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Abstract
Semi-symmetric three-way arrays are essential tools in Blind Source Separation

(BSS) particularly in Independent Component Analysis (ICA). These arrays can
be built by resorting to higher order statistics of the data. The Canonical Polyadic
(CP) decomposition of such semi-symmetric three-way arrays allows us to identify
the so-called mixing matrix, which contains the information about the intensities
of some latent source signals present in the observation channels. In addition, in
many applications, such as the Magnetic Resonance Spectroscopy (MRS), the
columns of the mixing matrix are viewed as relative concentrations of the spectra
of the chemical components. Therefore, the two loading matrices of the three-way
array, which are equal to the mixing matrix, are nonnegative. Most existing CP
algorithms handle the symmetry and the nonnegativity separately. Up to now,
very few of them consider both the semi-nonnegativity and the semi-symmetry
structure of the three-way array. Nevertheless, like all the methods based on line
search, trust region strategies and alternating optimization, they appear to be
dependent on initialization, requiring in practice a multi-initialization procedure.
In order to overcome this drawback, we propose two new methods, called JD+

LU
and JD+

QR, to solve the problem of CP decomposition of semi-nonnegative
semi-symmetric three-way arrays. Firstly, we rewrite the constrained optimization
problem as an unconstrained one. In fact, the nonnegativity constraint of the two
symmetric modes is ensured by means of a square change of variable. Secondly, a
Jacobi-like optimization procedure is adopted because of its good convergence
property. More precisely, the two new methods use LU and QR matrix
factorizations, respectively, which consist in formulating high-dimensional
optimization problems into several sequential polynomial and rational
subproblems. By using both LU and QR matrix factorizations we aim at studying
the influence of the used matrix factorization. Numerical experiments on
simulated arrays emphasize the advantages of the proposed methods especially
the one based on LU factorization, in the presence of high-variance model error
and of degeneracies such as bottlenecks. A BSS application on MRS data
confirms the validity and improvement of the proposed methods.

Keywords: Canonical polyadic decomposition; semi-nonnegative semi-symmetric
tensor; joint diagonalization by congruence; individuals differences in scaling
analysis; blind source separation; independent component analysis; magnetic
resonance spectroscopy

Introduction
Higher Order (HO) arrays, commonly called tensors, play an important role in nu-
merous applications, such as chemometrics [1], telecommunications [2], and biomed-
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ical signal processing [3]. They can be seen as HO extensions of vectors (1-way ar-
rays) and matrices (2-way arrays). In many practical situations the available data
measurements cannot be arranged into a tensor form directly, that is to say, the
observation diversity is insufficient either in time or frequency. However, if the la-
tent data satisfies the statistical independence assumption, which is reasonable in
many applications, meaningful HO arrays can be built by resorting to HO Statistics
(HOS) of the data [4]. In this instance, the HO arrays are partially symmetric or
Hermitian due to the special algebraic structure of the basic HOS, such as moments
and cumulants. In Independent Component Analysis (ICA), the latent physical
phenomena which are assumed to be statistically independent can be revealed by
decomposing the HO array into factors. There exists several ways to decompose a
given HO array, such as the Tucker model [5,6]. Among the existing reliable HO ar-
ray decomposition models, the Canonical Polyadic (CP) decomposition model have
attracted much attention. Indeed its uniqueness properties can be ensured under the
sufficient conditions established by Kruskal [7]. In addition unlike the HO Singular
Value Decomposition (HOSVD) [6], CP model does not impose any orthogonality
constraint on its factors.
Theoretically, a polyadic decomposition exactly fits an array by a sum of rank-

one terms [8]. A CP decomposition is defined as a polyadic decomposition with
a minimal number of rank-one terms which are needed to exactly fit a given HO
array. Currently the CP decomposition is gaining importance in several applica-
tions, for example, in exploratory data analysis [9], sensor array processing [10],
telecommunications [11, 12], ICA [13] and in multiple-input multiple-output radar
systems [14]. A multitude of methods were developed to compute the CP decompo-
sition. They include the iterative Alternating Least Squares (ALS) procedure [15],
which gains popularity due to its simplicity of implementation and low numerical
complexity. Uschmajew proved the local convergence property of ALS under some
conditions [16]. However, this convergence can be slow. Therefore an Enhanced
Line Search (ELS) procedure was proposed by Rajih et al. [17] to cope with the
slow convergence problem of ALS. Other approaches were also proposed, such as
the conjugate gradient algorithm [18] and joint eigenvalue decomposition based
algorithms [19, 20], to cite a few. Some HO arrays enjoy certain properties, such
as i) symmetry and ii) nonnegativity, which can not be simply handled by the
aforementioned general CP decomposition methods. Therefore, special CP models
become more and more important.
The first special form of the CP model for 3-way arrays that are symmetric in

two modes, brings the concept of INdividuals Differences in SCALing (INDSCAL)
analysis [21]. On one hand, INDSCAL analysis has been studied as a way of multiple
factor analysis [22] with applications to chemometrics, psychology and marketing
research. On the other hand, in the domain of signal processing, and more partic-
ularly in Blind Source Separation (BSS), the INDSCAL analysis is widely known
as the Joint Diagonalization of a set of matrices by Congruence (JDC). During
the past two decades, many successful JDC methods have been proposed, such
as Yeredor’s Alternating Columns and Diagonal Center (ACDC) algorithm [23],
the Joint Approximate Diagonalization (JAD) algorithm proposed by Cardoso and
Souloumiac [24], the Fast Frobenius DIAGonalization (FFDIAG) algorithm pro-
posed by Ziehe et al. [25], Afsari’s LUJ1D algorithm [26], and many others [27–33].
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A recent survey of JDC can be found in [34]. The second special form of CP model
is defined when all the factors in the CP decomposition are constrained to be non-
negative, commonly known as Nonnegative Tensor Factorization (NTF). NTF can
be regarded as the extension of Nonnegative Matrix Factorization (NMF) [35] to
higher orders. In many applications, the physical properties are inherently nonneg-
ative, such as chemistry [1] and fluorescence spectroscopy [36, 37]. In those appli-
cations the results are only meaningful if the nonnegativity constraint is satisfied.
Various methods for computing NTF and also NMF can be found in [38,39].

So far, the CP model with both the symmetry and nonnegativity constraints has
not received much attention. Coloigner et al. proposed a family of algorithms based
on line search and trust region strategies [40]. Wang et al. developed an alternat-
ing minimization scheme [41]. Those methods appear to depend on initialization,
and therefore in practice require a multi-initialization procedure, leading to an in-
crease of numerical complexity. In this paper, we propose to fit the CP model of a
3-way array by imposing both the semi-nonnegativity and the semi-symmetry con-
straints. More precisely, we impose a nonnegativity constraint on the two symmet-
ric modes of the INDSCAL model, which leads to the semi-nonnegative INDSCAL
model or equivalently the CP decomposition of semi-nonnegative semi-symmetric
3-way arrays. Such a model is often encountered in ICA problems where a nonneg-
ative mixing matrix is frequently considered. For example, in Magnetic Resonance
Spectroscopy (MRS), the columns of the mixing matrix represent the positive con-
centrations of the source metabolites. Then the 3-way array built by stacking the
matrix slices of a cumulant array is both nonnegative and symmetric in two modes.
In such a case, the semi-nonnegative INDSCAL problem is equivalent to the JDC
problem subject to a nonnegativity constraint on the joint transformation matrix.
We propose two new algorithms to solve the semi-nonnegative INDSCAL problem,
called JD+

LU and JD+
QR. Firstly, we rewrite the constrained optimization problem as

an unconstrained one. Actually the nonnegativity constraint is ensured by means of
a square change of variable. Secondly, we propose two Jacobi-like approaches using
LU and QR matrix factorizations, respectively, which consist in formulating high-
dimensional optimization problems into several sequential polynomial and rational
subproblems. By using both LU and QR matrix factorizations we aim at studying
the influence of the used matrix factorization. Numerical experiments highlight the
advantages of the proposed methods especially JD+

LU, in the case of dealing with
high-variance model error and with degeneracies such as bottlenecks. A BSS ap-
plication on MRS signals confirms the validity and improvement of the proposed
methods. A part of this work has been recently presented at the 8th IEEE Sensor
Array and Multichannel signal processing workshop [42].

The rest of the paper is organized as follows. After the presentation of some
notations, the second section introduces some basic definitions of the multilinear
algebra then gives the semi-nonnegative INDSCAL problem formulation. In section
three, we describe the proposed algorithms in details and we also provide an analysis
of the numerical complexities. Section four shows the computer simulation results.
Finally we conclude the paper.
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Multilinear algebra prerequisites and problem statement
Notations
The following notations are used throughout this paper. RN1×N2×···×Ni and
R

N1×N2×···×Ni
+ denote the set of real-valued (N1 × N2 × · · · × Ni) arrays and the

set of nonnegative real-valued (N1 × N2 × · · · × Ni) arrays, respectively. Vectors,
matrices and HO arrays are denoted by bold lower case letters (a, b, · · · ), bold up-
per case letters (A, B, · · · ) and bold calligraphic letters (A, B, · · · ), respectively.
The (i, j)-th entry of a matrix A is symbolized by Ai,j . Sometimes the MATLABr

column/row notation is adopted to indicate submatrices of a given matrix or subar-
rays of a HO array. Also ai denotes the i-th column vector of matrix A. � denotes
the Hadamard product (element-wise product), and A�2 = A�A. � denotes the
Khatri-Rao product. A] denotes the pseudo inverse of A. The superscripts, −1,
T and −T stand for the inverse, the transpose and the inverse after transpose op-
erators, respectively. The (N × N) identity matrix is denoted by IN . 0N stands
for N -dimensional vectors of zeros. |a| denotes the absolute value of a. ‖A‖F and
det(A) stand for the Frobenius norm and determinant of matrix A, respectively.
diag(A) returns a matrix comprising only the diagonal elements ofA. Diag(b) is the
diagonal matrix whose diagonal elements are given by the vector b. off(A) vanishes
the diagonal components of the input matrix A. vec(A) reshapes a matrix A into
a column vector by stacking its columns vertically.

