed mean value of zero 

and standard deviation of 2.29 m/s. This is a typical value for mean wind speeds of 18 m/s with 



low turbulence characteristics (BS EN 61400-1 2005). BS EN 61400-1 (2005) assumes that the 

longitudinal turbulence standard deviation 1 is invariant with height. This is deemed a valid as-

sumption, having been also implemented by the design standard DNV-OS-J101 (2010) and was 

demonstrated to have sufficient accuracy by Bowen (2008). The code also suggests that a co-

herence model be specified to correlate the turbulence effects across the entire rotor. In this in-

stance uniform turbulence is assumed for the blades. 

 

 

 

The loading on the tower is calculated in a similar fashion to the blades except the coherence of 

the fluctuating drag force component was taken account of by implementing a formulation pro-

posed by Nigam and Narayanan (1994) and successfully implemented by Murtagh et al. (2005) 

and Colwell and Basu (2009). This identifies the modal fluctuating drag force power spectrum 

for a continuous line-like structure, which is discretised into a MDOF dynamic system (Quilli-

gan et al. 2012). 

For the implementation of the current analytical study a representative multi-megawatt wind 

turbine has been chosen. The turbine in question is the NREL offshore baseline 5 MW wind 

turbine which has an equivalent tubular steel tower for onshore installations (Jonkman et al. 

2009). The key properties of the turbine are listed in Table 5. 

 



  

Given the current trend towards increasing tower heights, three tower heights are considered. 

The NREL 5MW baseline onshore wind turbine tower (Jonkman et al. 2009) is considered for 

the 88 m tower height, with a resulting hub location at 90 m. The 103 m tower for the Vestas V-

90 3 MW wind turbine (Vestas 2004, 2005) is scaled up to accommodate the additional mass of 

the 5 MW turbine unit, for an overall hub height of 105 m. A third tower of 120 m, which is 

close to the current maximum height of state of the art prototype multi-megawatt wind turbines, 

is considered with a resulting hub height of 122 m. The properties of this tower are estimated 

from a scaling of the properties of the other two towers as no material was sourced for steel 

towers of this height. In all cases the tower diameter and steel thickness is assumed to taper lin-

early from bottom to top. Details of the key tower properties are outlined in Table 6.  



The simulations produce sets of displacement, velocity and acceleration time histories for the 

response of the towers and blades examined in the current study. Tower maximum displacement 

is chosen as a simple variable with which to perform a relative comparison of the results for 

various tower configurations and for increasing mean hub wind speed, which may be considered 

to represent the climate change evolution. Fragility curves are developed, Figure 17, to compare 

the relative performance of the various tower configurations. In a similar manner fragility 

curves may be developed to study the implications for blade tip displacements and associated 

fatigue life of towers and of M&E components etc. with respect to climate evolutions, i.e. in the 

form of increasing wind speeds, increased storm frequency with associated surge characteristics, 

modifications to load combination rules, etc.  
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With the increased regularity and growing size of the storms generated by our planet’s weather 

system it is obvious that this will affect the design of wind turbine structures. The entire struc-

tural system must be designed to withstand the increasing wind speeds and wave heights experi-

enced on a more regular basis, while sophisticated configurations must be adopted in order to 

protect sensitive mechanical components during such an event. A particularly unnerving factor 

witnessed in recent climate change effects is the unpredictable nature of the resulting weather 

patterns. Engineers and insurers must accurately quantify the lifetime levels of risk of structural 

failure (collapse and operational limits) for wind turbines taking all uncertainties into account. 

Currently, there exists hardly any guidance or research in quantifying the risks of wind turbines 

exposed to such uncertain loadings. It is proposed here that the use of fragility curves can pro-

vide an appropriately robust tool for this purpose.  

 



5.5 

Storm tide is defined as the sum of a mean sea level, astronomical tide, storm surge, and wave 

setup. Sea level rise increases the mean sea level, which is likely to lead to an increase in coastal 

inundation. This case study investigates the direct damage losses and adaptation benefits for 

residential buildings under storm tides and projected sea-level rises in Southeast Queensland 

(SEQ), the fastest growing region within Australia in the last two decades.    

 The current storm-tide hazard is based on the latest storm-tide research by Hardy et al. 

