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Abstract

The high-order purely frequency-based Harmonic Balance Method (HBM)

presented by Cochelin and Vergez [1] and extended by Karkar et al. [2] now

allows to follow the periodic solutions of regularized non-smooth systems

(stiff systems). This paper compares its convergence property to a reference

method in applied mathematics: orthogonal collocation with piecewise poly-

nomials. A first test is conducted on a nonlinear smooth 2 degree-of-freedom

spring mass system, showing better convergence of the HBM. The second

test is conducted on a one degree-of-freedom vibro-impact system with a

very stiff regularization of the impact law. The HBM continuation of the

nonlinear mode was found to be very robust, even with a very large number

of harmonics. Surprisingly, the convergence was again found to be better

than the one of the collocation method for this vibro-impact system.

Keywords: nonlinear dynamical systems, periodic solutions, asymptotic

numerical method, harmonic balance, orthogonal collocation

Email addresses: sami.karkar@epfl.ch (Sami Karkar),
bruno.cochelin@centrale-marseille.fr (Bruno Cochelin), vergez@lma.cnrs-mrs.fr
(Christophe Vergez)

Preprint submitted to Journal of Sound and Vibration January 20, 2014



1. Introduction1

The literature is crudely lacking comparative studies between purely time-2

based and purely frequency-based numerical methods for computing periodic3

solutions of nonlinear dynamical systems. This is especially true regarding4

the behavior of numerical methods when addressing stiff mechanical systems5

like impacting oscillators (vibro-impact system). This paper aims at compar-6

ing two such methods, in a general framework where one wishes to compute7

families, or branches, of periodic solutions of such systems using a numerical8

continuation algorithm. This is an important issue in many scientific fields9

and engineering applications.10

In literature, various numerical methods have been proposed to directly11

compute such periodic solutions [3–6] without resorting to numerical time12

integration techniques, which provide stable periodic solutions only as a limit13

set and can be very time-consuming, especially for stiff systems. These direct14

numerical methods are generally classified into two main categories referred15

to as the frequency domain approach and the time domain approach.16

The emblematic method for the frequency domain approach is the so-17

called harmonic balance method (HBM) which relies on the representation18

of the periodic orbit by a truncated Fourier series for the unknown state vari-19

ables. The HBM substitutes the series into the nonlinear governing equation,20

collecting terms with the same harmonic number and dropping terms with21

harmonic numbers not in the Fourier series. This leads to solving an alge-22

braic system for the Fourier coefficients which balances harmonics. HBM23

is better presented as a weighted residual method: it is a Galerkin method24

with Fourier basis and Fourier test functions, and for which convergence has25

been established for instance by Urabe [7]. Note that some authors describe26

the HBM as unpractical or cumbersome, as it implies analytical derivation27
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of the relations between Fourier coefficients involved in the nonlinear terms.28

However, previous works have shown that: first, most nonlinearities can be29

recast as quadratic polynomials using additional variables; and second, in30

the quadratic case it is very easy to automate this analytical work (see [2]).31

Many variations of the basic HBM exist, such as the Alternating Frequency32

Time-HBM [8], the Multi-HBM [9], the Incremental HBM [10], the Adaptive33

HBM [11]. Some of these variations improve usability, performance, or ro-34

bustness. Some adapt to situations such as non-smooth systems [12] or delay35

systems for example.36

Two emblematic methods for the time domain approach are the shooting37

method [4, 5] (not considered here, as it does use time integration) and38

the global finding of periodic orbits using a boundary value approach [6].39

The orthogonal collocation with piecewise polynomials (later referred to as40

collocation) belongs to the second one: the periodic orbit is divided into mesh41

intervals, the unknown state variables are represented by polynomials on each42

interval and the governing equations are collocated at Gauss points. This43

collocation method may also be seen as a weighted residual method (in this44

case, a Petrov-Galerkin method) with piecewise polynomial basis and Dirac45

test functions, and many variations exist. To end, it is worth noting note that46

a third category could have been introduced for trigonometric collocation47

methods [13], or similarly the High-Dimensional HBM [14] which, despite48

the name, is more a collocation method than an HBM as shown by [15].49

Methods belonging to the latest category are once more weighted residual50

methods, but with Fourier basis and Dirac test function.51

Today, HBM is very popular in electrical engineering (electronic circuit)52

and in mechanical engineering (structural dynamics, rotor dynamics) while53

the collocation method is very popular for biological systems, population sys-54
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tems, chemical reactions analysis and more generally for applied mathematics55

