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Abstract

We propose a Leslie matrix model for the population dynamics of S. lagocephalus
in La Réunion. In order to capture both the amphidromous and the seasonal natures
of the species’ life history the model has four stages (sea + three river sites) and
is periodic. Baseline parameters (age-specific fecundity, spatial dispersion patterns
and survival rates) were chosen in such a way that the dominant eigenvalue of the
year-on-year projection matrix is 1. Large uncertainties on the parameter values
preclude the use of the model for management purpose. A sensitivity/uncertainty
analysis sheds light on the parameters that cause much of the output to vary and
that are poorly known: the life expectancy in rivers and the mortality both at river
mouths and during the drift of larvae to sea. This work should help researchers
understand which factors and parameters need to be better known and estimated
before the model can be developed as an accurate management tool.

Keywords: Leslie matrix, Sicyopterus lagocephalus, population dynamics, sensitivity,
uncertainty.

Corresponding author: marc.artzrouni@univ-pau.fr .

1



1 Introduction

In La Réunion island the fry of juvenile red-tailed goby (Sicyopterus lagocephalus, Pallas

1770) is a much appreciated delicacy, although an expensive one. Known locally as

“bichiques” the 3cm long juveniles are captured in very high numbers at river mouths

as they swim upstream to grow and reproduce [1, 44]. As a result their numbers have

dwindled over the years and the stakes are high [3, 18]. Although S. lagocephalus is widely

distributed throughout the Indo-Pacific region, the population of the Mascarene Islands

(Mauritius, La Réunion and Rodrigues) largely self-recruits [30]. This highlights the need

for local management.

We propose here a population dynamics model of S. lagocephalus which aims to shed

light on the factors and parameters that influence the species’ persistence. The ultimate

goal is to provide policymakers with management actions that could help them prevent

the decline of the local stock.

Sicyopterus lagocephalus is an amphidromous migratory species [34, 36]. It has a

singular life cycle adapted to the precarious hydrological conditions of rivers where they

spawn large number of eggs [25, 31, 50]. Immediately after hatching, larvae drift down to

the sea and become “pelagic” as they disperse in the sea [33, 35, 51]. After a few months,

the pelagic larvae recruit into river mouths as they move back in freshwater and complete

their growth and sexual maturation. They settle in various parts of rivers thanks to their

strong climbing abilities which allow them to pass waterfalls up to several meters high,

as described in Hawaiian gobies [6, 7].

In addition to living in a challenging natural environment S. lagocephalus are subjected

to heavy anthropogenic pressures that often impact on aquatic species of tropical islands

[24, 39]. Free movement between freshwater and the marine environment is a key factor

for the completion of the life cycle [41]. River mouth closures caused by inadequate river

flow management can lead to long-term fish extirpation [32]. A lack of recruitment at the

river mouth causes a rapid decrease of adult population in the catchment. The presence

of dams along the rivers further limits both the upstream colonization of fish and the
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chances of larvae reaching the sea. In addition, after the marine larval phase, post-larvae

are subject to massive fisheries at the river mouths [1, 14, 44].

In Section 2 we detail the Leslie matrix model which describes the population dynamic

of the species. Survival, recruitment and fecundity rates are detailed in Section 3. Section

4 discusses the results obtained with a baseline set of parameters. A variance-based

sensitivity analysis sheds light on the factors that need further study and helps us prioritize

the acquisition of biological knowledge. Results are summarized in the concluding Section

5.

2 Leslie matrix model

2.1 The life cycle

We capture the population dynamics outlined above in a stylized manner by using a multi-

stage cyclical Leslie matrix model for the female population only (Figure 1). Modeling

only the female population is standard practice and assumes that the number of males

does not affect the females’ reproductive ability [10, 38]. The stages correspond to the

different ecological sites inhabited during the life-cycle. There are four stages: the sea

and three river sites.

A one-month time step is chosen because females spawn approximately once a month

with a pause during the cooler periods [14, 31, 50]. The eggs hatch about 48 hours after

fertilization. As with other Sicydiinae [2, 31], free embryos then drift toward the sea in

less than a day or two [51]. Because this duration is negligible compared to the one-month

time-step, we consider that larvae begin their life at sea. Our data shows that the Pelagic

Larval Duration (PLD) extends from 96 to 296 days (≈ 10 months) depending on the

time of year the larva hatched [19, 29, 48]. During this period, larvae are subjected to

the competing risks of mortality and recruitment: each month a larva can die or survive,

with or without recruitment in river mouth.

After recruiting into river mouths post-larvae and juveniles adopt a benthic lifestyle
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and colonize the watershed [25, 26]. They face competition for habitats as well as added

risks of mortality through fishing and predation [25, 26]. If they survive, juveniles settle

for their adult period anywhere from the mouth to the upper reaches of the rivers. The

exact location and subsequent movements depend on accessibility and the availability of

food, reproductive territories and others poorly known factors [18, 26, 49]. We capture

these complex migratory patterns in a highly stylized manner by assuming that upon

recruitment juveniles settle in one of three defined ”river-sites” (indexed 1 to 3): down-

stream, midstream or upstream. Although recently recruited fish spend a short time in a

lower site on the way to their final destination we simplify the migratory movements by

assuming that at recruitment they are instantly dispatched to one of the three river-sites.