Definitions and problem formulation
Now we introduce some basic definitions in multilinear algebra which are necessary
for the problem formulation.

Definition 1 The outer product C = u(1) ◦ u(2) ◦ u(3) of three vectors u(i) ∈
R

Ni (1 ≤ i ≤ 3) is a 3-way array of RN1×N2×N3 whose elements are defined by
Ci1,i2,i3 = u

(1)
i1
u
(2)
i2
u
(3)
i3

.

Definition 2 Each 3-way array C expressed as the outer product of three vectors
is a rank-1 3-way array.

More generally, the rank of a 3-way array is defined as follows:

Definition 3 The rank of an array C ∈ RN1×N2×N3 , denoted by rk(C), is the
minimal number of rank-1 arrays belonging to RN1×N2×N3 that yield C in a linear
combination.

Despite the similarity between the definition of the tensor rank and its matrix
counterpart, the rank of a three-way array may exceed its dimensions [4].

Definition 4 A 3-way array slice is a 2-dimensional section (fragment) of a 3-way
array, obtained by fixing one of the three indices [38].

For example, the k-th frontal slice of a 3-way array C can be denoted by C:,:,k using
MATLAB notation and sometimes it is also denoted by C(k).
The low-rank INDSCAL model of a 3-way array is defined as follows:
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Definition 5 For a given P , corresponding to the number of rank-1 terms, the
INDSCAL model of a 3-way array C ∈ RN×N×K can be expressed as:

C =

P∑
p=1

ap ◦ ap ◦ dp + V (1)

where the 3-way array V represents the model residual.

The notation C = [[A,A,D]]+V refers to the INDSCAL decomposition (1) of C with
the associated loading matrices A = [a1, · · · ,aP ] ∈ RN×P and D = [d1, · · · ,dP ] ∈
R

K×P . If and only if the residual V is a null tensor, we have an exact INDSCAL
decomposition.
An exact INDSCAL decomposition is considered to be essentially unique when it is

only subject to scale and permutation indeterminacies. It means that an INDSCAL
decomposition is insensitive to a scaling of the three vectors ap, ap and dp provided
that the product of the 3 scale numbers is equal to 1, and an arbitrary permutation of
the rank-1 terms. A necessary and sufficient uniqueness condition for the INDSCAL
model was established by Afsari [43].
The INDSCAL model can also be described by using the frontal slices of C:

∀ k ∈ {1, 2, · · · ,K}, C(k) = C:,:,k = AD(k)AT + V (k) (2)

where D(k) is a diagonal matrix whose diagonal contains the elements of the k-th
row of D, and V (k) = V :,:,k.
In this paper we propose to fit the INDSCAL model of 3-way arrays, while impos-

ing nonnegativity constraints on both equal loading matrices A. It will be referred
to as the semi-nonnegative INDSCAL model, as follows:

Problem 1 Given C ∈ RN×N×K and an integer P , find a semi-nonnegative IND-
SCAL model of C = [[A,A,D]], subject to the (N×P ) matrix A having nonnegative
components.

The semi-nonnegative INDSCAL problem is equivalent to the JDC problem subject
to the nonnegativity constraint on the joint transformation matrix. In this paper,
we mainly focus on the case of square nonnegative joint transformation matrix, for
which N = P . The case of N > P will be discussed briefly in the next section.
Therefore the problem that we tackle in this paper is defined as follows:

Problem 2 Given a 3-way array C ∈ RN×N×K with K symmetric frontal slices
C(k) ∈ RN×N , find a (N × N) joint transformation matrix A and K diagonal
matrices D(k) of dimension (N ×N) such that:

∀ k ∈ {1, 2, · · · ,K}, C(k) = AD(k)AT + V (k) (3)

by minimizing the residual term V (k) in a least-squares sense, subject to A having
nonnegative components.
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JDC cost functions
If the residual array V is a realization of a Gaussian random array, it is logical to fit
the INDSCAL model by the following Direct Least Square (DLS) criterion [23,44]:

JDLS(A,D) =

K∑
k=1

∣∣∣∣∣∣C(k) −AD(k)AT
∣∣∣∣∣∣2
F

(4)

and to minimize (4) with respect to A and D. Note that, in the field of ICA, only
the loading matrix A is of interest since it corresponds to the mixing matrix of
several latent source signals. The minimization of (4) with respect to D, when A
is fixed, was given by Yeredor in [23]:

D(k) = Diag{[(ATA) � (ATA)]−1(A�A)T vec (C(k))} (5)

When A is orthogonal, we can replace D(k) by Diag{(A �A)T vec (C(k))} in (4).
Then the extra parameter D can be eliminated and the minimization of (4) is
equivalent to minimizing the following InDirect Least Square (IDLS) criterion [45,
46]:

JIDLS-O(A) =

K∑
k=1

∣∣∣∣∣∣ off(ATC(k)A)
∣∣∣∣∣∣2
F

(6)

In some cases such as in ICA, the orthogonality assumption of A can be satisfied by
using a spatial whitening procedure [47]. However, it is known that the whitening
procedure may introduce additional errors. Therefore many algorithms propose to
relax the orthogonality constraint by introducing the following cost function [25,31]:

JIDLS(A) =

K∑
k=1

∣∣∣∣∣∣ off(A−1C(k)A−T)
∣∣∣∣∣∣2
F

(7)

Frequently the minimization of criterion (7) is performed on a matrix Z def
= A−1

instead of A for simplicity and Z is called the joint diagonalizer. To use this cri-
terion, the matrix A (or Z) should be properly constrained in order to avoid the
trivial zero solution and/or degenerate solutions [34].
Besides the criterions (4) and (7), Afsari [26] presented a new cost function, which

is invariant to column scaling of A. Pham proposed an information theoretic cri-
terion [48], which requires each matrix C(k) to be positive definite. Tichavský and
Yeredor gave a special weighted least square criterion [49].

Methods
Problem reformulation
Existing semi-nonnegative INDSCAL algorithms are based on the minimization of
the cost function (4) [40, 41]. They are able to achieve a better estimation of A
than ACDC when the data satisfies the semi-nonnegative INDSCAL model at the
cost of a higher computational complexity. We propose to use criterion (7) based on
elementary factorizations of A due to the fast convergence property of this kind of
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procedures. Generally, it is quite difficult to impose the nonnegativity constraint on
A, while computing its inverseA−1 by minimizing (7). Let us consider the structure
of C = [[A,A,D]] with the following assumptions:

1○ A ∈ RN×N
+ is nonsingular;

2○ D ∈ RK×N does not contain zero entries.
Then each frontal slice of C is nonsingular and its inverse can be expressed as follows:

(
C(k)

)−1
= A−T

(
D(k)

)−1
A−1 (8)

We use C(k,−1) to denote (C(k))−1 for simplicity. Equation (8) shows that C(k,−1)

also preserves the jointly diagonalizable structure. Furthermore, instead of A−1,
A serves as the joint diagonalizer. Then A can be estimated by minimizing the
following modified criterion based on (7):

J(A) =

K∑
k=1

∣∣∣∣∣∣ off(ATC(k,−1)A)
∣∣∣∣∣∣2
F

(9)

By such a manipulation, most algorithms based on criterion (7) can now estimate
A directly. However, none of them can guarantee the nonnegativity of A. In order
to impose the nonnegativity constraint on A, we resort to use a square change of
variable which was introduced by Chu et al. [50] for NMF, next adopted by Royer
et al. for NTF [37] and by Coloigner et al. for semi-nonnegative INDSCAL [40]:

A = B �B = B�2 (10)

where B ∈ RN×N . Then problem 2 can be reformulated as follows:

Problem 3 Given C = [[A,A,D]] ∈ RN×N×K , find the square nonnegative load-
ing matrix A = B�2 such that B minimizes the following cost function:

J(B) =

K∑
k=1

∣∣∣∣∣∣off
(

(B�2)TC(k,−1)B�2
)∣∣∣∣∣∣2

F
(11)

LU and QR parameterizations of B
In order to minimize (11), one may consider a gradient-like approach. However, the
performance of this kind of method is sensitive to the initial guess and to the search
step size. In addition, the calculation of gradient of (11) with respect toB is compu-
tationally expensive due to the existence of Hadamard product. Other algorithms,
using Jacobi-like procedures [25, 26, 31], parameterize A as a product of several
special elementary matrices and estimate each elementary matrix successively. We
propose to follow such a minimization scheme.
Now let us recall the following definitions and lemmas:

Definition 6 A unit upper (or lower) triangular matrix is an upper (or lower,
respectively) triangular matrix whose main diagonal elements are equal to 1.
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Definition 7 An elementary upper (or lower) triangular matrix with parameters
{i, j, ui,j} and i < j is a unit upper (or lower, respectively) triangular matrix whose
non-diagonal elements are zeros except the (i, j)-th entry, which is equal to ui,j.

U (i,j)(ui,j) with 1 ≤ i < j ≤ N denotes an elementary upper triangular matrix:

U (i,j)(ui,j) =



Ii−1
... 0

... 0

. . . 1 . . . ui,j . . .

0
... Ij−i−1

... 0

. . . 0 . . . 1 . . .

0
... 0

... IN−j


(12)

Similarly, L(i,j)(`i,j) with 1 ≤ j < i ≤ N corresponds to an elementary lower
triangular matrix.

Definition 8 A Givens rotation matrix with parameters {i, j, θi,j} and i < j is
equal to an identity matrix except for the (i, i)-th, (j, j)-th, (i, j)-th and (j, i)-th
entries, which are equal to cos(θi,j), cos(θi,j), − sin(θi,j) and sin(θi,j), respectively.

Q(i,j)(θi,j) with 1 ≤ i < j ≤ N indicates the corresponding Givens rotation matrix:

Q(i,j)(θi,j) =



Ii−1
... 0

... 0

. . . cos(θi,j) . . . − sin(θi,j) . . .