(the collocation method is for instance implemented in the AUTO software56

[16], as well as in the MATCONT package [17], a MATLAB [18] toolbox).57

So, it seems that the choice between the frequency domain approach and58

the time domain approach is not only a question of performance and ease of59

implementation, but also a question of experience inside a scientific field. As60

stated earlier, the literature lacks comparisons between these two categories61

of methods: typical papers describe a numerical method and demonstrate62

its performance on selected representative examples, but comparisons are63

seldom performed.64

The present study compares the high-order purely frequency HBM pre-65

sented in [1] and extended in [2], with the piecewise polynomial collocation66

method. For this, a still challenging mechanical problem is chosen: periodic67

solutions continuation of a regularized vibro-impact system, that is, nonlin-68

ear mode calculations of a non-smooth system. The comparison is carried69

out using the asymptotic numerical method (ANM) for the continuation and70

each of the aforementioned methods for the discretization. Because many71

variations exist for each category of methods, a few conditions have to be72

fixed for the comparison. Hereafter, focus is brought to the accuracy of the73

solution versus the number of unknowns in the algebraic system. Second, the74

comparison is limited to small size dynamical systems. Third, no adaptive75

mesh is used for the collocation and no harmonic selection is used for the76

HBM. Within this framework, and despite the common wisdom that would77

advise against using the HBM for systems with stiff nonlinearities, the HBM78

achieves a better convergence rate than the collocation, even for very stiff79

problem.80
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The paper is organized as follows: in section 2, the harmonic balance81

method and the orthogonal collocation with piecewise polynomials method82

are reviewed, and their theoretical convergence rates are recalled. In section83

3, their convergences are compared on a toy-model composed of a slightly84

nonlinear, one-mass, two-spring plane system (representative of shells under85

large strain), as well as their efficiency for calculating periodic orbit families,86

when coupled with the ANM continuation technique. Then, in section 4, the87

same methodology is used to compare both approaches on a highly nonlin-88

ear system: an impacting oscillator with exponential restoration force. The89

conclusions of this comparative study are outlined in the last section.90

2. Discretization methods for periodic orbits91

In this section, the two methods that are used here for solving the periodic

boundary-value problem that consists in finding a periodic solution of a given

autonomous, nonlinear dynamical system are briefly reviewed. The problem

is to find Y : R → R
n and its associated period T ∈ R+ such that ∀t ∈ R,

Y′(t) = f(Y(t)) (1)

Y(t) = Y(t+ T ) (2)

where f is a nonlinear application R
n → R

n and the prime sign denotes the92

time derivative.93

The general principle of a spectral method is to choose a vector-space E94

in which one wishes to approximate the solutions, together with a basis of95

this space: the representation functions {φi(t)}. Then one writes a num-96

ber of algebraic equations resulting from the orthogonalization of the residue97

R(Y(t)) = Y′(t) − f(Y(t)) to this vector-space, with respect to the corre-98

sponding scalar product. This second step is usually carried out by canceling99
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out the projection of the system’s ordinary differential equations onto a set100

of functions, usually but not necessarily a basis of E: the test (or weighting)101

functions. The reader is referred to Orszag [19] and Karniadakis and Sher-102

win [20] for the original works and a recent reformulation on spectral and103

pseudo-spectral methods.104

2.1. The harmonic balance method105

In the case of the harmonic balance method, the solution of (1–2) is106

approximated with a truncated Fourier series:107

Ŷ(t) = Y0 +

H
∑

k=1

Y2k−1 cos(kωt) +Y2k sin(kωt)

the vector-space of the approximation being spanned by the functions:108

{1, cos(ωt), sin(ωt), . . . , cos(Hωt), sin(Hωt)},109

where ω = 2π/T is the angular frequency of the solution and H the chosen110

order of truncation.111

The balance of the harmonics consists in canceling out the projection of112

the residue obtained with this truncated series R(Ŷ) = Ŷ′ − f(Ŷ) onto113

each function of the basis. Thus, the test functions are identical to the114

representation functions. The chosen scalar product is defined as:115

< u, v >=
1

T

T
∫

0

u(t)v(t)dt (3)
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Thus comes the following 2H + 1 vector-valued, algebraic equations:

< R(Ŷ), 1 > = 0

< R(Ŷ), cos(ωt) > = 0

< R(Ŷ), sin(ωt) > = 0

...

< R(Ŷ), cos(Hωt) > = 0

< R(Ŷ), sin(Hωt) > = 0

Depending on the form of f and on the number of harmonics H , and116

using trigonometric identities, an algebraic system is obtained. It consists of117

n(2H + 1) nonlinear, algebraic equations in the n(2H + 1) unknowns that118

composes the vector {Yt
0,Y

t
1,Y

t
2, . . . ,Y

t
2H−1,Y

t
2H}

t (the notation ·t denoting119

transposition).120

In practice, obtaining this system explicitly may be difficult. But in the121

case where f can be recast as a quadratic polynomial, Cochelin and Vergez122

[1] showed that the explicit form can be obtained automatically, and for123

any order of truncation H . The method has been extended to any kind of124

nonlinearities by Karkar et al. [2].125

In the case of autonomous systems, to get a well posed problem, one126

additional equation is needed: when a solution of (1–2) exists, any time-shift127

of this solution is also a solution. The additional equation is thus known as128

the phase equation, because it is obtained by prescribing the phase of the129

solution. It is related both to the initial value of the solution, and to the130

reference used for the time variable. The phase condition may be prescribed131

several ways, see Doedel [6] and Seydel [5] for details.132

In the case of the HBM, one coefficient of the Fourier series of one com-
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ponent of Y may be set to 0 for the phase equation. This enables to get

a well-posed algebraic system R(U) = 0 of size n(2H + 1) + 1 where the

unknown vector U is:

U =
[

Yt
0,Y

t
1, . . . ,Y

t
2H , ω

]t
.