In the absence of detailed information on migrations between sites we also assume that

once a fish has reached its settlement site at recruitment it stays there.
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Figure 1: Stylized depiction of the four-site population structure (sea and down-, mid-
and up-stream river destinations). The population of Sicyopterus lagocephalus is assumed
for this illustrative example to have only three-age group. After their birth in rivers larvae
drift rapidly towards the sea (dotted ”fertility” line). They stay a few months at sea and
recruit into the next age group (thick arrows) in one of three river sites where juveniles
then stay, mature and reproduce. In Nk

i,t the river sites are indexed by the superscripts
k = 1, 2, 3 and age groups by the first subscript i. Thin arrows represent survival with a
transition to the next age group.
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2.2 The abundance vector

We let N0
t be the age-structured larval abundance vector (population at sea with m0

larval age groups) at the end of month t. The sea is the site indexed 0. Similarly Nk
t

(k = 1, 2, 3) are the adult abundance vectors in the three rivers sites, each with mk age

groups (theoretically there could be different numbers of age groups in different river sites

- if for example survival rates differed drastically). Each site-specific abundance vector is

of the form

Nk
t = (Nk

0,t, N
k
1,t, . . . N

k
mk−1,t), k = 0, 1, 2, 3. (1)

When at time t a larva aged i at sea recruits and settle into the kth river site it has

“migrated” from the (i + 1)st component of N0
t into the (i + 2)nd component of Nk

t+1
1.

The overall abundance vector

Nt
def.
= (N0

t ,N
1
t ,N

2
t ,N

3
t ) (2)

is obtained by stacking the site-specific vectors and has
∑k=3

k=0 mk components.

2.3 Twelve month-specific Leslie matrices

We will first give the structure of the twelve month-specific Leslie matrices which are

used to obtain Nt+1 on the basis of Nt. These matrices contain survival, recruitment and

fecundity rates. The modelling of these rates is detailed in Section 3.

In what follows τ will represent a month between 1 and 12 and Mτ is the Leslie matrix

with the survival, recruitment and fecundity rates prevailing during month τ . This matrix

will be applied to a population vector at the end of the previous month to produce the

population at the end of month τ .

1This means that the first components of the river sites have zero populations. However having these
vectors start at age 0 simplifies notations
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2.3.1 Site specific survival matrices

For each month τ = 1, 2, ..., 12 the within-site matrices of survival rates in site k are

Sk
τ

def.
=















0 0 . . 0

sk1,τ 0 . . 0

0 sk2,τ 0 . 0

. . . . .

0 0 . skmk−1,τ 0















, k = 0, 1, 2, 3. (3)

The survival rate ski,τ is thus the proportion of fish who at month τ are aged i− 1 months

and survive within site k to the next month. At sea (k = 0) the larvae are subjected

to the competing risks of death (or dispersion) and recruitment, which means a possible

migration to one of the river sites. In Section 3 we will therefore express these rates s0i,τ

as products of a survival rate multiplied by a probability of absence of recruitment - both

of which will depend on the current month τ .

The within river-sites survival rates ski,τ for k > 0 are pure survival rates (no risk of

migration) and will not be month-dependent (in this case the τ is superfluous).

2.3.2 Site-specific recruitment rates matrices

The matrices of site-specific recruitment rates from the sea into each one of the river-sites

are
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Rk
τ

def.
=

























0 0 . 0

rk1,τ 0 . 0

0 rk2,τ .

. . . .

0 0 . rkm0,τ

0 0 . 0

. . . .

0 0 . 0

























, k = 1, 2, 3. (4)

The recruitment rate rki,τ is the proportion of larvae at sea aged i− 1 during the month τ

who will survive an extra month at the end of which they will recruit in mouth and settle

into site k - if they have also survived the hazards encountered at the river mouth (fishing,

predation, etc.). Both the survival and recruitment rates will depend on τ . Each Rk
τ thus

has mk rows (the number of age groups in the k-th site) and m0 columns (number of age

groups in 0-th site (sea)). Equation (4) assumes that mk > m0 which is the case in our

application. Indeed the maximum number of months m0 spent in the sea is 10 months,

whereas the maximum number of months mk a fish lives in the rivers is of the order of

one hundred months, as suggested for other Sicydiinae [3, 7, 23].

2.3.3 Fecundity rates

The m0 by mk matrices with a first row containing the fecundity rates are

ξ times
︷ ︸︸ ︷

Fk
τ

def.
=















0 0 . . . 0 fk
ξ+1,τ . fk

mk,τ

0 0 . . . . . . 0

0 . . . . . . . .

. . . . . . . . .

0 . . . . . . . 0















k = 1, 2, 3
(5)
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where fk
i,τ is the number of larvae produced in site k the month τ by a female aged i

months. Females do not reproduce before roughly the third month spent in rivers [48].

Because the age in rivers is counted from birth (and not recruitment) we approximate

this early period of infertility by specifying an age ξ (from birth) up to which fecundity

is 0 (Eq. (5)).

If 0i,j denotes the zero matrix with i rows and j columns the 12 month-specific Leslie

matrices are obtained by putting together the survival, recruitment, fecundity and zero

matrices:

Mτ
def.
=












S0
τ F1

τ F2
τ F3

τ

R1
τ S1

τ 0m1,m2
0m1,m3

R2
τ 0m2,m1

S2
τ 0m2,m3

R3
τ 0m3,m1

0m3,m2
S3
τ












, τ = 1, 2, ..., 12. (6)

2.4 Leslie cyclical recurrence equation

The cyclical pattern in the Leslie matrices used for the projections will have at its core the

(backward) product of the 12 month-specific Leslie matrices from January to December.