0
... Ij−i−1

... 0

. . . sin(θi,j) . . . cos(θi,j) . . .

0
... 0

... IN−j


(13)

Lemma 1 Any (N×N) unit lower triangular matrix L whose (i, j)-th component
is `i,j (i > j) can be factorized as the following product of N(N − 1)/2 elementary
lower triangular matrices [51, Chapter 3]:

L =
∏

j∈J1

∏
i∈I1(j)

L(i,j)(`i,j) (14)

where the two sets of indices J1 and I1(j) are defined by J1 = {1, 2, . . . , N} and
I1(j) = {j + 1, j + 2, . . . , N} for the sake of convenience. Similarly, any (N ×N)

unit upper triangular matrix U whose (i, j)-th component is equal to ui,j (i < j)
can be factorized as a product of elementary upper triangular matrices as follows:

U =
∏
i∈I2

∏
j∈J2(i)

U (i,j)(ui,j) (15)

where I2 and J2(i) are two sets of indices, defined by I2 = {N − 1, N − 2, . . . , 1}
and J2(i) = {N,N − 1, . . . , i+ 1}.
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Lemma 2 Any (N ×N) orthonormal matrix Q can be factorized as the following
product of N(N − 1)/2 Givens rotation matrices [52, Chapter 14]:

Q =
∏
i∈I2

∏
j∈J2(i)

Q(i,j)(θi,j) (16)

where I2 and J2(i) are defined in lemma 1.

For any nonsingular matrix B ∈ RN×N , the LU matrix factorization decomposes
it as B = LUΛΠ, where L ∈ RN×N is a unit lower triangular matrix, U ∈ RN×N

is a unit upper triangular matrix, Λ ∈ RN×N is a diagonal matrix and Π ∈ RN×N

is a permutation matrix. B also admits the QR matrix factorization as B = QRΛ,
where Q ∈ RN×N is an orthonormal matrix, R ∈ RN×N is a unit upper triangular
matrix, and Λ ∈ RN×N is a diagonal matrix. Due to the indeterminacies of the
JDC problem, the global minimum of (11), say B, can be expressed as B = LU

and B = QR without loss of generality. Moreover, by incorporating lemma 1 and
lemma 2, we obtain the two following elementary factorizations of B:

B =
∏

j∈J1

∏
i∈I1(j)

L(i,j)(`i,j)
∏
i∈I2

∏
j∈J2(i)

U (i,j)(ui,j) (17)

B =
∏
i∈I2

∏
j∈J2(i)

Q(i,j)(θi,j)
∏
i∈I2

∏
j∈J2(i)

U (i,j)(ui,j) (18)

As a consequence, the minimization of (11) with respect to B is converted to the
estimate of N(N − 1) parameters: `i,j and ui,j for the LU decomposition (17), or
θi,j and ui,j for the QR decomposition (18). Instead of simultaneously computing
the N(N − 1) parameters, we propose two Jacobi-like procedures which perform
N(N − 1) sequential optimizations. This yields two new algorithms: i) the first
algorithm based on (17), named JD+

LU, estimates each `i,j and ui,j successively,
and ii) the second one based on (18), called JD+

QR, estimates each θi,j and ui,j
sequentially.
Now, the difficulty is how to estimate four kinds of parameter, namely L(i,j)(`i,j)

and U (i,j)(ui,j) for JD+
LU, and Q

(i,j)(θi,j) and U (i,j)(ui,j) for JD+
QR. Two points

should be noted here: i) L(i,j)(`i,j) and U (i,j)(ui,j) belong to the same category of
matrices, therefore they can be estimated by the same algorithmic procedure just
with an emphasis on the relation between the i and j indices (i < j for U (i,j)(ui,j)

and j < i for L(i,j)(`i,j)); ii) for both JD+
LU and JD+

QR algorithms, the procedure of
estimating U (i,j)(ui,j) is identical. Consequently, the principal problem is reduced
to estimating two kinds of parameters, namely U (i,j)(ui,j) and Q(i,j)(θi,j).

Minimization with respect to the elementary upper triangular matrix U (i,j)(ui,j)

In this section, we minimize (11) with respect toU (i,j)(ui,j) with 1 ≤ i < j ≤ N . Let
Ã and B̃ denote the current estimate of A and B before estimating the parameter
ui,j , respectively. Let Ã(new) and B̃(new) stand for Ã and B̃ updated by U (i,j)(ui,j),
respectively. Furthermore, the update of B̃ is defined as follows:

B̃(new) = B̃U (i,j)(ui,j) (19)
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In order to compute the parameter ui,j , a typical way is to minimize the criterion
(11) with respect to ui,j by replacing matrix B̃ by B̃(new). For the sake of conve-
nience, we denote J(ui,j) instead of J(B̃(new)). Then J(ui,j) can be expressed as
follows:

J(ui,j) =

K∑
k=1

∣∣∣∣∣∣off
{

[(B̃(new))�2]TC(k,−1)[(B̃(new))�2]
}∣∣∣∣∣∣2

F
(20)

The expression of the Hadamard square of the update B̃(new) is shown in the
following proposition:

Proposition 1 Ã(new) = (B̃(new))�2 = (B̃U (i,j)(ui,j))
�2 can be expressed as a

function of ui,j as follows:

Ã(new) = (B̃(new))�2 = B̃�2U (i,j)(u2i,j) + 2ui,j(b̃i � b̃j)e
T
j (21)

where b̃i and b̃j denote the i-th and j-th columns of B̃, respectively, and ej is the
j-th column of the identity matrix IN .

Inserting (21) into the cost function (20), we have:

J(ui,j) =

K∑
k=1

∣∣∣∣∣∣off
(
C̃

(k,new)
)∣∣∣∣∣∣2

F
=

K∑
k=1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣off

U (i,j)(u2i,j)
TC̃

(k)
U (i,j)(u2i,j)︸ ︷︷ ︸

1○

+ ui,jU
(i,j)(u2i,j)

Tc̃(k,1)eTj︸ ︷︷ ︸
2○

+ui,jej c̃
(k,2)U (i,j)(u2i,j)︸ ︷︷ ︸

3○

+ u2i,j c̃
(k,3)eje

T
j︸ ︷︷ ︸

4○


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

(22)

where C̃
(k)

= ÃTC(k,−1)Ã, c̃(k,1) = 2 ÃTC(k,−1)(b̃i � b̃j), c̃(k,2) = 2 (b̃i � b̃j)T ×
C(k,−1)Ã and c̃(k,3) = 4 (b̃i � b̃j)TC

(k,−1)(b̃i � b̃j) are a (N ×N) constant matrix,
a (N × 1) constant column vector, a (1 × N) constant row vector and a constant
scalar, respectively. The term 1○ in (22) transforms the j-th column and the j-th
row of C̃

(k)
. The term 2○ in (22) is a zero matrix except its j-th column containing

non-zero elements, while the term 3○ contains non-zero entries only on its j-th row.
And the term 4○ is a zero matrix except its (j, j)-th component being non-zero. In
addition, C̃

(k,new)
= 1○ + 2○ + 3○ + 4○ is a (N ×N) symmetric matrix. Hence (22)

shows that only the j-th column and j-th row of C̃
(k,new)

involve the parameter
ui,j , while the other elements remain constant. Therefore, the minimization of the
cost function (20) is equivalent to minimizing the sum of the squares of the j-
th columns of C̃

(k,new)
except their (j, j)-th elements with k ∈ {1, · · · ,K}. The

required elements of C̃
(k,new)

can be expressed by the following proposition.

Proposition 2 The elements of the j-th column except the (j, j)-th entry of
C̃

(k,new)
is a second degree polynomial function in ui,j as follows, for every value n
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different of j:

C̃
(k,new)
n,j = C̃

(k)
n,i u

2
i,j + c̃(k,1)n ui,j + C̃

(k)
n,j (23)

where C̃(k)
n,i and C̃(k)

n,j are the (n, i)-th and (n, j)-th components of matrix C̃
(k)

, re-
spectively, and c̃(k,1)n is the n-th element of vector c̃(k,1).

The proof of this proposition is straightforward. Indeed, we can show that the
elements of the j-th column except the (j, j)-th entry of the term 1○ in (22) can be
expressed by C̃(k)

n,i u
2
i,j + C̃

(k)
n,j with 1 ≤ n ≤ N and n 6= j, and those elements of the

term 2○ in (22) are equal to c̃(k,1)n ui,j with 1 ≤ n ≤ N and n 6= j. The sum of these
elements directly leads to (23). The terms 3○ and 4○ do not need to be considered,
since they do not affect the off-diagonal elements in the j-th column. Proposition
2 shows that the minimization of the cost function (20) can be expressed in the
following compact matrix form:

J(ui,j) =

K∑
k=1

∣∣∣∣∣∣E(k)ui,j

∣∣∣∣∣∣2
F

= uT
i,jQEui,j (24)

where QE =
∑K

k=1(E(k))TE(k) is a (3× 3) symmetric coefficient matrix. E(k) is a
((N − 1) × 3) matrix defined as follows: the first column contains the i-th column
of C̃

(k)
without the j-th element, the second column contains vector c̃(k,1) without

the j-th entry and the third column contains the j-th column of C̃
(k)

without the
j-th component. ui,j = [u2i,j , ui,j , 1]T is a 3-dimensional parameter vector.
Equation (24) shows that J(ui,j) is a fourth degree polynomial function. The

global minimum ui,j can be obtained by computing the roots of its derivative and
selecting the one yielding the smallest value of (24). Once the optimal ui,j is com-
puted, B̃(new) is updated by (19) and the joint diagonalizer Ã(new) is updated by
computing (B̃(new))�2. Then the same procedure is repeated to compute the next
ui,j with another (i, j) index.
The minimization of (11) with respect to the elementary lower triangular matrix