2.2. Orthogonal collocation at Gauss points with piecewise polynomial133

The solution of (1–2) is approximated by a continuous, periodic, piecewise134

polynomial of order p. The chosen collocation scheme is that described in135

Doedel [6], as used in the AUTO software [16], except for the mesh that is136

not adaptive in our implementation.137

First, the period [0, T ] is divided into a set of N subintervals [tj, tj+1],138

where h = tj+1 − tj is the size of the subintervals, t0 = 0 and tN = T .139

Then, on each subinterval, the solution is locally sampled in p+1 equidis-140

tant points, including the subinterval borders:141

Yj,i = Y(tj,i) = Y(tj +
i

p
h), i ∈ [0..p] (4)

and interpolated on that interval using the Lagrange polynomials of order142

p, {ℓj,i}, based on the p+ 1 sampling instants tj,i:143

∀t ∈ [tj, tj+1], Ŷ(t) =

p
∑

i=0

Yj,iℓj,i(t) (5)

The set of representation functions is obtained by extension of the defini-

tion domain of each local Lagrange polynomial ℓj,i to [0, T ], setting its value

to zero outside of its initial definition domain [tj , tj+1]. Thus, the approxi-

mation of the solution is written:

Ŷ(t) =
N−1
∑

j=0

p
∑

i=0

Yj,iℓj,i(t).
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The continuity constraint is imposed by adding the equations Yj,p =144

Yj+1,0 for j = 0..N − 1, or simply by using the same variable for both vector145

of each pair.146

Here, the test functions are Dirac distributions, centered on each of the p147

collocation points of each of the N subintervals: δ(t−zj,i). The p collocation148

points of the j-th subinterval zj,i are the Gauss-Legendre points of order p,149

defined as the zeros of the Legendre polynomial of order p on this subinterval.150

For instance, assuming p = 3, the zeros of the third order Legendre poly-151

nomial on its standard interval of definition [−1, 1] are located at: −
√

3
5
, 0,

√

3
5
.152

A translation and a scaling factor is applied in order to get the position of153

the {zj,i}j=0..N−1, i=1..p relative to the full period [0, T ].154

It is convenient to keep p constant, because if its value were to be modified,155

the collocation points positions would need to be computed (at least on156

[−1, 1]) for every new value. Moreover, preliminary investigations using the157

AUTO software with a fixed mesh showed that, for non-smooth or very stiff158

systems, increasing the order of polynomials p is more costly and less efficient159

than increasing the number of elements N . This needs to be investigated in160

future works as the AUTO software restricts the values of p to low integers161

(p ≤ 7).162

Thus, in what follows, the value p = 3 is used. Only the h-refinement163

will be considered, that is increasing N .164

To apply the Petrov-Galerkin method, the residue R(Ŷ(t)) is projected165

on every test function and this projection is set to zero. It follows:166

< R(Ŷ(t)), δ(t− zj,i) >= 0 i = 1..p, j = 0..N − 1 (6)
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which reduces to the collocation equations:167

R(Ŷ(zj,i)) = 0 i = 1..p, j = 0..N − 1 (7)

These pNn algebraic equations, together with the periodicity condition168

Y0,0 = YN−1,p (n equations) and a phase condition (one equation), form an169

algebraic system R(U) = 0 of size (pN + 1)n+ 1 where the unknown vector170

U is:171

U =
[

{Yt
j,i}

∣

∣

∣

∣

j = 0..N − 1

i = 0..p − 1

,Yt
N−1,p, T

]t
. (8)

Recalling that Yj,i = Ŷ(tj,i) ∈ R
n, the size of the unknown vector U is172

(pN + 1)n+ 1, leading to a well posed problem.173

2.3. Theoretical convergence rates174

Gottlieb and Orszag [21] proved the convergence for both spectral and175

pseudo-spectral methods, under the assumptions of continuity and differen-176

tiability of f . The first and most important conclusion they draw is that the177

optimal rate of convergence highly depends on the smoothness of the solution178

that one tries to approximate, which itself is related to the smoothness of the179

function f that describes the system. De Boor and Swartz [22] further im-180

proved the p-convergence bound on the collocation method in the particular181

case where one uses the Gauss-Legendre points as collocating points.182

In the case of a smooth solution (suppose, e.g., that f is C∞), the HBM183

uniform convergence rate is in O(c−H) where c ∈ R+ is a constant greater184

than 1 and H ∈ N is the order of the approximation (the number of har-185

monics), whereas the orthogonal collocation at Gauss points has a uniform186

convergence rate in O(N−(p+1)) where N ∈ N is the number of elements in187

one period (N = T/h) and p = 3 is the order of the polynomial interpolation188

chosen for this study, which is also the number of collocation points in each189

subinterval.190
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2.4. Continuation191