This product is

M
def.
= M12M11 · · ·M1. (7)

Because of the seasonalities we need to know the month m∗ at which we start a projection

with an initial population vector N0 at the end of month m∗. The Leslie matrix used

to obtain the population N1 at the end of month m∗ + 1 will be the one prevailing

during month m∗+1. Therefore the population vector N1 at month 1 will be Mm∗+1N0.

Similarly at month 2 the vector N2 is Mm∗+2Mm∗+1N0 - at least if m∗ + 2 ≤ 12. More

generally, we write any month t as t = 12t1 + t2 with 0 ≤ t2 < 12, i.e. t2 is mod (t, 12),

the remainder of the division of t by 12. If t2 > 12 − m∗ the population vector Nt is

obtained by first multiplying N0 on the left by the matrices Mk for k from m∗ + 1 to 12;

then the result is multiplied by t1 times the product of all 12 Leslie matrices (M of Eq.

(7)), and finally by the matrices Mk for k from 1 to t2 − 12 + m∗. Recalling that t is

8



written as t = 12t1 + t2 we have

Nt = N12t1+t2 = Mt2−12+m∗Mt2−11+m∗ · · ·M1

(
i=11∏

i=0

M12−i

)

...

(
i=11∏

i=0

M12−i

)

︸ ︷︷ ︸

t1 times

×M12M11 · · ·Mm∗+1N0

= Mt2−12+m∗Mt2−11+m∗ · · ·M1 ×Mt1 ×M12M11 · · ·Mm∗+1N0. (8)

If m∗ = 12 then N0 is multiplied directly by the t1 products of 12 matrices then by the

remaining t2 matrices. If t2 ≤ 12−m∗ we obtain in a similar fashion

Nt = N12t1+t2 = Mt2+m∗Mt2−1+m∗ · · ·M1 ×Mt1 ×M12M11 · · ·Mm∗+1N0. (9)

If the matrix M is primitive (i.e. there exists p such that Mp > 0) then for a large t1 we

have by Perron-Frobenius that Mt1 ∼ λt1 where λ is the (positive) dominant eigenvalue

of M. For a fixed remainder t2, initial population and months N0 and m∗ there exists a

vector V(N0, t2,m
∗) such that for a large t1 we have

N12t1+t2 ∼ λt1V(N0, t2,m
∗). (10)

This expression shows that year-on-year all age groups grow at the same annual rate

λ − 1, although with a λt1 that is a multiplied by a vector V(N0, t2,m
∗) which depends

on the month being considered (as well as the initial population).

3 Survival, recruitment and fertility models

3.1 Pelagic survival without recruitment

3.1.1 Model

Before deriving the pelagic survival rates s0i,τ of Eq. (3) which take into account the risk of

recruitment, we need to specify a survival model in the absence of this risk. This survival
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at sea depend on age and the current month τ .

We will capture both aspects multiplicatively by assuming that month-to-month sur-

vival rates are the product of a baseline age-specific value multiplied by a seasonal factor

depending on the month.

1. Baseline survival. Very little is known on mortality at sea, other than the fact of

an extremely low survival by the time of recruitment (which we conflate with dispersion

at sea: a larva that either dies or disappears has no chance of making it to shore) [35].

This survival rate at the end of larval duration is of the order of 10−5 or less as commonly

observed for small pelagic larvae [20, 21]. We also assume that the hazard rate is extremely

high initially and decreases as larvae grow [21]. A Weibull distribution with a shape

parameter γ less than 1 captures this pattern because its hazard rate is of the form xγ−1

where x is age (An “extremely high” initial hazard rate is thus modelled as a hazard rate

approaching +∞ for an age x ≈ 0).

Because the standard parameters for the Weibull distribution are difficult to interpret,

we will parametrize the distribution with survival rates σ1 and σ2 specified at two points

in time t1 and t2. If we define

γ
def.
=

ln

(
ln(σ2)

ln(σ1)

)

ln

(
t2
t1

) ; α
def.
=

t2
ln(1/σ2)1/γ

(11)

then the Weibull survival rate with the required properties is

S(x)
def.
= e−(x/α)γ . (12)

The baseline survival rate from age i− 1 to i is then S(i)/S(i− 1). For the hazard rate

h(x)
def.
=

γ

α

(x

α

)γ−1

(13)

to be a decreasing function of age x the shape parameter γ of Eq. (11) must be less than

1.

10



2. Seasonal adjustment. The dependence on the month τ comes from the fact that

survival rates are higher with lower temperature, as demonstrated in marine larvae [20].