L(i,j)(`i,j) with 1 ≤ j < i ≤ N can be computed in the same way. Proposition 2 is
also valid for the parameter `i,j when 1 ≤ j < i ≤ N . The detailed derivation is
omitted here. The processing of all the N(N−1) parameters ui,j and `i,j is called a
LU sweep. In addition, for estimating L(i,j)(`i,j), the (i, j) index obeys the following
order:

(2, 1), (3, 1), . . . , (N, 1),(3, 2), (4, 2), . . . , (N, 2), . . . ,

(N − 1, N − 2), (N,N − 2), (N,N − 1)
(25)

Regarding U (i,j)(ui,j), the (i, j) index varies according to the following sequence:

(N − 1, N),(N − 2, N), (N − 2, N − 1), . . . ,

(2, N), (2, N − 1), . . . , (2, 3), (1, N), (1, N − 1), . . . , (1, 2)
(26)

The proposed JD+
LU algorithm is comprised of several LU sweeps.
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Minimization with respect to the Given rotation matrix Q(i,j)(θi,j)

Now we minimize (11) with respect to Q(i,j)(θi,j) with 1 ≤ i < j ≤ N . By abuse of
notation, in this section we continue to use Ã and B̃ to denote the current estimate
of A and B, respectively, before estimating the parameter θi,j . Also let Ã(new) and
B̃(new) stand for Ã and B̃ updated by Q(i,j)(θi,j), respectively. The update of B̃
is defined as follows:

B̃(new) = B̃Q(i,j)(θi,j) (27)

Similarly, for computing the parameter θi,j , we can minimize the criterion (11)
with respect to θi,j by replacing matrix B̃ by B̃(new). We denote J(θi,j) instead of
J(B̃(new)) for convenience purpose. Then J(θi,j) can be expressed as follows:

J(θi,j) =
K∑

k=1

∣∣∣∣∣∣off
{

[(B̃(new))�2]TC(k,−1)[(B̃(new))�2]
}∣∣∣∣∣∣2

F
(28)

The Hadamard square of the update B̃(new) now can be rewritten as shown in
the following proposition.

Proposition 3 Ã(new) = (B̃(new))�2 = (B̃Q(i,j)(θi,j))
�2 can be written as a

function of θi,j as follows:

Ã(new) = (B̃(new))�2 = B̃�2 (Q(i,j)(θi,j))
�2 + sin(2θi,j)(b̃i � b̃j)(e

T
i − eTj ) (29)

where b̃i and b̃j denote the i-th and j-th columns of B̃, respectively, and ei and ej
are the i-th and j-th columns of the identity matrix IN , respectively.

Inserting (29) into the cost function (28), we obtain:

J(θi,j)=

K∑
k=1

∣∣∣∣∣∣off
(
C̃

(k,new)
)∣∣∣∣∣∣2

F
=

K∑
k=1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣off

[(Q(i,j)(θi,j))
�2]TC̃

(k)
(Q(i,j)(θi,j))

�2︸ ︷︷ ︸
1○

+ sin(2θi,j)[(Q
(i,j)(θi,j))

�2]Tc̃(k,1)(eTi − eTj )︸ ︷︷ ︸
2○

+ sin(2θi,j)(ei − ej)c̃(k,2)(Q(i,j)(θi,j))
�2︸ ︷︷ ︸

3○

+ sin2(2θi,j)c̃
(k,3)(ei − ej)(eTi − eTj )︸ ︷︷ ︸

4○


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

(30)

where C̃
(k)

= ÃTC(k,−1)Ã, c̃(k,1) = ÃTC(k,−1)(b̃i�b̃j), c̃(k,2) = (b̃i�b̃j)TC
(k,−1)Ã

and c̃(k,3) = (b̃i � b̃j)TC
(k,−1)(b̃i � b̃j) are a (N × N) constant matrix, a (N ×

1) constant column vector, a (1 × N) constant row vector and a constant scalar,
respectively. The term 1○ in (30) transforms the i-th and j-th columns and the i-th
and j-th rows of C̃

(k)
. The term 2○ in (30) is a zero matrix except its i-th and
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j-th columns containing non-zero elements, while the term 3○ contains non-zero
entries only on its i-th and j-th rows. And the term 4○ is a zero matrix except
its (i, i)-th, (j, j)-th, (i, j)-th and (j, i)-th components being non-zero. C̃

(k,new)
=

1○ + 2○ + 3○ + 4○ is a (N ×N) symmetric matrix. Hence (30) shows that only the
i-th and j-th columns and the i-th and j-th rows of C̃

(k,new)
involve the parameter

θi,j , while the other components remain constant. It is noteworthy that the (i, j)-th
and (j, i)-th components are twice affected by the transformation. Considering the
symmetry of C̃

(k,new)
, we propose to minimize the sum of the squares of the (i, j)-th

entries of the K matrices C̃
(k,new)

, instead of minimizing all the off-diagonal entries.
Although minimizing this quantity is not equivalent to minimizing the global cost
function (28), such a simplified minimization scheme is commonly adopted in many
algorithms, such as [20,31]. We denote this local minimization by J̃(θi,j). The (i, j)-

th component of C̃
(k,new)

is expressed in the following proposition.

Proposition 4 The (i, j)-th entry of C̃
(k,new)

can be expressed as a function of
θi,j as follows:

C̃
(k,new)
i,j = − sin2(2θi,j)c̃

(k,3)

+ sin2(θi,j)(C̃
(k)
i,i cos2(θi,j) + C̃

(k)
j,i sin2(θi,j))

+ cos2(θi,j)(C̃
(k)
i,j cos2(θi,j) + C̃

(k)
j,j sin2(θi,j))

+ sin(2θi,j)(c̃
(k,1)
i cos2(θi,j) + c̃

(k,1)
j sin2(θi,j))

− sin(2θi,j)(c̃
(k,2)
j cos2(θi,j) + c̃

(k,2)
i sin2(θi,j))

(31)

where C̃(k)
i,i , C̃

(k)
j,j , C̃

(k)
i,j and C̃(k)

j,i are the (i, i)-th, (j, j)-th, (i, j)-th and (j, i)-th com-

ponents of matrix C̃
(k)

, respectively. c̃(k,q)i and c̃(k,q)j are the i-th and j-th elements
of vector c̃(k,q) with q ∈ {1, 2}, respectively.

It is straightforward to show that the (i, j)-th entry of the term 1○ in (30) can
be expressed by sin2(θi,j) cos2(θi,j)(C̃

(k)
i,i + C̃

(k)
j,j ) + sin4(θi,j)C

(k)
j,i + cos4(θi,j)C̃

(k)
i,j ,

the (i, j)-th element of the term 2○ is sin(2θi,j)(cos2(θi,j)c̃
(k,1)
i + sin2(θi,j)c̃

(k,1)
j ),

the (i, j)-th component of the term 3○ is equal to − sin(2θi,j)(sin
2(θi,j)c̃

(k,2)
i +

cos2(θi,j)c̃
(k,2)
j ), and that of the term 4○ is − sin2(2θi,j)c̃

(k,3). Then proposition 4
can be proved.
In order to simplify the notation of (31), we resort to the Weierstrass change of

variable: ti,j = tan(θi,j). Then we obtain:

sin(2θi,j) =
2ti,j

1 + t2i,j
, cos(2θi,j) =

1− t2i,j
1 + t2i,j

, sin2(θi,j) =
t2i,j

1 + t2i,j
, cos2(θi,j) =

1

1 + t2i,j

(32)

By substituting (32) into (31), we obtain an alternative expression of the (i, j)-th
entry of C̃

(k,new)
which is described in the following proposition. Then the mini-

mization of J̃(θi,j) transforms to J̃(ti,j).
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Proposition 5 the (i, j)-th entry of C̃
(k,new)

can be expressed by a rational func-
tion of ti,j as follows:

C̃
(k,new)
i,j =

f
(k)
4 t4i,j + f

(k)
3 t3i,j + f

(k)
2 t2i,j + f

(k)
1 ti,j + f

(k)
0

(1 + t2i,j)
2

(33)

where f (k)4 = C̃
(k)
j,i , f

(k)
3 = −2c̃

(k,1)
i , f (k)2 = C̃

(k)
i,i + C̃

(k)
j,j + 2c̃

(k,2)
j − 4c̃(k,3), f (k)1 =

2c̃
(k,2)
i − c̃(k,1)j and f (k)0 = C̃

(k)
j,j .

Equation (33) easily shows that the sum of the squares of the (i, j)-th entries of
the K matrices C̃

(k,new)
, is a rational function in ti,j , namely J̃(ti,j), where the

degrees of the numerator and the denominator are 8 and 8, respectively. J̃(ti,j) can
be expressed in the following compact matrix form:

J̃(ti,j) =

K∑
k=1

∣∣∣∣∣∣(f (k))Tτ i,j

∣∣∣∣∣∣2
F

= τT
i,jQF τ i,j (34)

where QF =
∑K

k=1 f
(k)(f (k))T is a (5 × 5) symmetric coefficient matrix, f (k) =

[f
(k)
4 , f

(k)
3 , f

(k)
2 , f

(k)
1 , f

(k)
0 ]T is a 5-dimensional vector, and τ i,j is a 5-dimensional

parameter vector defined as follows,

τ i,j =
1

(1 + t2i,j)
2

[
t4i,j , t

3
i,j , t

2
i,j , ti,j , 1

]T (35)

The global minimum ti,j can be obtained by computing the roots of its derivative
and selecting the one yielding the smallest value of J̃(ti,j). Once ti,j is obtained,
θi,j can be computed from the inverse tangent function θi,j = arctan(ti,j). It is
noteworthy that the found θi,j cannot guarantee to decrease the actual cost func-
tion (28). If θi,j leads to an increase of (28), we reset θi,j = 0. Otherwise, B̃(new)

is updated as described in (27) and the joint diagonalizer Ã(new) is updated by
computing (B̃(new))�2. The same procedure will be repeated to compute θi,j with
the next (i, j) index. The order of the (i, j) indices is defined in equation (26). The
processing of all the N(N −1)/2 parameters θi,j and also the other N(N −1)/2

parameters ui,j is called a QR sweep. Several QR sweeps yield the proposed JD+
QR

algorithm.