(2004), which indicated 1.57 m for Average Recurrence Interval (ARI) of 100 years, and 1.82 m 

for ARI=500 years. Meanwhile, the future inundation hazards are simulated by taking into ac-

count sea level rises from IPCC’s A1FI scenario, which is 0.3 m by 2050 and 0.8 m by 2100. As 

shown in Figure 18, the inundation hazard maps corresponding to a series of return periods were 

generated by an iterative quasi-dynamic simulation process where sea water gradually rises and 

permeates inland in consideration of connectivity to the inundation source. Residential buildings 

exposed to the inundation may incur damage and loss depending on water depth.  

 

 

 



Facing the risks to more storm-tide inundation in the future, a decision has to be made on what 

is the most cost-effective approach to adapt to the future hazards. For this purpose, we link the 

adaptation decision-making process more specifically with the answer to the research question: 

What storm-tide return period, which decides the inundated coastal areas, should be considered 

in the planning for coastal residential buildings to achieve cost-effective adaptations. 

It was found that the benefit of raising the floor height of existing buildings is marginal in the 

long term. When the adaptation area is smaller than the inundated area for a 20-year storm tide 

under current hazard the benefit-cost ratio with time is always larger than 1. The longer the ad-

aptation policy horizon, the larger the adaptation area is required to attain the optimal benefit; 

e.g. for policy horizons of 2050, 2070, and 2090, the optimal adaptation areas need be the areas 

of 20-, 600-, and 3500-year inundation extents, respectively, giving the benefit-cost ratios of 

1.2, 1.3, and 1.9, respectively. These findings indicate that constructing new buildings with 

higher flood heights is a relatively inexpensive but highly effective approach to alleviate future 

damage losses by storm-tide inundation. 

6 

Civil infrastructure is responsible for serving human activities and/or protecting human lives 

and assets. Thus, under evolving climatic conditions, climate adaptation engineering requires 

important research efforts to minimise the impacts of climate change on civil engineering infra-

structure and consequently on those whom it serves. Currently, infrastructure is mainly de-

signed/assessed to withstand more or less well-know environmental conditions and/or natural 

hazards. However, as has been shown in this chapter, designing/assessing infrastructure for the 

effects of climate change will require revision to accepted models of deterioration and of both 

the occurrence rates of natural hazards and their frequency of combination. Consideration of 

Black Swans, i.e. extremely rare events which have never been encountered before, must also 

enter the arena (Paté-Cornell 2012). Therefore, more interdisciplinary research is required to 

improve the understanding of the behaviour of infrastructural elements/networks under new 

climatic conditions including extreme events as well as to improve the evaluation of the cost-

effectiveness of adaptation measures. Some of the interacting fields are: climatology, economy, 

social sciences, engineering, etc. Exchanges between climatologists and engineers will contri-

bute to a better understanding of climate effects for specific zones facilitating quantification of 

expected extreme storms, increases in sea level, changes in weather conditions, considering 

Black Swans etc. They also could develop simplified climate change models that take into ac-

count the main trends of AOGCMs and the local structural conditions. The interaction with ec-



onomists and/or other social sciences could be useful for extending existing methods for costs 

analysis not commonly used in civil engineering or to develop new methods considering inter-

generational effects and costs related with environmental impact (CO2 emissions, waste genera-

tion, etc.) as well as societal effects. Co-operation in defining/optimising infrastructure provi-

sion/performance from the perspective of the Life Quality Index will also be of significant 

importance (Rackwitz 2002). 

7 

There is clear evidence that the performance of new and existing infrastructure will degrade if 

subject to more extreme climate-related hazards or accelerated climate-change induced degrada-

tion of material properties. Climate adaptation engineering involves estimating the risks, costs 

and benefits of climate adaptation strategies (retrofitting, strengthening, enhanced designs) and 

assessing at what point in time climate adaptation becomes economically viable. This chapter 

has described how risk-based approaches are well suited to optimising climate adaptation strat-

egies related to the design and maintenance of existing infrastructure. The concepts were il-

lustrated with state-of-the-art applications of risk-based assessment of climate adaptation strat-

egies including: (i) resilience of interdependent infrastructure systems to floods, (ii) design of 

new houses in Queensland subject to tropical cyclones, (iii) evaluation of effects of climate 

change and cost-effectiveness analysis of adaptation strategies in reinforced concrete structures 

subjected to chloride ingress,  (iv) designing on- and offshore wind energy installations to allow 

for predicted evolutions in wind and wave loading, and (v) impact and adaptation to coastal in-

undation. 
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