The computation of families of periodic solutions using numerical contin-192

uation assumes the dependence of R (that is, of f , in the first place) on an193

explicit parameter λ. The equation to be solved becomes: Y′(t) = f(Y(t), λ).194

Once discretized, the system reads: R(U, λ) = 0. This nonlinear algebraic195

system of Ntot equations for Ntot +1 unknowns thus possesses solutions that196

form a continuous1 curve (U(λ), λ), known as a solution branch, that is197

parametrized (implicitly or explicitly) by the continuation parameter λ.198

The ANM (“MAN” in French) is a powerful numerical method that allows199

for the computation of such branches U(λ) as high-order Taylor series in200

λ. The method is implemented in MANlab [23], a toolbox written for the201

MATLAB software [18], and both the HBM and the orthogonal collocation202

method are implemented on top of the continuation scheme.203

The following parameters of the ANM have been used in MANlab, and204

are kept constant throughout this study, unless stated otherwise:205

• absolute threshold on the norm of the residue for the Newton-Raphson206

corrector: ǫNR = 10−9 (the residue norm is checked at the end of each207

step, and correction is carried out only if necessary),208

• ANM series threshold used for step length estimation: ǫANM = 10−12,209

• ANM series order: Nseries = 20.210

The choice of a small correction threshold ensures that the accuracy of a211

solution is mainly dependent on the accuracy of the discretization method,212

and not on that of the solver of the quadratic problem. Similarly, the choice213

of an even smaller ANM threshold ensures that the approximation at the end214

1At least locally, and in the absence of bifurcation.
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ℓ0

ℓ0

ℓ1

ℓ2

Figure 1: Sketch of the weakly nonlinear system: a mass m attached with two springs of

strengths k1 and k2. (a) At rest the mass position is (0, 0) and the springs are perpendic-

ular with an identical length ℓ0. (b) Taken away from its rest position, the mass position

is noted (x1, x2) and the length of the springs are noted ℓ1 and ℓ2.

of each step is accurate enough so that no correction is usually needed at the215

beginning of the next step. Finally, the choice of the series order is arbitrary216

and mainly influences the step length.217

3. Comparative study, case 1 : a weakly nonlinear system218

3.1. A toy model with large displacements and geometrical nonlinearities219

In this example, a point mass m is constrained by two perpendicular220

springs (at rest) of stiffness k1 and k2, each having a rest length ℓ0 (see221

figure 1 for a sketch). The strain definition of Green-Lagrange is used, in222

order to account for large displacements, and the corresponding stress that223

is derived differs from the classical “F = −ku” law of springs. This model224

is representative of thin shells under large displacements, with geometrically225

induced nonlinearities. More details about the model are found in Arquier226

et al. [24].227
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Denoting ui = xi/ℓ0 the displacement of the mass in the plane, the i-th

spring Green-Lagrange strain reads2:

ei =
1

2

ℓ2i − ℓ20
ℓ20

= ui +
1

2
(u2

1 + u2
2) (9)

From now on, the values ℓ0 = 1 and m = 1 are assumed, in a given system228

of units, as different values only result in a scaling of the problem.229

Then, the equation of motion for the mass in direction xi reads:

mu′′

i +Ni + ui(N1 +N2) = 0 (10)

where Ni = kiei is the stress in each spring.230

The system’s equations of motion then reads:231

u′′

i = −Ni − ui(N1 +N2). (11)

3.2. Continuation parameter232

When calculating a family of periodic solutions of such a system using233

numerical continuation, a crucial problem arises: no explicit parameter ex-234

ists in the system equations (10). However, as Sepulchre and MacKay [25]235

showed, such conservative Hamiltonian systems do have periodic orbits be-236

longing to 1D family whose implicit parameter is the total mechanical energy237

of the system (the first integral). Muñoz Almaraz et al. [26] proposed to add238

a small dissipative term to the equation proportional to, say, λ: a parameter239

that will vanish along the locus of periodic solutions.240

Here, the resulting dissipative, perturbed system reads:

u′′

i = −Ni − ui(N1 +N2)− λu′

i i = 1, 2 (12)

2Note that if the displacements were small, this definition could be linearized and would

lead to the classical definition of the strain for a spring: (ℓ− ℓ0)/ℓ0.
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where λ is an explicit continuation parameter. This new system will have241

exactly the same periodic solutions as the original system if and only if242

λ = 0. Thus the standard continuation framework R(U, λ) = 0 can be used243

to compute the family of periodic solutions of this system.244

3.3. First-order, quadratic form245

Using additional variables, one can rewrite the system (12) as a set of

quadratic first-order ordinary differential equations and algebraic equations

as follows:

u′

1 = v1 (13a)

u′

2 = v2 (13b)

v′1 = −λu′

1 −N1 − u1(N1 +N2) (13c)

v′2 = −λu′

2 −N2 − u2(N1 +N2) (13d)

0 = N1 − k1u1 −
1

2
k1(u

2
1 + u2

2) (13e)

0 = N2 − k2u2 −
1

2
k2(u

2
1 + u2

2) (13f)

where (v1, v2) are the horizontal and vertical components of the mass velocity.

The system thus has two degrees of freedom, which usually leads to only 4

state variables. However, because of the additional variables N1 and N2, the

(augmented) state vector has size n = 6:

Y(t) = [u1(t), u2(t), v1(t), v2(t), N1(t), N2(t)]
t.