Both of the JD+
LU and JD+

QR algorithms can be stopped when the value of cost
function (11) or its relative change between two successive sweeps fall below a fixed
small positive threshold. Such a stopping criterion is guaranteed to be met since
the cost function is non-increasing in each Jacobi-like sweep.

Practical issues
In practice, we observe that if each frontal slice of the 3-way array C is almost ex-
actly jointly diagonalizable due to a high Signal to Noise Ratio (SNR), the classical
non-constrained JDC methods can also give a nonnegative A with high probabil-
ity. In this situation the explicit nonnegativity constraint could be unnecessary and
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could increase the computational burden. Therefore, we propose to relax the non-
negativity constraint by directly decomposing A into elementary LU and QR forms,
respectively, instead of using the decompositions of B as follows:

A =
∏

j∈J1

∏
i∈I1(j)

L(i,j)(`i,j)
∏
i∈I2

∏
j∈J2(i)

U (i,j)(ui,j) (36)

A =
∏
i∈I2

∏
j∈J2(i)

Q(i,j)(θi,j)
∏
i∈I2

∏
j∈J2(i)

U (i,j)(ui,j) (37)

where the index sets I1(j), J1, I2 and J2(i) are defined in lemma 1. By insert-
ing (36) and (37) into the cost function (9), the ways of estimating the two sets
of parameters {`i,j , ui,j}, and {θi,j , ui,j} are identical to those of Afsari’s LUJ1D
and QRJ1D methods [26], respectively. Therefore, in practice, in order to give an
automatically SNR-adaptive method, for JD+

LU, in each Jacobi-like iteration, we
suggest to compute ui,j by LUJ1D first. If all the elements in the j-th column of
ÃU (i,j)(ui,j) have the same sign ε, the update Ã(new) = εÃU (i,j)(ui,j) is adopted.
Otherwise, ui,j is computed by minimizing (20) and Ã(new) is updated by com-
puting (21). Each `i,j is computed similarly. Furthermore, the proposed JD+

QR and
QRJ1D are combined in the same manner.
Afsari reported in [26] that if the rows of matrices C̃

(k)
(k ∈ {1, · · · ,K}) are not

balanced in their norms, the computation of the parameter could be inaccurate. In
order to cope with this effect, we apply Afsari’s row balancing scheme every few
sweeps. Such a scheme updates each C̃

(k,new))
by C̃

(k,new)
= ΛC̃

(k)
Λ and Ã(new)

by Ã
(new)

= ÃΛ using a diagonal matrix Λ ∈ RN×N
+ , whose diagonal elements are

defined as follows:

Λn,n =
1√∑K

k=1 ‖C̃
(k)

n,: ‖2
, n ∈ {1, 2, · · · , N} (38)

where C̃
(k)

n,: denotes the n-th row of C̃
(k)

.
In ICA, when a non-square matrix A ∈ RN×P

+ with N > P is encountered, the
invertibility assumption of the frontal slices C(k) does not hold. In this situation,
we can compress A by means of a nonnegative matrix W+ ∈ RP×N

+ such that the
resulting matrix Ā = W+A is a nonnegative square matrix. Then the JD+

LU and
JD+

QR algorithms can be used to compute the compressed loading matrix Ā. W+

can be computed by using the NonNegative COMPression algorithm (NN-COMP)
that we proposed in [53]. More precisely, given a realization of an observation vec-
tor, we obtain the square root of the covariance matrix, denoted by Υ ∈ RN×P .
The classical prewhitening matrix is computed by W = Υ] ∈ RP×N where ] de-
notes the pseudo inverse operator [47]. Then the NN-COMP algorithm computes
a linear transformation matrix Ψ ∈ RP×P such that W+ = ΨW has nonnegative
components. Once Ā is estimated, the original matrix A is obtained as follows:

A = W ]Ψ−1Ā = ΥΨ−1Ā (39)

It should be noted that generally A does not need to be computed in such an ICA
problem, since the sources can be estimated directly by means of Ā.
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Numerical complexity
The numerical complexities of JD+

LU and JD+
QR are analyzed in terms of the number

of floating point operations (flops). A flop is defined as a multiplication followed
by an addition. In practice, only the number of multiplications, required to identify
the loading matrix A ∈ RN×N

+ from a 3-way array C ∈ RN×N×K , is considered;
which does not affect the order of magnitude of the numerical complexity.
For both algorithms, the inverses C(k,−1) (k ∈ {1, · · · ,K}) of the frontal slices of

C cost N3K flops, the initialization of C̃
(k)

ini = Ã
T

iniC
(k,−1)Ãini requires 2N3K flops,

and at each sweep, the calculation of parameters ui,j needs N(N −1)(5N2 + 12N −
8)K/2 flops. In addition, in the case of the JD+

LU algorithm, the calculation cost of

Ã(new), B̃(new) and C̃
(k,new)

, with k ∈ {1, · · · ,K}, is N(N − 1)(4N + (4N + 1)K)

flops, and the numerical complexity of computing the parameters `i,j is equal to
that of ui,j . Regarding the JD+

QR algorithm, for each sweep, the complexity of
calculating the parameters θi,j is equal to N(N − 1)(5N2 + 3N + 29)K/2 flops,

and the estimation of Ã(new), B̃(new) and C̃
(k,new)

, with k ∈ {1, · · · ,K}, costs
N(N − 1)(5N + (12N + 20)K/2) flops. In practice, the proposed JD+

LU and JD+
QR

techniques are combined with LUJ1D and QRJ1D [26], respectively, leading to
the magnitude of global numerical complexities of JD+

LU and JD+
QR being between

O(N3K) and O(N4K). A recent nonnegative JDC method called ACDC+
LU [41] is

also based on a square change of variable and LU matrix factorization. It minimizes
the cost function (4) with respect to A and D alternately, leading to a higher nu-
merical complexity. By means of the reformulation of the cost function, the proposed
methods avoid the estimation of D, therefore achieve a lower complexity compared
to ACDC+

LU. The explicit expressions of the overall complexity of JD+
LU, JD

+
QR and

ACDC+
LU [41], as well as those of four classical JDC algorithms, namely ACDC [23],

FFDIAG [25], LUJ1D [26] and QRJ1D [26], are listed in table 1. One can notice
that numerical complexities of the proposed JD+

LU and JD+
QR methods are at most

one order of magnitude higher than those of the four JDC algorithms, and still
lower than that of ACDC+

LU. Moreover, JD+
LU is less computationally expensive

than JD+
QR.

Simulation results
This section is twofold. In the first part, the performance of the proposed JD+

LU and
JD+

QR algorithms is evaluated with simulated semi-nonnegative semi-symmetric 3-
way arrays C. Several experiments are designed to study the convergence property,
the influence of SNR, the impact of the third dimension K of C, the effect of the
coherence of the loading matrix D and the influence of the condition number of
the diagonal matrices D(k). We also evaluate the proposed methods for estimating
a non-square matrix A. The proposed algorithms are compared with four classi-
cal nonorthogonal JDC methods, namely ACDC [23], FFDIAG [25], LUJ1D [26],
QRJ1D [26], and the nonnegative JDC method ACDC+

LU [41]. In the second part,
the source separation ability of the proposed algorithms is studied through a BSS
application. In this context, the JD+

LU and JD+
QR are used to jointly diagonalize

several matrix slices of the fourth order cumulant array [40] of the observations and
compared with several classical ICA [47,54,55] and NMF [56] methods.
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Simulated semi-nonnegative INDSCAL model
The synthetic semi-nonnegative semi-symmetric 3-way array C = [[A,A,D]] ∈
R

N×N×K of rank N is generated randomly according to the semi-nonnegative IND-
SCAL model (3). When used without further specification, all the algorithms are
manipulated under the following conditions:

i) Model generation: the loading matrix A ∈ RN×N
+ is randomly drawn from a

uniform distribution on the interval [0, 1]. The loading matrix D ∈ RK×N is
drawn from a Gaussian distribution with a mean of 1 and a deviation of 0.5.
The pure array C is perturbed by a residual INDSCAL noise array V . The
loading matrices of V are drawn from a zero-mean unit-variance Gaussian
distribution. The resulting noisy 3-way array can be written as follows:

CN =
C
‖C‖F

+ σN
V
‖V‖F

(40)

where σN is a scalar controlling the noise level. Then the SNR is defined by
SNR = −20 log10 (σN ).

ii) Initialization: in each Monte Carlo trial, all the algorithms are initialized by
a same random matrix whose components obey the uniform distribution over
[0, 1].

iii) Afsari’s row balancing scheme: the LUJ1D, QRJ1D, JD+
LU and JD+

QR algo-
rithms perform the row balancing scheme once per each run of five sweeps.

iv) Stopping criterion: all the algorithms stop either when the relative error of
the corresponding criterion between two successive sweeps is less than 10−5

or when the number of sweeps exceeds 200. A sweep of ACDC includes a full
AC phase and a DC phase.

v) Performance measurement: the performance is measured by means of the er-
ror between the true loading matrix A and the estimate Ã, the numerical
complexity, and the CPU time. We define the following scale-invariant and
permutation-invariant distance [40]:

α(A, Ã) =
1

N

N∑
n=1

min
(n,n′)∈I2

n

d(an, ãn′) (41)

where an and ãn′ are the n-th column of A and the n′-th column of Ã,
respectively. I2n is defined recursively by I21 = {1, · · · , N} × {1, · · · , N}, and
I2n+1 = I2n−J2

n where J2
n = argmin(n,n′)∈I2

n
d(an, ãn′). In addition, d(an, ãn′)

is defined as the pseudo-distance between two vectors [13]:

d(an, ãn′) = 1− ‖aT
n ãn′‖2

‖an‖2‖ãn′‖2
(42)

The criterion (41) is an upper bound of the optimal permutation-invariant
criterion. It avoids the burdensome computation of all the permutations. A
small value of (41) means a good performance in the sense that Ã is close to
A.
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vi) Test environment: the simulations are carried out in Matlab v7.14 on Mac OS
X and run on Intel Quad-Core CPU 2.8 GHz with 32 GB memory. Moreover,
we repeat all the experiments with 500 Monte Carlo trials.