The temperature depends on the month with a fairly simple seasonal pattern. A peri-

odic annual pattern for the temperature T (τ) at month τ is well captured by a periodic

regression [5] of the form

T (τ)
def.
= b0 + b1 sin

(
2π × τ

12

)

+ b2 cos

(
2π × τ

12

)

. (14)

In order to model the effect of temperature we will need the minimum and maximum

temperatures over the 12 months:

tmin = min
1≤m≤12

T (m), tmax = max
1≤m≤12

T (m). (15)

We next define the parameter κ equal to the fraction by which the survival S(i)/S(i− 1)

rate increases (or decreases) when the temperature reaches its minimum tmin (or max-

imum tmax). The survival rate σ(i, τ) of a larva aged i months at month τ is now the

baseline survival rate S(i)/S(i−1) multiplied by an affine function of T (τ) with the right

properties:

σ(i, τ)
def.
=

S(i)

S(i− 1)
×

(

1− κ−
2tmaxκ

tmin − tmax

+
2κ

tmin − tmax

T (τ)

)

. (16)

Indeed one easily checks that the minimum (or maximum) survival rate S(i)/S(i− 1)×

(1− κ) (or S(i)/S(i− 1)× (1+ κ)) are obtained at the warmest (or coolest) month when

the temperature T (τ) is tmax (or tmin).

3.1.2 Baseline parameter values

Numerical values for the parameters b0, b1 and b2 of the modelled temperature of Eq.

(14) are found by routine least square minimization (Table 1 brings together these and

all other parameter values). Data were Sea Surface Temperature (SST, in Celsius degree)

between 2001 and 2011 from an analysis of NOAA satellite images (0.5 degree resolution)
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on the Reunion station, France (21◦5’S, 55◦E) [37]. The fraction κ is taken equal to 0.2

which reflects a 40% decrease from the coldest to the warmest months. With this value

the modelled peak recruitment months coincided with the known periods of maximum

larvae abundance at the river mouths (i.e. from September to December). The survival

parameters σ1 and σ2 used to specify the baseline Weibull were chosen at times t1 = 2

months (roughly the highest mortality period) and t2 = 7 months (roughly the longest

pelagic duration). More on the choice of these survival rates in the Discussion section.

3.2 Recruitment and site-dispersion models

3.2.1 Model

In the absence of the risk of mortality/dispersion at sea the time until a larva moves back

into freshwater is a random variable Rmb which depends on the month of birth mb2 [48],

as observed in others Sicydiinae [4, 45]. For a larva aged i months at month τ the month

of birth is a simple arithmetic function mb(i, τ) of i and τ :

mb(i, τ) =







mod(τ − i− 1, 12) + 1 if τ − i− 1 ≥ 0

12−mod(i− τ, 12) otherwise
. (17)

For each one of the 12 possible months of births mb we define the cumulative distribu-

tion function Fmb(x) of Rmb. We will need the discretized hazard of reaching a river mouth

for a fish aged i at month τ . This hazard is the probability ρi,τ of the event occurring

during the next month conditionally on it not having occurred yet:

ρi,τ
def.
=

Fmb(i,τ)(i+ 1)− Fmb(i,τ)(i)

1− Fmb(i,τ)(i)
. (18)

The pelagic survival (at sea) s0i,τ of Eq. (3) for k = 0 must incorporate the probability

2“Recruitment”, formulated through the recruitment rates rki,τ of Eq. (4) will occur when a larva
reaches a river mouth and survives the various risks of predation and fishing during that event and

chooses a river-site.
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1− ρi,τ that the larva does not reach a river mouth that month:

s0i,τ
def.
=

σ(i+ 1, τ)

σ(i, τ)
(1− ρi,τ ) (19)

where the σ’s are those of Eq. (16).

The rates at which larvae return in freshwater are ρi,τσ(i + 1, τ)/σ(i, τ). In order to

have the desired recruitment rates we incorporate the risk of mortality at recruitment

(through fishing, predation or competition): ϕτ is the survival rate at month τ from those

combined threats at recruitment. This dependence on the month τ can reflect seasonal

changes in the intensity of fishing - although in our numerical application the ϕτ ’s will

be equal. We also define the vector θ = (θ1, θ2, θ3) of probabilities of larvae choosing each

one of the three river-sites (Σθi = 1).

The recruitment rate rki,t into site k ≥ 1 for a fish aged i at time t (Eq. (4)) is now

obtained by combining the return rate in freshwater with survival at the river mouth and

the choice of river site:

rki,τ
def.
=

σ(i+ 1, τ)

σ(i, τ)
ρi,τϕτθk, k = 1, 2, 3. (20)

3.2.2 Baseline parameter values

The distribution of the age-at-recruitment Rmb conditionally on the month of birth mb

was obtained by measuring the number of growth rings in the otoliths (i.e. structure

of the inner ear of fish) of 396 post-larvae sampled at river mouths on 14 days between

November 2006 and March 2009 [48]. Although sample sizes for each month of birth were

small, the distributions were roughly normal, i.e.

Rmb ∼ N (µmb, σmb) mb = 1, 2, . . . , 12. (21)

with the 12 estimated mean and standard deviations given in Table 1.

The survival rates ϕτ when recruitment takes place the month τ are all taken equal
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to 0.05. This value is consistent with survival rate at settlement observed in recruits of

marine reef species, such as Epinephelus merra (Serranidae) in La Réunion coral reefs

[13, 28]. We did not include seasonal effect of fisheries pressure due to the lack of reliable

data. The spatial distribution of S. lagocephalus is strongly influenced by the river gradient

[18, 49]. Data from the Ichthyological Monitoring Network of the Reunion Island (online

data3) shows that around 55% of settled populations were found downstream, whereas

35% and 10% were observed respectively in the midstream and upstream sites [40]. The

probabilities of river-site choice θi were thus taken equal to 0.55, 0.35 and 0.10.

