
HAL Id: hal-01065565
https://hal.science/hal-01065565

Submitted on 29 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal models for conformance test of programmable
logic controllers

Anaïs Guignard, Jean-Marc Faure

To cite this version:
Anaïs Guignard, Jean-Marc Faure. Formal models for conformance test of programmable logic
controllers. Journal Européen des Systèmes Automatisés (JESA), 2013, 47 (4-8), pp.423-446.
�10.3166/jesa.47.423-446�. �hal-01065565�

https://hal.science/hal-01065565
https://hal.archives-ouvertes.fr

Formal models for conformance test
of programmable logic controllers

Anaïs Guignard, Jean-Marc Faure

LURPA, Ecole Normale Superieure de Cachan
61 Avenue du President Wilson
94230 Cachan, France

firstname.lastname@lurpa.ens-cachan.fr

ABSTRACT. Conformance test is a formal method that is aiming at checking whether an imple-
mentation, a Programmable Logic Controller (PLC) in this study, behaves as described by its
specification. This method requires naturally a formal model of the specification. This paper
shows how such a model can be built from a non-formal model in the IEC 60848 standardized
language and the knowledge of the execution mode of this model by the PLC. Application to a
simple example highlights the significance of the consideration of the execution mode for con-
formance test.

RÉSUMÉ. Le test de conformité est une méthode formelle dont le but est de vérifier qu’une im-
plantation, ici un automate programmable industriel, se comporte comme décrit dans sa spé-
cification. Cette méthode nécessite naturellement un modèle formel de la spécification. Ce
papier montre qu’il est possible de construire un tel modèle à partir d’une spécification rédigée
selon le langage non formel décrit dans la norme IEC 60848 ainsi que de la connaissance du
mode d’exécution choisi pour l’automate. Une application à un exemple simple met en valeur
l’importance du choix de ce mode d’exécution pour le verdict du test de conformité.

KEYWORDS: conformance test, Grafcet, location automaton, stability, transient evolution.

MOTS-CLÉS : test de conformité, Grafcet, automate des localités, stabilité, évolution fugace.

1. Introduction

Programmable Logic Controllers (PLCs) are increasingly used to implement con-
trol and monitoring functions in critical systems like power plants, railway transport,
etc. Hence, it really matters before commissioning a PLC to check whether it behaves
as specified. Conformance test (IEC 1012, 2004) is a good solution to meet this ob-
jective. This validation technique assumes that the implementation under test, a PLC
in this paper, is a black box with inputs-outputs; during the execution of the test, an
input sequence is sent to the PLC and the resulting output sequence, response of the
PLC to the input sequence, is compared to the expected output sequence (Figure 1).
The set composed of this input sequence and the expected output sequence is called
test sequence and must be built from the specification.

Figure 1. Conformance test principle

Construction of a test sequence when the specification is given in the form of a
formal model with inputs and outputs, like a Mealy machine, has been addressed by
many authors; a good synthesis of these works can be found in ((Lee, Yannakakis,
1996)). The specification of the behavior of PLCs is not represented by a formal
model however, but by a non-formal model in a standardized language, like Grafcet
((IEC 60848, 2002)). This tailored-made language is very appreciated by numerous
automation engineers because it is based on a graphical representation and permits
to model parallelism, selection of sequences, synchronization, resource sharing. This
paper focuses only on PLCs whose behavior is specified in this language while the
results presented can be extended to other industrial specification languages, provided
that their semantics can be completely defined.

To bridge the gap between the theoretical results on conformance test sequence
generation and the industrial practices, ((Provost et al., 2011b)) proposes a method
to translate a Grafcet specification into an equivalent Mealy machine, without seman-
tics loss. Nevertheless, this proposal supposes that the controller executes the Grafcet
according to an algorithm based on stability search; in that case, the outputs are up-
dated only if the Grafcet state is stable for the current values of its inputs, i.e. it cannot
change without the value of at least one input is modified. However, most PLCs do not
use this execution algorithm but interpret the Grafcet model without stability search;
this execution mode guarantees indeed a shorter response time and a more frequent

output update what is really significant in particular for critical systems. Hence, the
aim of this paper is to propose a more general method to build the formal model of a
PLC that executes a Grafcet specification, whatever the execution mode.

Nevertheless, this proposal supposes that the controller executes the Grafcet ac-
cording to an algorithm based on stability search; in that case, the outputs are updated
only if the Grafcet state is stable for the current values of its inputs, i.e. it cannot
change without the value of at least one input is changed. However, most PLCs do not
use this execution algorithm but interpret the Grafcet model without stability search.
This execution mode guarantees indeed a shorter response time and a more frequent
output update what is really significant in particular for critical systems. Hence, the
aim of this paper is to propose a more general method to build the formal model of a
PLC that executes a Grafcet specification, whatever the execution mode.