Convergence
In this experiment, the convergences of the JD+

LU and JD+
QR algorithms are com-

pared to those of ACDC, FFDIAG, LUJ1D, QRJ1D and ACDC+
LU. The dimensions

of the 3-way array CN ∈ RN×N×K are set to N = 5 and K = 15. The performance
is assessed under three SNR conditions: SNR = −5, 10 and 25 dB, respectively.
Figure 1 shows the convergence curves measured in terms of the cost function as a
function of sweeps. It shows that FFDIAG, LUJ1D and QRJ1D exhibit fast conver-
gence behavior. They converge in less than 20 sweeps. ACDC+

LU decreases the cost
function (4) quasi-linearly. ACDC and ACDC+

LU do not converge in a maximum
of 200 sweeps. The proposed JD+

LU algorithm converges in about 100 sweeps when
SNR = 25 dB and SNR = 10 dB, and it converges in about 40 sweeps when SNR
= −5 dB. Regarding JD+

QR, it reduces the cost function (11) to the values relatively
higher than those achieved by JD+

LU, and converges in about 50 sweeps whatever
the SNR is. It seems that FFDIAG, LUJ1D and QRJ1D achieve the fastest con-
vergence rate. It should be noted that while an algorithm may converge to a point
in which the value of the cost function is close to zero, such a point could be a
local minimum far from the desire matrix A as shown in figure 2. The top picture
in figure 2 shows the convergence curves measured in terms of the estimating error
α(A, Ã) as a function of sweeps when SNR = 25 dB. It shows that the solutions
of FFDIAG, LUJ1D and QRJ1D are still far from optimum. ACDC and ACDC+

LU

give better estimations of A than the previous three methods. The best results are
achieved by the proposed JD+

LU and JD+
QR methods. The middle picture in figure 2

displays the convergence curves when SNR = 10 dB. It can be observed that ACDC
converges to a local minimum which is not the global one, and that the performance
of the proposed methods are still better than those of the five other algorithms. For
a low SNR = −5 dB, as shown in the bottom picture in figure 2, both the meth-
ods based on alternating optimization, namely ACDC and ACDC+

LU, converge to
local minima which are less desirable. The proposed algorithms are always able to
converge to better results than the classical methods. The average numerical com-
plexities and CPU time of all the algorithms over Monte Carlo trials are shown in
table 2. It is observed that FFDIAG, LUJ1D and QRJ1D require a small amount
of calculations, whereas ACDC+

LU requires a large amount of calculations. The pro-
posed JD+

LU just costs a bit more flops and CPU time than ACDC, but it is still
much more efficient. Concerning the JD+

QR algorithm, it is more costly than JD+
LU,

with a comparable performance. We can then conclude that JD+
LU offers the best

performance/complexity compromise in these experiments.

Effect of SNR
In this section, we study the behaviors of the seven algorithms as a function of SNR.
The dimensions of the 3-way array CN are set to N = 5 and K = 15. We repeat the
experiments with SNR ranging from −30 dB to 50 dB with a step of 2 dB. The top
picture in figure 3 depicts the average curves of α(A, Ã) of the seven algorithms as a
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function of SNR. The obtained results show that the performance of all the methods
increases as SNR grows. For the unconstrained methods, generally ACDC performs
better than FFDIAG, LUJ1D and QRJ1D. The nonnegativity constraint obviously
helps ACDC+

LU, JD+
LU and JD+

QR to improve the results for lower SNR values.
The performance of ACDC and ACDC+

LU remains stable for higher SNR values
due to the small number of available sweeps and the lack of good initializations.
Generally the proposed JD+

LU and JD+
QR algorithms outperform the others when

SNR is between −20 dB and 30 dB and perform similar to FFDIAG, LUJ1D and
QRJ1D when SNR is above 45 dB. The average numerical complexity and CPU
time at each SNR level of all the methods in this experiment are shown in the
bottom of figure 3. It shows that the proposed methods achieve better estimations
of A and cost less flops and CPU time than ACDC+

LU. The JD+
LU gives the best

performance/complexity trade-off for all the considered SNR values.

Effect of dimension K
In ICA, the third dimension K of the 3-way array CN ∈ RN×N×K corresponds to
the number of covariance matrices at different lags, or the number of matrix slices
derived from a cumulant array. In this section, we study the influence of K on the
performance of the seven algorithms. The first and second dimensions of CN are
set to N = 5. The SNR value is fixed to 10 dB. We repeat the experiment with
K ranging from 3 to 55. The top picture in figure 4 shows the average curves of
α(A, Ã) of all the algorithms as a function of K. For the five existing methods,
ACDC, ACDC+

LU, FFDIAG, LUJ1D and QRJ1D, their performance is quite stable
with respect to K. The performance of the proposed methods progresses as K
increases, and then practically stabilizes for high values of K. It indicates that after
some point (e.g. K ≥ 20), the additional information brought by an increase of
K does not further improve the results. The proposed JD+

LU and JD+
QR algorithms

maintain competitive advantages through all the K values. The two images in the
bottom of figure 4 present the average numerical complexity and CPU time of all the
algorithms in this experiment, respectively. It shows that the numerical complexity
of JD+

LU and JD+
QR is between that of ACDC and ACDC+

LU. The JD+
LU and JD+

QR

methods seem to be the most effective algorithms compared to the other methods.

Effect of coherence of D
In this experiment, the effect of the coherence of the third loading matrix D of the
3-way array C = [[A,A,D]] is evaluated. Let dn and dm denote the n-th and m-th
columns of D, respectively. The angle ψn,m between dn and dm can be derived by
using the following Euclidean dot product formula dTn dm = ‖dn‖‖dm‖ cos(ψn,m).
Then the coherence ρ ofD is defined as the maximum absolute cosine of angle ψn,m

between the columns of D as follows:

ρ = max
n,m
n 6=m

| cos(ψn,m)| with cos(ψn,m) =
dTn dm
‖dn‖‖dm‖

(43)

The quantity ρ is also known as the modulus of uniqueness of JDC [43]. By its
definition (43), ρ falls in the range of [0, 1]. The JDC problem is considered to be
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ill-conditioned when ρ is close to 1. Such an ill-conditioned problem can be met in
ICA when A has nearly collinear column vectors. For example, in order to perform
ICA, provided that all the sources are non Gaussian, which is often the case in
practice, we can build a 3-way array C by stacking the matrix slices of the fourth
order cumulant array of the observation data. Then the loading matrix D can be
expressed as follows:

D = (A�A)C4,{s} (44)

where C4,{s} = diag [C1,1,1,1,{s}, · · · , CN,N,N,N,{s}] is a (N × N) diagonal matrix
with Cn,n,n,n,{s} being the fourth order cumulant of the n-th source, n ∈ {1, · · · , N},
and where � denotes the Khatri-Rao product. It can be observed that the coherence
of the columns of A will influence the coherence of the matrix D. In the following
test, the dimensions of the 3-way array CN are set to N = 5 and K = 15. The
SNR value is fixed to 10 dB. In order to control ρ, firstly we randomly generate an
orthogonal matrix D ∈ R15×5 so that ρ = 0 by orthogonalizing a (15× 5) random
matrix. Secondly we rotate its 5 columns such that all the internal angles between
any columns are equal to a predefined value ψ. Therefore ρ is only controlled by the
angle ψ and equals to | cos(ψ)|. We repeat the experiment with the angle ψ ranging
from 0 to π/2 with a step of π/60. A small ψ value means a large ρ value. The
top picture in figure 5 displays the average curves of α(A, Ã) of all the algorithms
as a function of ψ. It shows that the nonnegativity constrained methods ACDC+

LU,
JD+

LU and JD+
QR, outperform the unconstrained ones ACDC, FFDIAG, LUJ1D and

QRJ1D. The proposed algorithms are more efficient, particularly when the coher-
ence level is high. The average numerical complexity and CPU time displayed in
the bottom of figure 5 indicate that the JD+

LU algorithm provides the best perfor-
mance/complexity compromise, while the JD+

QR algorithm is also competitive with
regard to ACDC+

LU.

Effect of condition number of D(k)

When the JDC problem is considered, a diagonal matrix D(k) could contain some
diagonal elements which, despite being non-zero, are many orders of magnitude
lower than some other elements, leading to an ill-conditioned matrix C(k). For the
proposed methods, the inverse of such a matrixC(k) would contain numerical errors.
In this experiment, we study the performance of the seven algorithms as a function
of the condition number of one of the diagonal matricesD(k). The dimensions of the
3-way array CN are set to N = 5 and K = 15. The SNR value is set to 10 dB. We
vary the condition number of the first diagonal matrixD(1) from 1 to 1000 by fixing
the ratio of its largest diagonal element to its smallest diagonal element. The top
picture in figure 6 displays the average curves of the estimating error α(A, Ã) of the
seven algorithms as a function of the condition number of D(1). The results reveal
that a highly ill-conditioned diagonal matrix D(1) has a clear negative effect on the
estimation accuracy of all the algorithms. The nonnegativity constrained methods
ACDC+

LU, JD
+
LU and JD+

QR outperform the classical algorithms ACDC, FFDIAG,
LUJ1D and QRJ1D whatever the condition number is. The proposed JD+

LU and
JD+

QR algorithms maintain advantages when the condition number is less than 100.
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Regarding the cases of larger condition numbers, ACDC+
LU is more superior since it

does not need to invert the highly ill-conditioned matrix. It is worthy pointing out
that in practice, we can choose these sufficiently well-conditioned matrices C(k) for
the proposed methods, whose condition numbers are below a predefined threshold.
In addition, a weighted cost function for which weights would depend on the condi-
tion number of each matrix can be considered. On the other hand, the performance
of the classical methods can also be improved by choosing a particular subset of
available matrices [57] and by properly weighting the cost functions [49]. In order
to give a fair comparison, all the algorithms operate on the same set of matrices
in all the experiments of this paper. In addition, the average numerical complexity
and CPU time at each condition number of all the methods in this experiment are
shown in the bottom of figure 6. It shows that the proposed methods give the best
performance/complexity trade-off compared to ACDC+

LU whatever the condition
number is.