3.3 River survival (adult period)

3.3.1 Model

In the absence of precise information we will assume constant death rates in each one

of the three sites (exponential survival times, which depend on the river-site). We will

parametrize the distribution with life expectancies after recruitment e1, e2, e3 months, for

each one of the three river-sites. One-month survival rates thus depend only on the site:

ski,τ
def.
= exp(−e−1

k ) ≈ 1− e−1
k , k = 1, 2, 3. (22)

3.3.2 Baseline parameter values

Survival in rivers is known as poorly as larval pelagic survival. In the absence of more

precise information we took a life expectancies ei of 24 months for all three sites. This is

consistent with the 2 to 4 years of river life observed for Sicyopterus stimpsoni in Hawaiian

Islands [7] and the 6 to 7 years of Sicyopterus japonicus in Japan [23].

3http://banquededonnees.eaureunion.fr/bdd/
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3.4 Fecundity

3.4.1 Model

Fecundity rates are the numbers of female eggs produced each month by a female fish.

As observed for others Sicydiinae, these rates drop to 0 during colder months of the year

[15, 23, 31]. These months depend on the altitude of each one of the river-sites [14, 50].

We thus define three vectors Z1, Z2, Z3 containing the zero fertility months for each site.

For example Z1 = (8, 9, 10) means that in the downstream river-site fertility falls to 0

from August to October.

Fecundity rates increase then level off as fish age. A logistic (”S-shaped”) function F (i)

captures this pattern. We parametrize F (i) with i) the minimum and maximum values

of these fecundity rates fmin (for x → −∞) and fmax (for x → +∞), ii) the age ainf at

which the fecundity has its point of inflection; and iii) the value dinf of the derivative of

the fecundity at the point of inflection. The logistic function parametrize in this way is

F (i)
def.
= fmin +

fmax − fmin

1 + exp

(
4dinf (i− ainf )

fmin − fmax

) . (23)

After hatching, larvae are subjected to a risk of mortality as they drift toward the sea.

In order to capture this effect we will multiply the logistic function by site-specific drift

survival rates ηk. The site-specific fecundity rates of Eq. (5) in the three sites are then

fk
τ =







0 if τ ∈ Zk or τ ≤ ξ

F (τ)ηk otherwise
, k = 1, 2, 3; τ = 1, 2, . . . ,mk (24)

where Zk is the set of months during which fertility falls to zero in site k and ξ is the

age up to which fecundity is 0, as discussed in Section 2.3.3. Given the absence of major

obstacles on the river-ocean corridor we consider that mortality is negligible during the

rapid downward drift of larvae toward the sea. In the absence of precise information we

assume this to be the case regardless of the river-site of birth. We thus assume a survival

rate ηk equal to 1 for each river site. The fk
τ ’s are effective fecundity rates in the sense
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that they give numbers of larvae that make it to sea.

3.4.2 Baseline parameter values

The logistic model was fitted using a relationship between age and size [14] then a re-

lationship between size and fertility [50]. The function F (x) becomes positive at age

x > 3.763 months and fits the data well. The negative values for ages below 3.763 mo.

are not a problem because there is no fertility before ξ months and we are setting ξ = 9.

The months during which fertility fall to zero Z1, Z2 and Z3 are given in Table 1 [50].

4 Results

4.1 Dynamics

Our goal is not to reproduce a plausible trajectory or projection of the age-specific pop-

ulation of S. lagocephalus. This is because the real population is not in any sort of stable

state - i.e. not even in the year-on-year sense of the annualized Leslie matrix model repre-

sented by the product M of the 12 monthly matrices (Eq.(7)). Indeed there are stochastic

environmental changes which affect fecundity and survival rates, thus precluding any form

of stability. We believe there may also be density-dependent mechanisms by which the

survival rate at recruitment ϕτ decreases during the months when large numbers of juve-

niles arrive at the river-mouths. This negative feedback reflects larger natural mortality

in high density conditions and enhanced opportunistic fishing efforts at work when there

are more juveniles to be caught. Even if we were to envisage a stochastic model with

these feedbacks such a model would be difficult to calibrate because there is little data

on these processes.

Despite environmental and other fluctuations and hazards the population of S. lago-

cephalus has maintained itself over the decades and centuries. For this reason the numer-

ical values given above for the survival rates both at sea and in the rivers (which are the

parameters with the largest uncertainties) were chosen in such a way that they produced
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a dominant eigenvalue 1 - which is a stylized expression of a population in a long-term

equilibrium. Implausible values for survival rates chosen in this way would have alerted

us to problems in the model specifications. Still, we do not claim that “plausible” means

“accurate”. For example a life expectancy of 24 months in rivers may be too small, al-

though it does not contradict the fact that a few relatively old fish have been observed.

Indeed an exponential distribution with a 24-month average still means that 8 % of fish

live more than 5 years after entered in river (exp(−60/24) = 0.082).

Having specified the model with plausible parameters (Table 1) leading to a λ equal

to 1, we took an arbitrary (and wholly unrealistic) initial population of 1 for the first five

age groups and 0 for others. We started the projection in January.
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Figure 2: Projection of the population dynamics model of Sicyopterus lagocephalus show-
ing the number of births and the number of recruits at the river mouth.