In what follows, the following numerical values are used: k1 = 1 and246

k2 = 2 (in the chosen system of units).247

3.4. Convergence study248

The first family of periodic orbits is considered, that is locally tangent249

(at low amplitudes) to the first oscillator linear mode: u′′

1 = −u1, u2 = 0.250
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This family, or nonlinear normal mode, is implicitly parametrized by the251

total mechanical energy Em = 1
2
(m(v21 + v22) + k1e

2
1 + k2e

2
2). On this mode,252

the solution characterized by Em = 0.5 is retained. To this end, a branch253

is computed for each discretization, and this solution point is located on the254

branch using a dichotomy algorithm up to a relative precision of ǫEm = 10−12
255

on the total mechanical energy.256

To assess the convergence, the relative error (in the norm 2) between each257

of the solutions obtained with a given approximation (i.e. the solution with258

a given H value in the case of the HBM, and a given N value in the case of259

the collocation) and a reference solution is computed. This error is evaluated260

in the time domain by computing the time series of the solutions sampled at261

2000 equidistant points over one period.262

Denoting Y(ti) the time series of the state vector of a given approximated263

solution (where ti=iT/2000, i=1..2000) and Yref(ti) that of the reference264

solution, the chosen norm reads:265

ǫr =
||[Y(ti)−Yref(ti)]i=1..2000||2

||[Yref(ti)]i=1..2000||2
(14)

In the present case, the system being perfectly smooth and weakly non-266

linear, the Fourier series of any solution converges quickly, and the reference267

solution has been computed using HBM with H = 128 harmonics for which268

a very small residue norm has been achieved3: ||R(Uref)|| = 2.95× 10−16.269
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Figure 2: Convergence of HBM solutions for the weakly nonlinear system (13). The chosen

solution, on each branch of periodic solutions has a total mechanical energy Em = 0.5.

(a) The norm-2 relative error ǫr as a function of the number of harmonics H , in semi-

logarithmic scale. (b) Trajectories in the (u1, u2) plane, of the approximated solutions

with H=2 (—, blue), 4 (– –, green), 6 (– · –, red), and 8 (· · · , orange) as well as the

reference solution (—, black). The last three trajectories are superimposed, illustrating

the fast convergence.

3.4.1. Frequency domain approach: high-order harmonic balance270

Figure 2 displays, in the left part (a), the evolution of the relative error ǫr271

of the approximation as a function of the number of harmonics H , in a semi-272

logarithmic scale. It shows the typical exponential convergence of spectral273

methods. The stairs-like shape of the curve at lowH values suggests that odd274

harmonics have little influence on the error, which is explained by the fact275

that the chosen solution is of moderate amplitude, therefore the dominant276

nonlinearity of the system is quadratic.277

The right part of figure 2 shows trajectories of several approximations as278

3The authors have also confronted this reference solution by comparing it to the re-

sult of a time marching scheme that provides error control along the trajectory. Using

an extremely fine tolerance criteria and starting from identical initial conditions (up to

machine precision), both solutions are found to be almost identical, with a relative norm-2

difference of the order of 1× 10−11.

16



10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

N

ǫ
r

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1

−0.5

0

0.5

u1

u
2

(b)

Figure 3: Convergence of orthogonal collocation with piecewise cubic polynomials on the

weakly nonlinear system (13). The chosen solution, on the branch of periodic solutions

has a total mechanical energy Em = 0.5. (a) Norm-2 relative error ǫr as a function of the

number of elements N , in logarithmic scale. (b) Phase diagram, in the (u1, u2) plane, of

the approximated solutions with N=3 (—, squares, blue), 5 (– –, circles, green), 9 (– · –,

diamonds, red), and 17 (· · · , crosses, orange) as well as the reference solution (—, black).

Markers indicate the location of the oscillator at tj , the start of each of the N time interval

subdividing the period. The last three curves are almost superimposed, illustrating the

fast convergence.

well as of the reference solution in the (u1, u2) plane. TheH = 8 solution thus279

is a very good approximation, both qualitatively (the trajectory is superim-280

posed with that of the reference solution) and quantitatively (ǫr = 4.10−3).281

3.4.2. Time domain approach: orthogonal collocation with piecewise cubic282

polynomials283

Figure 3 displays, in the left part (a), the relative error of the approxi-284

mation ǫr as a function of the number of elements (logarithmic scale). In the285

right part (b) of that figure, the shape of several approximations as well as286

that of the reference solution in the (u1, u2) plane are shown.287

The semi-logarithmic error-plot (not displayed) shows an exponential con-288

vergence for N < 27 (first six points from the left end), whereas the logarith-289

mic plot displayed here suggests an asymptotic convergence that is polyno-290
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mial in N (of order 4), for N sufficiently large. It is the expected asymptotic291