Test with a non-square matrix A
As described in the section of practical issues, when a non-square matrixA ∈ RN×P

+

with N > P is met in ICA, we propose to compress it by a nonnegative compression
matrix W+ ∈ RP×N

+ [53], such that the resulting matrix Ā = W+A is a (P × P )

nonnegative square matrix. Then the proposed methods can be applied to estimate
Ā. Similarly to the classical prewhitening, the nonnegative compression step could
introduce numerical errors. In this experiment, we compare our methods to ACDC
and ACDC+

LU through a simulated ICA model. The latter algorithms can directly
estimate a non-square matrix A from the fourth order cumulant matrix slices. The
ICA model is established as follows:

x[f ] = As[f ] + ν[f ] (45)

where x[f ] = [x1[f ], · · · , xN [f ]]T is the (N × 1) observation vector, s[f ] =

[s1[f ], s2[f ], s3[f ]]T is the (3 × 1) zero-mean unit-variance source vector whose
elements are independently drawn from a uniform distribution over [−

√
3,
√

3],
ν = [ν1[f ], · · · , νN [f ]]T is the (N × 1) zero-mean unit-variance Gaussian noise
vector, and A is the (N × 3) nonnegative mixing matrix whose components are
independently drawn from a uniform distribution over [0, 1]. In this context the
SNR is defined by:

SNR = 20 log10(‖{As[f ]}‖F /‖{ν[f ]}‖F ) (46)

For the proposed JD+
LU and JD+

QR algorithms, the given realization of {x[f ]} is com-
pressed by means of a matrix W+ ∈ R3×N

+ computed using the method proposed
in [53], leading to a 3-dimensional vector {x̄[f ]}. We compute the fourth order cu-
mulant array of {x̄[f ]} and choose the first 3 matrix slices in order to build a 3-way
array. Hence JD+

LU and JD+
QR decompose a (3× 3× 3) array. Once the compressed

mixing matrix Ā is estimated, the original mixing matrix is obtained by equation
(39). Regarding ACDC and ACDC+

LU, the fourth order cumulant array of {x[f ]} is
directly computed without compression. We apply ACDC and ACDC+

LU on two 3-
way arrays with different third dimensions. The first array of dimension (N×N×3)
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is built by choosing the first 3 matrix slices from the fourth order cumulant array,
while the second array of dimension (N ×N ×N) is built using the first N matrix
slices. We study the impact of the number of observations N on the performance
of the JDC algorithms, by varying N from 4 to 24. The SNR value is fixed to 5

dB. The number of samples used to estimate the cumulants is set to 103. Figure 7
shows the average curves of the estimating error α(A, Ã) of all the algorithms as
a function of N . As it can be seen, when N ≤ 15, the larger the value of N , the
more accurate estimation of A is achieved. When N > 15, the further increase of N
does not bring significant improvement in terms of the estimation accuracy. ACDC
and ACDC+

LU give better results when the array with a larger third dimension is
considered. Their results on (N × N × N) arrays outperform the proposed meth-
ods when N = 4. ACDC+

LU also gives the best estimation on (N ×N ×N) arrays
with N = 5. It suggests that the numerical errors introduced by the compression
step limit the performance of the proposed methods when only a small number of
observation is available. Such a negative effect can be partially compensated by
using a large number of observations, since the proposed JD+

LU and JD+
QR methods

maintain the highest performance in terms of estimation accuracy when N ≥ 6. The
performance ACDC and ACDC+

LU can be further improved by using a (N×N×N2)

array, which contains all the N2 fourth order cumulant matrix slices. However, it
leads to a higher numerical complexity especially for a large value of N . Regarding
the proposed JD+

LU and JD+
QR methods, their performance can also be improved by

using all the 9 matrix slices of the fourth order cumulant array of the compressed
observation vector. Nevertheless, the experimental result has already shown that
by using only a small number of matrix slices, JD+

LU and JD+
QR can maintain lower

numerical complexities than ACDC and ACDC+
LU, while achieving better estimat-

ing results, when a large value of N is considered. Therefore, despite the negative
influence of the nonnegative compression, the proposed methods still offer a good
performance/complexity compromise to estimate a non-square matrix A.

BSS application on MRS data
In this section, we aim to illustrate the potential capability of the proposed JD+

LU

and JD+
QR algorithms for solving a real-life BSS problem by an application carried

on simulated MRS data.
MRS is a powerful non-invasive analytical technique for analyzing the chemical

content of MR-visible nuclei and therefore enjoys particular advantages for assess-
ing metabolism. The chemical property of each nucleus determines the frequency at
which it appears in the MR spectrum, giving rise to peaks corresponding to specific
metabolites [58]. Therefore, the MRS observation spectra can be modeled as the
mixture of the spectrum of each constitutional source metabolite. More specifically,
it can be written as the noisy linear instantaneous mixing model described in equa-
tion (45), where x[f ] ∈ RN is the MRS observation vector, s[f ] ∈ RP is the source
vector representing the statistically quasi-independent source metabolites, ν ∈ RN

is the instrumental noise vector, and A ∈ RN×P
+ is the nonnegative mixing matrix

containing the positive concentrations of the source metabolites. SNR is defined as
in equation (46). In this experiment, two simulated MRS source metabolites {s1[f ]}
and {s2[f ]}, namely the Choline (Cho) and Myo-inositol (Ins) (see figure 8 (b)),
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are generated by Lorentzian and Gaussian functions [59]. Each of the sources con-
tains 103 samples. The observation vector x[f ] is generated according to (45). The
components of the (N × 2) mixing matrix A are randomly drawn from a uniform
distribution. The additive noise ν[f ] is modeled as a zero-mean unit-variance Gaus-
sian vector. The ICA methods based on the proposed JD+

LU and JD+
QR algorithms,

namely JD+
LU-ICA and JD+

QR-ICA, consist of four steps: i) compressing {x[f ]} by
means of a matrix W+ ∈ R2×N

+ [53], ii) estimating the fourth order cumulant ar-
ray of the compressed observations and stacking all the cumulant matrix slices in
a 3-way array, iii) decomposing the resulting 3-way array by means of JD+

LU and
JD+

QR, respectively, and iv) reconstructing the sources. The JD+
LU-ICA and JD+

QR-
ICA are compared to four state-of-the-art BSS algorithms, namely two efficient ICA
methods CoM2 [54] and SOBI [47], the NonNegative ICA (NNICA) method with
a line search along the geodesic [55] and the NMF method [56] based on alternat-
ing nonnegativity least squares. The performance is assessed by means of the error
α({s[f ]}T, {s̃[f ]}T) between the true source s[f ] and its estimate s̃[f ], the numerical
complexity, and the CPU time. To find out the detailed analysis of the numerical
complexity of the classical ICA algorithms, the reader can refer to the book chap-
ter [60]. Figure 8 shows an example of the separation results of all the methods with
N = 32 observations and a SNR of 10 dB. Regarding CoM2, SOBI, NNICA and
NMF, there are some obvious disturbances presented in the estimated metabolites.
As far as JD+

LU-ICA and JD+
QR-ICA are concerned, the estimated source metabolites

are quasi-perfect. Furthermore, the comprehensive performance of all the methods
will be studied by the following experiments with 200 independent Monte Carlo
trials.
In the first experiment, the effect of the number of observations N is evaluated.

The SNR is fixed to 10 dB. The six methods are compared with N ranging from 4 to
116 with a step of 4. The average curves of error α({s[f ]}T, {s̃[f ]}T) as a function of
N are shown in the left image of figure 9. It can be seen that the estimating errors of
all the methods improve asN increases. It suggests that in noisy BSS contexts, using
more sensors often yields better results. The proposed JD+

LU-ICA and JD+
QR-ICA

methods maintain the competitive advantages. The average curves of the numerical
complexities of this experiment are shown in the bottom left picture of figure 9.
We can notice that the numerical complexities of all the methods increase with N .
The complexities of JD+

LU-ICA and JD+
QR-ICA seem identical in the logarithmic

scaled plot, that is because theoretically their complexities are mainly dominated
by the computation of the nonnegative compression step and of the cumulants.
Indeed, JD+

LU-ICA is more computationally efficient than JD+
QR-ICA in the step of

CP decomposition of the cumulant array. This can be verified by the average CPU
time of those methods, shown in the bottom right image of figure 9. We can observe
that JD+

LU-ICA is slower than CoM2, but it is faster than NNICA, SOBI and NMF.
In the second experiment, we study the influence of SNR on the performance

of the six methods. The number of observations N is set to 32. SNR is varied
from 0 dB to 50 dB with a step of 2 dB. The average curves of the estimating
error α({s[f ]}T, {s̃[f ]}T), as well as those of the numerical complexities and CPU
time as a function of SNR of all the six methods are shown in figure 10. The
proposed JD+

LU-ICA and JD+
QR-ICA methods provide the best estimating results
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with moderate computational complexities and CPU time. Generally speaking, the
JD+

LU-ICA algorithm offers the best performance/complexity trade-off in this BSS
experimental context.