In order for the matrix M of (7) to be primitive we need to delete the components

of the river-sites population vectors that remain 0 (see footnote in Section 2.2) as well as

the corresponding columns of M. Notwithstanding the unrealistic initial population as

well as the size and complexity of the model, the population then converged in only two

years (24 iterations) to its stationary state (Figure 2). The model reproduces seasonal

patterns in good agreement with the periods of high recruitment between September and
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December. These periods are well known locally because they coincide with high levels

of fishing at the river mouths [44]. Known smaller recruitment “bursts” between March

and July also appear in the model. Zero births between August and September reflect

the fact that during those months fertility rates are zero in all three sites (Figure 2).
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Figure 3: Distribution of pelagic larval duration (duration at sea) by month of recruit-
ment(modeled and observed). Except for March and August the model approximates
observed patterns at least crudely.

Field work has produced data on the distribution of Pelagic Larval Duration (PLD,

duration at sea) by month of recruitment, for seven of the 12 months in the year [48].

These data can be compared with the model’s corresponding outputs (Figure 3). The

figure shows a good agreement between modelled and observed values, except in March

and August. In March the observed durations are in the 2 to 4 and 8 to 9 months
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range while the modelled ones are more spread out. In August there is a one-month

shift between the two distributions. We can see in Figure 3 that starting in March the

distribution of PLD shifts to the right with each month of recruitment. This increasing

duration is caused by the decreasing temperature encountered by larvae in the marine

environment.

We have achieved a first goal of devising a model with plausible parameter values

compatible with a λ equal to 1. Our second goal is to assess the sensitivity of the model

to the various parameters. This information will help biologists identify the parameters

that need to be estimated more accurately.

4.2 Sensitivity analysis

4.2.1 The linear approximation

There are considerable uncertainties concerning the values of the model’s parameters

and their impact on the model. Before the model can be used with some confidence as

a management/planning tool we therefore need to perform a sensitivity analysis of the

model’s output. In Leslie matrix models the output is the dominant eigenvalue λ of the

projection matrix. In the simple situation of an unchanging Leslie matrix and a single site

there are detailed results on the sensitivity of λ to the entries of the matrix, considered

the model’s parameters [10]. Sensitivity results are also available for density-dependent

models [11], periodic models [27] and in situations where populations are classified by age

and state [11]. These results rest on the linear nature of the models and ignore interaction

between parameters in addition to being mostly local.

The present situation is more complex with a stage (or state)-classified model and

periodically changing matrices. In addition we want a sensitivity analysis not in terms of

the entries of the matrices but in terms of the biological parameters used to define these

entries. This entails non-linear relationships from the parameters p to the product M of

12 Leslie matrices (Eq. (7)) and to the dominant eigenvalue λ(p) of M. We thus have

a complex non-linear system and choose to use variance-based methods by which we can
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assess more globally the relative contribution of each parameter to the output’s variance

[8, 17, 46]. These variance-based methods have been used extensively by physicists and

engineers [43, 47] but less so by life scientists (see however [9, 16] and references therein).

In order to reflect the uncertainty concerning their values the model’s parameters

p = (pi) are considered random variables. They can for example be normally or uniformly

distributed with the baseline values used above as expected values. The goal is to write

the variance of λ(p) as a sum of terms that can be interpreted and can shed light on the

relative contribution of each parameter to the variance.

We start off with the Sobol decomposition of the function λ(p) written as a sum of

square integrable functions of an increasing number of the parameters [46]:

λ(p) = λ0 +
i=k∑

i=1

λi(pi) +
∑

j>i

λij(pi, pj) + · · ·+ λ1...k(p1, p2, . . . , pk) (25)

Although λ(p) is not a linear function of the parameters it is customary to test whether

the model might be approximately linear, at least when parameters do not vary too much.

In this case the calculations are simpler. A linear approximation can be justified for

biological models if parameters are not allowed to vary too much and have unambiguously

monotone effects, e.g. an increase in fertility rates or survival rates both increase λ(p).

A linear model means that the Sobol decomposition is of the form

λ(p) = a0 +

j=k
∑

j=1

aj × (pj − E(pj)). (26)

Because the pj’s are independent we have

Var(λ(p)) =

j=k
∑

j=1

a2jVar(pj). (27)

The first-order variance-based sensitivity index is then defined as

Sj
def.
=

a2jVar(pj)

Var(λ(p))
, j = 1, 2, . . . , k (28)
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which is the fractional contribution of the jth parameter to the overall variance Var(λ(p)).

The sum
∑

i Si is then 1 or approximately 1 if the model is approximately linear. We can

interpret Si as the expected amount by which the variance of λ will be reduced if we know

the true value of pi. This is of particular interest for our purpose as we wish to prioritize

future research in order to improve the reliability of our model. Such an approach is called

Factor Prioritization [42].

Given that

Cov(λ(p), pi) = Cov

(

a0 +

j=k
∑

j=1

aj × (pj − E(pj)), pi

)

= aiVar(pi), (29)

we have

Si =
a2iVar(pi)

Var(λ(p))
(30)

=
Cov(λ(p), pi)

2

Var(λ(p))Var(pi)
= ρ2i (31)

where ρi is the coefficient of correlation between the output λ(p) and the i-th parameter

pi.