The global approach that has been selected to generate a test sequence is depicted
in Figure 2:

– The Grafcet model is first translated into a formal model, called Location Au-
tomaton, which represents the expected implementation of the specification. This
translation requires the execution mode (with or without stability search) be defined
as illustrated on this figure.

– Then, the Location Automaton is translated into an equivalent Mealy machine
where all evolutions due to input changes are explicitly described.

– Finally, the test sequence can be built from this machine, by using for instance
the transition-tour method ((Naito et al., 1981)) to minimize the number of steps in
the test sequence.

This paper considers mainly the first phase of this method; the other ones are widely
detailed in ((Provost et al., 2011b)). The construction of the Location Automaton for
the two execution modes will be first explained; then, the test sequences built from
these automata will be compared and discussed.

The semantics of the Grafcet specification language and the two execution modes
of a Grafcet are reminded respectively in sections 2 and 3. Section 4 focuses on
the construction of the formal model for the two execution modes of a PLC. These
proposals are exemplified on a simple case from the literature in section 5. Section
6 is dedicated to the analysis of a part of the test sequence built from the two formal
models and finally the concluding remarks and some perspectives are proposed in
section 7.

2. Grafcet: Specification model

2.1. IEC 60848 Grafcet standard

This standard proposes a specification language, termed Grafcet, to describe the
desired behavior of a logic system. A Grafcet model is a directed graph or a set of
directed graphs with two kinds of nodes: steps and transitions. A step is represented

Figure 2. Test sequence generation method

by a square and defines a partial state of the system. A transition is represented by a
horizontal line. A step can be linked only to transitions, and a transition can be linked
only to steps. By default, the links are bottom-directed; if a top-directed link is to be
introduced, an arrow must be added to this link to point out its direction.

A step can be active or inactive; then, a Boolean variable termed step activity vari-
able is associated to each step. Moreover, one or several actions may be associated to
each step; an action acts upon one internal or output variable. The set of the active
steps of a Grafcet at a given time is called the situation of the Grafcet. Furthermore, a
Boolean expression, called transition-condition, must be associated to each transition;
this expression is defined on input variables, step activity variables or timed condi-
tions.

Given this syntax, the evolutions of a model are described textually in the standard
(IEC 60848, 2002) by a set of five rules:

– Rule n°1: The initial situation, chosen by the designer, is the situation at the
initial time.

– Rule n°2: A transition is said to be enabled when all immediately preceding
steps linked to this transition are active. The firing of a transition occurs:

- when the transition is enabled,

- and when its associated transition-condition is true.

When these two conditions are satisfied, the transition must be fired.

– Rule n°3: The firing of a transition simultaneously provokes the activation of all
the immediately succeeding steps and the deactivation of all the immediately preced-
ing steps.

– Rule n°4: Several transitions which can be fired simultaneously are simultane-
ously fired.

– Rule n°5: If, during the evolution, an active step is simultaneously activated
and deactivated, it remains active.

It matters to underline that the standard focuses on the behavior of a specification
model but not on the execution algorithm when this model is implemented in a PLC.
Moreover, the syntax and semantics of the specification language are only described
textually. (Lhoste et al., 1993) and (Bierel et al., 1997) have already pointed out this
issue and proposed some worthwhile contributions, in the form of a static meta-model
or algorithmic descriptions. Nevertheless these references do not propose a systematic
way to construct, from a Grafcet model, a formal model of a PLC that executes a
Grafcet.

The results presented in this paper will be illustrated on a simple case introduced in
(David, Alla, 1992). The plant to control is a set of two tanks (Figure 3) that must be
filled then emptied. The controller has five logic inputs (h1, l1, h2, l2, s) corresponding
to position sensors and a push-button and four logic outputs (V1,W1, V2,W2) which
order the opening (value True) and closing (value False) of valves; its expected be-
havior is described by the Grafcet of Figure 4.1 From the initial step, the filling of the
tanks starts when the button s is pushed. When a tank is completely filled (level h1 or
h2 reached), it is emptied till the low level is reached. The initial step becomes active
again only when the two tanks are empty (levels l1 and l2 reached).

Figure 3. Tanks filling/emptying system

1. In this paper, v represents the negation of the Boolean variable v; ∧ and ∨ represent respectively the
conjunction and disjunction operators.