behavior, according to De Boor and Swartz [22], given that the system is292

perfectly smooth (the nonlinear terms are low order polynomials).293

3.4.3. Comparison294

In order to compare the two methods, the total number of equations295

involved in the final algebraic system needs to be taken into account. This296

number, denoted Ntot, is :297

• (2H + 1)n+ 1 in the case of the HBM,298

• (3N + 1)n+ 1 in the case of the collocation method.299

Figure 4 clearly shows that, for this simple, smooth, weakly nonlinear300

system, HBM achieves a much quicker convergence. A fair comparison would301

require the use of a collocation with piecewise polynomials whose order p302

would be the refining parameter (with a fixed number of elements). However,303

for reasons explained above, it is beyond the scope of this study.304

3.5. Computing a branch of periodic solutions305

Figure 5 illustrates the branch of periodic solutions computed using HBM306

discretization (H=128 harmonics) and the ANM continuation. The mechan-307

ical energy along the horizontal direction Em,1=
1
2
mv21 +

1
2
k1e

2
1 and that along308

the vertical direction Em,2=
1
2
mv22 + 1

2
k2e

2
2 are plotted against the angular309

frequency ω. At low amplitudes (bottom-right corner), the nonlinear mode310

is tangent to the linear mode (1, 0).311

Figure 6 illustrates the same branch in a classical frequency-energy plot.312

The branch obtained using HBM (H=128 harmonics) and that from colloca-313

tion (N=85 elements, p=3 collocation points per element) are both plotted314

but are superimposed. Using the HBM with H=128 harmonics, the size315
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Figure 4: Norm-2 relative error (with respect to the reference solution) as a function of

the total number of algebraic equations after discretization: comparison between HBM

(squares, blue) and piecewise cubic polynomial collocation (circles, green).
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Figure 5: Branch of periodic solutions for the weakly nonlinear system (13) using HBM

discretization and ANM continuation: mechanical energy of the system projected on the

horizontal axis Em,1 (—, blue) and on the vertical axis Em,2 (– –, green) as functions of

the angular frequency ω. Small dots indicate the continuation steps. The black star on

each curve indicates the position of the solution used for the convergence study. Reference

diagram computed using H = 128 harmonics.
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Figure 6: Branch of periodic solutions for the weakly nonlinear system (13): frequency-

energy plot of the system obtained with HBM, H=128 harmonics (—, squares, blue) and

collocation, N=85 cubic elements (– –, circles, green). The curves are superimposed. Blue

squares indicate the continuation steps of the HBM branch, while green circles indicate

that of the collocation branch. The black star indicates the position of the solution used

for the convergence study.
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of R(U) is Ntot=1543, and the target point where Em=0.5 is reached after316

12 continuation steps, starting from u1(0)=−0.1 and ω=0.995rad/s. Using317

collocation with N=85 elements of order p=3, the resulting algebraic sys-318

tem size is Ntot=1537, and the target point with Em=0.5 is reached after 14319

continuation steps, from the same starting point.320

To conclude the study of this weakly nonlinear system, HBM and col-321

location both appear to be efficient methods for computing the branch of322

periodic solutions with a numerical continuation tool. The HBM was found323

to show exponential convergence, while the collocation method showed poly-324

nomial convergence (with respect to N), as expected4. The next section will325

explore how these methods adapt to a very stiff nonlinearity.326

4. Comparative study, case 2: a strongly nonlinear system327

The same procedure is now applied to test both discretization methods328

on a stiff nonlinearity: an exponential function.329

4.1. A simple oscillator impacting a rigid wall330

This example consists in a one degree-of-freedom mass-spring like system,331

whose position is constrained in the half-plane u < 1 by a perfectly rigid wall,332

where u(t) denotes the dimensionless position of the (unit) mass.333

The wall reaction is regularized using an exponential function, with a334

coefficient α allowing for the tuning of the regularization stiffness:335

Fr(u) = −eα(u−1),

4Note that increasing the order p of the polynomials instead of the number of elements

N would result in an exponential convergence as for the HBM.
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The regularized impacting oscillator is governed by the following equation336

of motion:337

u′′(t) = −u(t)− eα(u(t)−1), (15)

where the prime sign denotes time differentiation. Note that due to the form338

chosen for the wall reaction Fr(u), the problem (15) is conservative. In what339

follows, the value α = 200 is used, which corresponds to an extremely stiff340

regularization.341

4.2. Continuation parameter342

As for the first system, a dissipative perturbation is added to the system343

so that an explicit parameter λ appears in the equations, in order to use344

the classical framework R(U, λ) for the continuation. The resulting system345

is now dissipative :346

u′′(t) = −u(t)− λu′(t)− eα(u(t)−1), (16)

where λ is the continuation parameter.347

The perturbed system (16) has exactly the same periodic solutions as348

that of the conservative system (15) if and only if λ = 0.349

For the treatment of the exponential nonlinearity in the quadratic frame-

work of the ANM, the reader is referred to Karkar et al. [2] and Karkar [27].

The system is rewritten as follows:

u′(t) =v(t) (17a)

v′(t) =− u(t)− λv(t)− e(t) (17b)

e′(t) =αe(t)v(t) (17c)

e(0) =eα(u(0)−1) (17d)
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Thus, the number of ordinary differential equations is n = 3 (the last equation350

is only an initial condition and does not require any discretization), with the351

following state vector: Y (t) = [u(t), v(t), e(t)]t.352

4.3. Convergence study353

The periodic solution corresponding to a total mechanical energy Em =354

1
2
(1.5)2 = 1.125 is retained, ie. that with maximum amplitude reached during355