The squared value of the Pearson correlation coefficient (CC) is therefore an estimator

Ŝi of Si when the model is linear. We then consider a sample of n values of each parameter,

i.e. pi = (p1i, p2i, . . . , pni) for i going from 1 to k, the number of parameters. We let λ =

(λ1, λ2, . . . , λn) be the corresponding n-dimensional vector of outputs, i.e. the dominant

eigenvalues. We then have

Ŝi = ρ̂2i =

(
∑n

j=1(pji − p̄i)(λj − λ̄)
)2

∑n
j=1(pji − p̄i)2 ×

∑n
j=1(λj − λ̄)2

(32)

where the horizontal bars indicate empirical means of the corresponding samples.
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4.2.2 Numerical results

The k = 43 parameters listed in Table 1 are assumed to be uniformly distributed with a

range of ±20% around their baseline values. This way no parameter is favoured. Because

the scale in the seasonal variations in pelagic survival is not well known we include in the

sensitivity analysis the fractional seasonal increase (or decrease) in survival κ. Because

the seasonal variations in pelagic survival are qualitatively well known the parameters of

the periodic regression of temperature are considered fixed. The discrete-value parameters

(i.e. the beginning and ending months of the reproductive periods) are taken equal to

their baseline value minus 1, their baseline values, and the baseline value plus 1 with equal

probabilities 1/3.

A latin hypercube sample of size n = 256 is employed to generate the sample. For

each trial pj = (pj1, . . . , pjk), j = 1, . . . , n, the model is run and λ(pj) computed. The

Pearson correlation coefficients are then estimated from Eq. (32). The Pearson correlation

coefficients between the outputs λ(p) and the parameters are given in Table 1 and range

from -0.19 to 0.58. The signs of the CCs are consistent with the expected effects of the

parameters. For example the life expectancy e, the maximum fertility fmax, the probability

of reaching the sea η and the survival rate at recruitment ϕτ are positively correlated

with the output. Conversely, the age at fertility inflection ainf and the durations of non-

reproductive periods Zk are negatively correlated with λ(p). The linear approximation is

justified a posteriori because
∑

i ρ̂
2
i = 0.982 is close to 1 and the square values of the CCs

can then be used as estimators of Si.

4.2.3 Pooled sensitivity

Given the quasi-linear behaviour of our model, it is of interest to pool (i.e. sum) squared

CCs within biologically meaningful groups - specifically the seven parameter groups de-

fined in bold letters in Table 1. The sum of squared CCs within each group is

ρ2group
def.
=

∑

i∈group

ρ̂2i (33)
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and represents the percentage in λ’s variation that is due to the parameters in the group.

The life expectancy of fish within rivers (“River Survival group” - RSG) is the most

important group and explains ρ2RSG = 34.1% of the output variations. The “Age-specific

fecundity” group explains ρ2ASF = 17.8% of the variation. The “Recruitment Survival and

Site Dispersion” comes in third at ρ2RSSD = 12.8%. These three groups capture almost two

thirds of the total variation (64.7%). More surprisingly and despite the extremely high

larval mortality, the pelagic survival (6.5%) and pelagic duration at sea (3.4%) are the

least influential parameter groups. Three parameter groups are in the 10 to 20 % range

(Figure 4 incorporates the uncertainty on the parameters and has these percentages on

the x-axis). In the next section we argue that a sensitivity analysis goes hand in hand

with an uncertainty analysis.

4.3 Uncertainty vs. sensitivity analysis

An Uncertainty Analysis (UA) usually complements a Sensitivity Analysis (SA). Indeed

there is a relatively recent consensus that UA “quantifies the variability of the output

caused by the incomplete knowledge or misspecification of the modeller” while SA “aims

at establishing the relative importance of the input factors involved in the model” ([9]

pp. 168-169). Both analyses dovetail however. Indeed, our concern until now has been

with a sensitivity analysis aimed at prioritizing future research in terms of identifying

the parameters that have the greatest impact on the output variability - with a view

toward improving the precision of the corresponding parameter. But the need for this

improvement depends on the level of “certainty” on the parameters. If a parameter has

a great influence on the variance but is already well known, there is no need to improve

its estimate. The same holds if a parameter is very “uncertain” but contributes little to

the variance.

A detailed quantified uncertainty analysis is beyond the scope of this paper. However

some parameters (or groups thereof) are better known than others. For example fecundity

rates and pelagic durations are known fairly accurately whereas we do not even know
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orders of magnitudes for survival rates, both at sea and in the rivers. It is then of

interest to cross-classify, however crudely, the groups of parameters according to levels of

uncertainty and levels of sensitivity. Uncertainty is assessed through our own subjective

“expert opinion” as being low, medium or high. Sensitivity for each one of the seven

parameter groups is measured by the pooled ρ2group’s discussed in Section 4.2.3.

Through river survival and fecundity, Figure 4 shows that it is the river life stage

that has the most influence on the model. Perhaps this is because these factors are at

play during years, as opposed to recruitment which is a one-off, instantaneous event, or

pelagic duration which affects only the first few months of the life cycle. River survival

(i.e. life-expectancy in river) is thus the single most critical parameter in view of its

large influence on the model and large uncertainty - this parameter should therefore be a

priority for future research.