Figure 4. Specification of the controller

2.2. Formal model of the Grafcet language

Five hypotheses have been made to build this model:
– H1: The time-dependent elements of the Grafcet language (time dependent

transition-condition, delayed and time-limited actions) are not considered.
– H2: There is neither rising edge nor falling edge of logic variables in the

transition-conditions.
– H3: The specification model does not include any enclosing step, macro-step or

forcing order.
– H4: The specification model does not include any source or pit step.
– H5: Input, output and internal variables are exclusively Boolean variables.

These hypotheses are aiming at facilitating the construction of the formal model
and are reasonably realistic. The Grafcet elements forbidden by hypotheses H3 and
H4 are found very rarely in industrial models and can be replaced by other Grafcet
structures, even if forcing orders will generate partial order relations between graphs
(Lesage, Roussel, 1993). It is also well-known that a transition whose condition in-
cludes an edge can be replaced by two transitions whose conditions include only input
and step activity variables. The first hypothesis is the most restrictive but it is pos-
sible to represent a model with time-dependent elements by a model without time-
dependent elements which is connected to timers. It matters to underline that these
hypotheses hold for a model composed of only one connected graph, as this is the
case in figure 4, or several connected graphs synchronized by step activity variables.

Under those hypotheses, a Grafcet G is formally defined by a 6 − tuple
(IG, OG, SG, TG, AG, SInit) where:

– IG is the non-empty set of inputs of the logic system,
– OG is the non-empty set of outputs of the logic system,
– SG is the non-empty set of Grafcet steps, with XG the set of associated step

activity variables,2

– TG is the non-empty set of Grafcet transitions,
– AG is the set of Grafcet actions,
– SInit is the set of the initial steps.

A transition t ∈ TG is defined by a 3 − tuple (SU , SD, F (IG, XG))
where:

– SU is the non-empty set of (immediately preceding) upstream steps,
– SD is the non-empty set of (immediately succeeding) downstream steps,
– F (IG, XG) is the transition-condition, Boolean expression on input and step

activity variables.

The set of actions AG is split in two sub-sets:
– the sub-set of continuous actions AC . The output controlled by a continuous

action is set only when a step to which this action is associated is active; when this
step becomes inactive, the output is reset.

– the sub-set of stored actions AS . The output controlled by a stored action is set
and reset by this action when a step to which it is associated becomes active; when
the step is deactivated, the output keeps its value (true/false if the action was set/reset).

Formalization of the evolution rules will be addressed in section 4; nevertheless,
the formal definitions of two concepts: transient evolution and stable situation, which
are depicted in the IEC 60848 standard ((IEC 60848, 2002), page 13) and are funda-
mental for this study, are to be given now.

DEFINITION 1. — Transient evolution
Let SAct ⊂ SG be the situation (set of active steps) of a Grafcet G at a given moment.
Let Tenab ⊂ TG be the set of enabled transitions in this situation SAct.

Tenab = {t ∈ TG|t.SU ⊂ SAct}3 (1)

2. The step activity variable of a step s ∈ SG will be noted Xs.
3. In this paper, an element b of a tuple A will be noted A.b.

Let iG ∈ IG be a combination of values of input variables. An element ti ∈ Tenab is
firable when:

ti.F (iG, XG) = True (2)

This transition must be fired and the new set of active steps becomes:

SNew = {(SAct\ti.SU) ∪ ti.SD} (3)

If there exists tj ∈ TG such as:

tj /∈ Tenab, tj .SU ⊂ SNew and tj .F (iG, XG) = True (4)

then, the sequence titj is a transient evolution for the combination of values of input
variables iG and the set {ti.SD ∩ tj .SU} is the set of unstable steps.

This definition deals with a sequence of only two transition firings but may be
extended to a sequence of more than two sequential firings or to sequences where
several transitions are simultaneously fired.

Figure 5. Non transient (a) and transient (b) evolutions

A simple example is proposed figure 5 where the combination of the initial values
of input variables leads or not to a transient evolution of the Grafcet model.

Likewise, for a combination of values of input variables iG, the situation of a
Grafcet is said stable if no transition is firable from this situation for this combination
of values.

DEFINITION 2. — Stable situation
Let SAct ⊂ SG be the situation of a Grafcet G.
Let Tenab ⊂ TG be the set of enabled transitions in this situation:

Tenab = {t ∈ TG|t.SU ⊂ SAct} (5)

Let iG be a combination of values of input variables. The Grafcet is said in a stable
situation if:

∀t ∈ Tenab, t.F (iG, XG) = False (6)

Only a change of the value of at least one input variable (iG becomes i′G) may trigger
the firing of one transition to leave this situation, because the values of the step activity
variables are fixed if the situation is known.