free flight of ||u||max = 1.5.356

Given the stiffness of the nonlinearity, one needs to ensure that both357

methods converge to the “right” solution. Thus, a reference solution should358

be either analytically computed or numerically obtained through time inte-359

gration with very coarse tolerance criteria.360

4.3.1. Reference solution361

Because the system is very stiff, one can expect the HBM to achieve362

much slower convergence than in the previous case. In the worst case, the363

convergence may not even be uniform. Thus, for this second example, an364

independent method, which allows error control, was chosen to construct a365

reference solution.366

A time marching scheme especially designed for stiff systems is used. It is367

a single-step solver with adaptive step size, based on a modified Rosenbrock368

formula of order 2 (see [28]). On each component, the relative tolerance is369

set to 10−10 and the absolute tolerance to 10−12.370

The reference solution is computed from the starting point (u, v) =371

(−1.5, 0), on a time interval long enough to get more than one period. The372

length of the period is then deduced by analysis of the computed orbit: an373

event is triggered when the orbit passes over the starting point and the in-374

stant of this event is recorded.375
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Figure 7: Convergence of the HBM for the strongly nonlinear system (17): a free, con-

servative impact oscillator regularized with a stiff (α=200) exponential. Norm-2 relative

error ǫr with respect to the reference solution, as a function of the number of harmonics

H retained in the approximation. (a) Semi-logarithmic scale. (b) Logarithmic scale. The

solution is such that ||u||max=1.5.

4.3.2. Frequency domain approach : harmonic balance method376

Figure 7 illustrates convergence of the HBM. The relative error ǫr with377

respect to the reference solution is plotted against the number of harmonics378

H retained in the approximation.379

For each H value, the branch was followed by continuation until a suffi-380

cient amplitude was reached. Then, the solution point whose amplitude is381

such that ||u||max=1.5 was extracted from the branch by a dichotomy algo-382

rithm, with a relative precision of 1.10−12.383

For each value of H , a time series [Y(ti)] was computed that consists in384

2000 equally spaced samples over one period (ti = iT/2000, i = 1..2000)385

and was compared to that of the reference solution [Yref(ti)] by means of the386

relative error ǫr, as defined in the previous section (see equation (14)).387

The convergence plot displayed figure 7, where ǫr is plotted against H ,388

shows two distinct parts:389

• first, for H < 50 (first four points), a polynomial convergence is ob-390
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Figure 8: Phase diagram of the approximated solutions with H=20 (—, blue), 50 (– –,

green), 100 (– · –, red), 200 (· · · , orange), as well as the reference solution ( , black).

(a): full scale diagram (the orange curve is not visible). (b): zoom onto the impact zone

(u=1), where all curves can be distinguished (orange and black almost superimposed).

served (straight line on a logarithmic scale), probably due to the fact391

that the approximation with such a low H value is not able to capture392

the sudden variations of trajectory during the impact;393

• then, for H > 50, an exponential convergence is obtained (straight394

line on a semi-logarithmic scale), which is the expected asymptotic395

convergence of the HBM applied to a smooth system.396

The phase diagram plotted on figure 8 is a perfect illustration of the397

observed phenomenon in the first convergence regime: the approximation is398

very crude with H=20, but tends quickly to the reference solution as H is399

increased, at least at the scale of the entire orbit. Refining the approximation400

with more than 100 harmonics only produces visible effects close to the stiff401
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Figure 9: Convergence study of the collocation method for the strongly nonlinear system

(17): a free, conservative impact oscillator regularized with a stiff (α=200) exponential.

Chosen cycle amplitude: ||u||max=1.5. Norm-2, relative error with respect to a reference

solution as a function of the number of elements N . (a) Semilogarithmic scale. (b)

Logarithmic scale.

part of the orbit, near u=1, where the approximation with H = 200 can402

actually be distinguished from the reference solution. A slight penetration403

(approximately 2% of the total amplitude of the cycle) inside the “wall” is404

observed, as a result of the regularization. By tuning the α parameter, one405

can control this penetration, with respect to the cycle amplitude5.406

4.3.3. Time domain approach: orthogonal collocation with piecewise polyno-407

mials408

The same analyses are now applied to the collocation method. The rel-409

ative error is computed using the same definition as in the previous parts.410

Values of (u, v) at ti are interpolated using cubic polynomials6.411

Figure 9 illustrates how the collocation method converges in three parts:412

5One could also finely tune both the penetration and the stiffness of the system by

using an additional multiplicative parameter in front of the exponential term.
6By definition, the elements used are cubic polynomials, written in the Lagrange basis

defined on four equally spaced points, including borders. See section 2.
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• first for N ≤ 27, the relative error decreases polynomially (low order)413

in N : the first six points on the right plot (b), with a logarithmic scale,414

form a straight line;415

• then for 27 ≤ N ≤ 267, the convergence seems exponential in N : the416

corresponding points on the left plot (a), with a semi-logarithmic scale,417

form a straight line;418

• finally for N ≥ 267, the convergence seems polynomial (high order) in419

N .420

In the last part of the figure, the points being not perfectly aligned suggest421

the asymptotic behavior is not yet reached.422

In the case of a very smooth problem, Karniadakis and Sherwin [20]423

showed that it is more efficient to use higher degree interpolants than increas-424

ing the number of elements N . However, the “smoothness” of the problem425

is resolved after a minimal number of elements. Put differently, the stiffness426

of the system makes the transition (before reaching asymptotic convergence427

rates) longer. The low-order (∼ 1) polynomial convergence is the result of428

the stiffness of the solution, and increasing the degree of the interpolants429

would probably not make the error decrease faster.430

Thus, in the present case, increasing N is probably more efficient, at least431

up to N=267. Only after this point, where the high-order (∼ 3) polynomial432

convergence is observed, may a p-refinement be preferable (for extremely high433

accuracy computations).434

Figure 10 illustrates the phase diagram (u, v) of several approximations435

of the solution. Element boundaries are plotted using markers. Until N=67,436

one observes that the number of elements is too low to have at least one437

element inside the stiff part of the orbit (impact). For higher values of N ,438
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Figure 10: Phase diagram of approximated solutions using N=5 (—, squares, blue), 21