Both the sensitivity and uncertainty on fecundity is substantially smaller than that

on river survival, but is still far from negligible. A logistic function is a highly simplified

model for a fecundity that increases with age. The timing and steepness of the inflection

rely on delicate relationships between size, age and fecundity which can also depend on

the river site due to differences of environmental conditions - a dependence not accounted

for in our model. More generally fecundity, as well as drift and recruitment survival rates

depend on environmental and anthropomorphic factors that are both poorly understood

and documented.

If the river parameters are the most sensitive and uncertain, Figure 4 shows that

the pelagic duration and survival are the least sensitive factors, but have very different

uncertainties: it is low for pelagic duration (in the absence of mortality) while the pelagic

survival is extremely uncertain.

5 Conclusion

Modelling the population dynamics of species subjected to fluctuating conditions in a

multi-stage environment is a challenge - particularly when little data is available. The
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challenge is enhanced by the extreme nature of the fecundity rates (tens of thousands a

month) and of the survival rates (one in a hundred thousand reaches the age of reproduc-

tion). These extreme rates reflect challenging natural conditions of tropical islands which

affect food availability, competition for habitat, predation etc. To these natural hazards

one has to add anthropogenic factors such as the intensive fishing at river mouths and

poaching. Dams and weirs can affect the movement of migratory species and compromise

habitats diversity.

Our model aggregates many natural and anthropogenic factors which have a large

influence on the growth potential of the population. For example, an assessment of

fisheries efficiency and productivity are preliminary requirements in order to evaluate the

importance of this human activity on the population and distinguish its effect from the

natural causes of mortality at settlement. Unfortunately, the quantities/weight of post-

larvae caught by fisheries are not subject to official declarations in La Réunion, which

complicates the task of data-hungry biologists.

Despite the many pitfalls and “blind data spots” we were able to reproduce the dy-

namics of S. lagocephalus in good general agreement with our knowledge on survival,
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fecundity and seasonal patterns (i.e. the model captures age and peaks of recruitment in

river mouths). The large uncertainties that remain concerning the parameter values still

preclude the use of our model for projection/management purposes. Such a model would

ideally lead to recommendations on preservation and conservation measures that would

insure the subsistence of the local stock of S. lagocephalus. Although not mature enough

to be used as a projection tool, our model has shed light on the components of the life

history that are critical to the completion of the life cycle: more precise estimates of the

fish’s life expectancy in river and mortality at recruitment and survival during the drift

of larvae toward the sea would bring the model closer to being a workable management

tool.

26



Parameter Definition Value Source Corr. coeff.

Reproductive periods

Downstream Begin-End months Nov.-July [50] (0.20, -0.19)
Midstream Begin-End months Jan.-June [50] (0.15, -0.10)
Upstream Begin-End months Fev.-May [50] (0.01, -0.10)

Age-specific fecundity

ρ Time before sexual maturation 9 mo. [48] -0.05
fmax Max fertility 73989.71 eggs [50, 14] 0.38
fmin Min fertility -31583.25 eggs [50, 14] -0.03
ainf Age at fertility inflection 11.80 mo. [50, 14] -0.16
dinf Deriv. fertility at inflection 3.49 eggs/mo. [50, 14] 0.07

Drift survival

η Probability of reaching the sea 1 [51] 0.35

Pelagic survival

σ1 Larval survival rate at 2 mo. 10−4 [20, 21]* 0.13
σ2 Larval survival rate at 7 mo. 2× 10−5 [20, 21]* 0.21
κ Seasonal effect of temperature 0.2 [20]* 0.06
b0 Mesor of the periodic regression 25.73 [37]
b1 Periodic regression coefficient 2.24 [37]
b2 Periodic regression coefficient 0.80 [37]

Pelagic duration

(µ1, σ1) (mean, std. dev) (4.37, 0.76) [48] (-0.10, 0.00)
(µ2, σ2) (mean, std. dev) (5.14, 0.78) [48] (-0.01, 0.04)
(µ3, σ3) (mean, std. dev) (5.38, 0.91) [48] (-0.05, 0.02)
(µ4, σ4) (mean, std. dev) (6.31, 1.00) [48] (-0.05, 0.01)
(µ5, σ5) (mean, std. dev) (6.71, 0.86) [48] (-0.08, -0.04)
(µ6, σ6) (mean, std. dev) (7.09, 1.01) [48] (-0.04, -0.01)
(µ7, σ7) (mean, std. dev) (7.08, 0.88) [48] (-0.02, 0.01)
(µ8, σ8) (mean, std. dev) (6.80, 0.84) [48] (0.04, 0.01)
(µ9, σ9) (mean, std. dev) ( 6.05, 0.65) [48] (-0.01, 0.00)
(µ10, σ10) (mean, std. dev) (4.79, 1.01) [48] (0.02, -0.02)
(µ11, σ11) (mean, std. dev) (4.28, 0.35) [48] (0.00, 0.04)
(µ12, σ12) (mean, std. dev) (4.48, 0.78) [48] (-0.05, 0.01)

Recruitment survival and site-dispersion

ϕτ Survival rate at recruitment 0.05 [13, 28]* 0.35
(θ1, θ2) Probabilities of river-site choice

(θ3 = 1− (θ1 + θ2))
(0.55, 0.35) [40] (0.07, 0.03)

River survival

e Life expectancy 24 mo. [7, 23]* 0.58

Table 1: Parameter descriptions, their baseline values and sources (*: studies dealing with
species close to Sicyopterus lagocephalus). The last column has the estimated Pearson
correlation coefficients.
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