Conclusion
We have proposed two methods, called JD+

LU and JD+
QR, in order to achieve the CP

decomposition of semi-nonnegative semi-symmetric 3-way arrays. The nonnegativ-
ity constraint is imposed on the two symmetric modes of 3-way arrays by means of
a square change of variable, giving rise to an unconstrained joint diagonalization by
congruence problem. Therefore, the nonnegative loading matrix can be estimated
by computing the joint diagonalizer. We consider the elementary LU and QR pa-
rameterizations of the Hadamard square root of the nonnegative joint diagonalizer,
leading to two Jacobi-like optimization procedures. In each Jacobi-like iteration, the
optimization is formulated into a minimization of a polynomial or rational function
with respect to only one parameter. In addition, the numerical complexity for each
algorithm has been analyzed.
The performance of the proposed JD+

LU and JD+
QR algorithms is evaluated with

simulated semi-nonnegative semi-symmetric 3-way arrays. Four classical nonorthog-
onal JDC methods without nonnegativity constraints, including ACDC [23], FF-
DIAG [25], LUJ1D [26], QRJ1D [26], and one nonnegative JDC method ACDC+

LU

[41], are tested as reference methods. The performance is assessed in terms of the
matrix estimation accuracy, the numerical complexity, and the CPU time. The con-
vergence property, the influence of SNR, the impact of dimension, the effect of
coherence, and the influence of condition number, are extensively studied by Monte
Carlo experiments. The obtained results show that the proposed algorithms offer
better estimation accuracy by means of exploiting the nonnegativity a priori. The
JD+

LU algorithm provides the best performance/complexity compromise.
The proposed algorithms are suitable tools for solving the ICA problems where a

nonnegative mixing matrix is considered, such as in MRS. In this case, the 3-way
array built by stacking the matrix slices of a HO cumulant array fulfills the semi-
nonnegative semi-symmetric structure. We proposed two ICA methods, namely
JD+

LU-ICA and JD+
QR-ICA, based on CP decomposition of the fourth order cu-

mulant array using JD+
LU and JD+

QR, respectively. The source separation ability
of the proposed algorithms is verified through a BSS application carried out on
simulated MRS data. The JD+

LU-ICA and JD+
QR-ICA are compared to one NMF

method [56], one nonnegative ICA method [55], and two classical ICA methods,
namely CoM2 [54] and SOBI [47]. The performance is comprehensively studied as
a function of the number of observations and of SNR. The experimental results
demonstrate the improvement of the proposed methods in terms of the source es-
timation accuracy, and also show that exploiting the two a priori of the data,
namely the nonnegativity of the mixing matrix and the statistical independence of
the sources, allows us to achieve better estimation results. The JD+

LU-ICA algorithm
provides the best performance/complexity trade-off.
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Table 1 Numerical complexities of seven JDC algorithms in terms of flops

Numerical complexity
(N,N,K): the dimensions of the 3-way array C;

For ACDC, FFDIAG, LUJ1D and QRJ1D, Ns is the number of total sweeps;

For ACDC+
LU, JD

+
LU, and JD+

QR,

N1
s is the number of sweeps without nonnegativity constraint;

N2
s is the number of sweeps with explicit nonnegativity constraint.

ACDC (13/3N3K + 3N4 + 2N2K +N3 +N2)Ns

FFDIAG (2N3K +N3 + 2N2K + 4N(N − 1))Ns

LUJ1D (4NK +N − 2K)N(N − 1)Ns

QRJ1D (6NK + 2.5N + 1.5K)N(N − 1)Ns

ACDC+
LU

((15N2 + 4N)KN(N − 1) + 4/3N2K +N3 +N2)N1
s

+((33N2 + 7N)KN(N − 1) + 4/3N2K +N3 +N2)N2
s

JD+
LU

3N3K + (4NK +N − 2K)N(N − 1)N1
s

+((5N2 + 16N − 7)K + 4N)N(N − 1)N2
s

JD+
QR

3N3K + (6NK + 2.5N + 1.5K)N(N − 1)N1
s

+((5N2 + 15.5N + 21)K + 7N)N(N − 1)N2
s

Table 2 Average numerical complexities (in flops) and computation time (in seconds) of the
convergence experiment

SNR = 25 dB SNR = 10 dB SNR = −5 dB
Complexity Time Complexity Time Complexity Time

ACDC 2.1708× 106 1.1357 2.0338× 106 1.0535 1.6800× 106 0.8761

FFDIAG 1.1001× 105 0.0331 1.0878× 105 0.0327 9.4380× 104 0.0287

LUJ1D 2.8903× 105 0.0660 2.3126× 105 0.0526 1.4199× 105 0.0325

QRJ1D 2.2158× 105 0.0383 2.4445× 105 0.0421 2.6989× 105 0.0468

ACDC+
LU 2.4462× 107 2.6735 2.7498× 107 2.8034 2.9646× 107 2.9119

JD+
LU 2.8487× 106 0.8107 4.9684× 106 1.1098 7.1434× 106 1.2938

JD+
QR 3.0766× 106 1.0455 5.0554× 106 1.1932 8.2185× 106 1.3026
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(a) SNR = 25 dB

(b) SNR = 10 dB

(c) SNR = −5 dB
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Figure 1 JDC performance versus sweeps. The average value of the cost function evolution of
all the algorithms as a function of the number of sweeps with various SNR levels. The dimensions
of CN are set to N = 5 and K = 15. The SNR values are set to 25 dB (top row), 10 dB (middle
row) and −5 dB (bottom row), respectively.

1 10 100 200

0.15

0.2

0.25

0.3

0.35

α
(A

,
Ã
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Ã
)

 

 

QRJ1D
LUJ1D

FFDIAG

ACDC

ACDC
LU
+

JD
QR
+

JD
LU
+

SNR = 25 dB

SNR = 10 dB

LUJ1D
QRJ1D

FFDIAG
ACDC

ACDC
LU
+

JD
QR
+ JD

LU
+

SNR = −5 dB
LUJ1D

QRJ1D

FFDIAG

ACDC

ACDC
LU
+

JD
LU
+ , JD

QR
+

Figure 2 JDC performance versus sweeps. The average error α(A, Ã) evolution of all the
algorithms as a function of the number of sweeps with various SNR levels. The dimensions of CN

are set to N = 5 and K = 15. The SNR values are set to 25 dB (top), 10 dB (middle) and −5 dB
(bottom), respectively.
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Top: the average error α(A, Ã) evolution of all the algorithms as a function of SNR. Bottom: the
average numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.
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Figure 4 JDC performance versus dimension K. The first and second dimensions of CN and
the SNR value are set to N = 5 and SNR = 10 dB, respectively. Top: the average error α(A, Ã)
evolution of all the algorithms as a function of dimension K. Bottom: the average numerical
complexities (left) and the CPU time (right) of all the algorithms, respectively.
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to N = 5, K = 15, and SNR = 10 dB, respectively. Top: the average error α(A, Ã) evolution of
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average numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

10
0

10
1

10
2

10
30.18

0.24

0.3

0.36

0.42

0.48

0.54

Condition number of one digaonal matrix

α
(A

,
Ã
)

 

 

ACDC

FFDIAG

LUJ1D

QRJ1D

ACDC
LU
+

JD
LU
+

JD
QR
+

10
0

10
1

10
2

10
3

10
5

10
6

10
7

Condition number of one diagonal matrix

N
um

er
ic

al
 c

om
pl

ex
ity

 (
fl

op
s)

 

 

10
0

10
1

10
2

10
3

10
−1

10
0

Condition number of one diagonal matrix

C
PU

 ti
m

e 
(s

ec
)

 

 

FFDIAG
LUJ1D
QRJ1D

JD
LU
+

JD
QR
+ ACDC

LU
+

ACDC

ACDC
LU
+

LUJ1D

FFDIAG

QRJ1D

ACDC
LU
+

ACDC, JD
LU
+ , JD

QR
+

ACDC
QRJ1D

FFDIAG LUJ1D

JD
LU
+

JD
QR
+
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matrices D(k). Bottom: the average numerical complexities (left) and the CPU time (right) of all
the algorithms, respectively.
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Figure 7 JDC performance on an ICA model versus number of observations. The number of
sources P and the SNR value are set to P = 3 and SNR = 5 dB, respectively. Top: the average
error α(A, Ã) evolution of all the algorithms as a function of the number of observations N .
Bottom: the average numerical complexities (left) and the CPU time (right) of all the algorithms,
respectively.



Wang et al. Page 32 of 33

1

0 500 1000
0

1

0 500 1000
0

1

(a) Cho and Ins source metabolites

0 500 1000
0

1

0 500 1000
0

1

(b) Two of the MRS observations

0 500 1000
0

1

0 500 1000
0

1

(c) Separated metabolites by JD+
LU-ICA

0 500 1000
0

1

0 500 1000
0

1

(d) Separated metabolites by JD+
QR-ICA

0 500 1000
0

1

0 500 1000
0

1

(e) Separated metabolites by CoM2

0 500 1000
0

1

0 500 1000
0

1

(f) Separated metabolites by SOBI

0 500 1000
0

1

0 500 1000
0

1

(g) Separated metabolites by NNICA

0 500 1000
0

1

0 500 1000
0

1

(h) Separated metabolites by NMF

Figure 8 BSS results on MRS data. An example of the results of blind separation of 2 simulated
MRS metabolites. The number of observations N is set to 32 and the SNR value is 10 dB. (a)
Cho and Ins source metabolites. (b) Two of the observations. (c)-(h) separated metabolites by
JD+

LU-ICA, JD
+
QR-ICA, CoM2, SOBI, NNICA and NMF, respectively.
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Figure 9 BSS performance on MRS data versus the number of observations. Average results
of blind separation of 2 simulated MRS metabolites. The SNR value is set to 10 dB. Left: the
average error α({s[f ]}T, {s̃[f ]}T) evolution of all the algorithms as a function of the number of
observations. Right: the average numerical complexities (top) and the CPU time (bottom) of all
the algorithms, respectively.
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Figure 10 BSS performance on MRS data versus SNR. Average results of blind separation of 2
simulated MRS metabolites. The number of observations is set to N = 32. Left: the average error
α({s[f ]}T, {s̃[f ]}T) evolution of all the algorithms as a function of SNR. Right: the average
numerical complexities (top) and the CPU time (bottom) of all the algorithms, respectively.