(– –, circles, green), 67 (– · –, diamonds, red), and 133 (· · · , crosses, orange) as well as

the reference solution ( , black). (a) Full scale; markers show the element boundaries

for the first two approximations (5 and 21 elements respectively). (b) Zoom onto the

impact zone (u=1); markers (diamonds and crosses) indicate the element boundaries for

approximations corresponding to 67 and 133 elements.
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Figure 11: Comparison between harmonic balance (squares, blue) and collocation (circles,

green): norm-2 relative error with respect to a reference solution as a function of the size of

the final algebraic system (resulting from discretization). Case of the impacting oscillator

regularized with a stiff exponential (α=200). Solution amplitude for the comparison:

||u||max=1.5.

element boundaries penetrate inside the stiff part of the orbit, allowing for a439

better representation of the solution as derivative discontinuities are possible440

at these points.441

4.3.4. Comparison442

Figure 11 shows the comparison of convergence curves for the two meth-443

ods: ǫr=f(Ntot), where the abscissa is the total size of the algebraic system444

resulting from the discretization:445
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• Ntot = (2H + 1)n+ 3 for the HBM7,446

• and Ntot = (3N + 1)n+ 1 for the collocation method.447

Even though the approximation of the solution using a Fourier series448

with relatively few harmonics (H < 50) is relatively poor, the convergence449

rate gives the HBM an advantage. While the tangent matrix resulting from450

harmonic balance is less sparse and has a much greater bandwidth than that451

of a collocation method (thus, the computation time needed to compute452

this matrix and to invert it is longer, especially for very high H values), the453

convergence shows that for a given accuracy, a much smaller system is needed454

with the HBM than with the collocation.455

Finally, given the limited resources of a classical PC workstation, the456

HBM allows for the computation of a much more precise solution compared457

to the collocation.458

4.4. Continuation of periodic solutions459

The branches of periodic solutions computed using both discretization460

techniques are shown in figure 12. Using ANM series up to order 20, and461

starting from the linear solution at ||u||max=0.9, it takes 26 steps to reach the462

point that corresponds to the solution (||u||max=1.5) when using the HBM,463

while it takes 36 steps with the collocation method. The computation was464

carried out, in the first case, with H=1000 harmonics (Ntot=6006) and in465

the second case with N=667 (Ntot=6007). Both methods show a shortening466

of steps around the linear-nonlinear transition (expected result). However,467

the HBM leads to larger steps further down the branch, while the collocation468

leads to more or less constant (or even decreasing) step sizes.469

7Note that there are two more variables than for the previous test case, because of

additional variables e(0) and u(0) needed for the definition of initial condition 17d.
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Figure 12: Frequency-energy plot of the branch of periodic solutions computed using

HBM (—, squares, blue) and collocation (– –, circles, green) for the regularized impacting

oscillator. Markers indicate the beginning of each continuation step. The star denotes

the solution used in the convergence study. Fourier series order for the HBM: H=1000.

Number of cubic elements for the collocation: N=667. Regularization parameter: α=200.

All parameters of the ANM are identical to the previous example.
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5. Conclusion470

Two discretization methods for solving periodic boundary value problems471

were compared: the harmonic balance, which is based on the frequency do-472

main, and the orthogonal collocation (at Gauss points) with piecewise poly-473

nomials, which is based on the time domain. The methods were compared474

to each other in terms of convergence, and as means to compute branch of475

periodic solutions using numerical continuation.476

The main conclusion is that, in the absence of basis enrichment or adap-477

tive harmonic selection (for the HBM), and without adaptive mesh or p-478

refinement (for the collocation), the harmonic balance method achieves bet-479

ter convergence rates, and thus allows for much more precise approximations,480

even in the case of very stiff systems. This is surprising since the spectrum481

is expected to be greatly enlarged by a stiff nonlinearity, and a time-based482

method could seem more appropriate to discretize such stiff solutions.483

Of course, improvements exist for both methods. On the one hand, col-484

location methods have proved to be more efficient when using an adaptive485

mesh (the AUTO software [16] is a well known implementation). On the other486

hand, adaptive harmonic selection and basis enrichment are also known to487

improve drastically the convergence of the harmonic balance for non-smooth488

problems (see e.g. Kim and Perkins [12])489

The lack of comparison in the literature is to be underlined, possibly due490

to the difficulty to apply the HBM at very high orders (here, up to 1000491

harmonics) until recently. Further comparison using improved methods are492

needed.493
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