3. Grafcet execution in a PLC

3.1. I/O scanning cycle

Most of programmable logic controllers (PLC) which are selected to implement a
Grafcet specification are mono-task systems. The operation of a PLC is then based on
a cyclic I/O scanning that can be periodic or not. A periodic I/O scanning cycle (figure
6) comprises 4 phases:

– Inputs reading (R),
– Internal and output variables computation (C),
– Outputs updating (U),
– Waiting time until the end of the period T .

The duration of the first and third phases is constant while that of the second phase
may vary from one cycle to the other.

Figure 6. Periodic I/O scanning

The waiting phase is omitted when the cycle is aperiodic. In both cases, the cycle
in controlled by a hardware or software timer, termed watchdog, which stops the op-
eration and sets up the output values to ensure safety, when the duration of the cycle

exceeds a given threshold: T for a periodic cycle or a time defined by the designer for
an aperiodic cycle. The main objective of this watchdog is to detect internal failures
of the PLC and programming flaws so as to avoid the outputs be not updated during a
too long time, what could lead to lose the correct control of the plant.

The computation phase is performed by a code in a standardized PLC program-
ming language that is developed from the specification model and once one of the two
execution modes described below has been selected.

3.2. Execution with or without stability search

The execution mode with stability search is described by Algorithm 1 in which
a Boolean variable Stable is introduced to qualify the current situation of the Grafcet
model. This variable is used in a stability search loop. Once a stable situation reached,
the values of the outputs controlled by continuous actions are computed.

Algorithm 1 Grafcet execution with stability search
1: Stable := False;
2: while Stable = False do
3: Determine the set of firable transitions;
4: Determine the set of active steps;
5: Compute the values of the outputs controlled by stored actions associated to

the active steps;
6: Determine the set of firable transitions;
7: if the set of firable transitions is empty then
8: Stable := True;
9: end if

10: end while
11: Compute the values of the outputs controlled by continuous actions associated to

the active steps;

The loop introduced in Algorithm 1 generates a variable duration of the variables
computation phase of the I/O scanning cycle. This duration may even exceed the
watchdog threshold for long transient evolutions; unexpected triggering of the watch-
dog is then possible when selecting the previous execution mode. This explains why
the execution mode without stability search (Algorithm 2) is commonly selected for
industrial applications.

Algorithm 2 Grafcet execution without stability search
1: Determine the set of firable transitions;
2: Determine the set of active steps;
3: Compute the values of the outputs controlled by stored actions;
4: Compute the values of the outputs controlled by continuous actions;

An illustration of this phenomenon of time consumption is presented through an
evolution of the Grafcet given figure 1. The figure 7 shows that from a given situation
and values of input variables (figure 7.a)), a simple change of one input value may
lead to several successive firings of transitions then to several computation loops of
the algorithm 1. Indeed, from this configuration, if the value of l2 turns from True to
False, the transitions t5, t6 and t1 will be successively fired to reach the stable situation
shown in 7.b). This highlights that, even for a basic example, the computation phase
with stability search, and consequently the PLC cycle, may last more than expected.

Figure 7. Transient evolution including three successive firing of transitions

4. Construction of formal models

The aim of this section is to propose an algorithm to construct a formal model
that will be used for test sequence generation, from the Grafcet specification model
and the knowledge of the execution mode. The outcome of the algorithm will be a
location automaton (LA) (Provost et al., 2011a), class of finite state automaton that
permits to represent all Grafcet concepts; moreover, a location automaton can be easily
translated, without semantics loss, in a Mealy machine from which a test sequence can
be built.

In an intuitive manner, a state of this automaton, called location, gathers the con-
cepts of current situation of the Grafcet, set of outputs that are set in this situation
and stability condition. Every transition between two locations, called evolution, is la-
beled with a Boolean expression on the input variables, named firing condition; when
this expression is true and the location that is the source of this evolution active, the
evolution must be fired. The stability condition of a location is the negation of the
disjunction of the firing conditions of all evolutions which start from this location.

4.1. Definitions

A location automaton LA is defined as a 5− tuple
LA = (ILA, OLA, L, lInit, Evol) where:

– ILA = IG is the set of logic inputs,
– OLA = OG is the set of logic outputs,
– L is the set of locations,
– lInit is the initial location,4

– Evol is the set of evolutions.

Each location l ∈ L is defined by a 3− tuple (SAct, OSet, C(IG)) where:
– SAct is the current situation of Grafcet G,
– OSet is the subset of outputs of G which are set in this situation (the other

outputs are reset),
– C(IG) is the stability condition of the location, Boolean expression on IG;

when this expression is true, no transition of G is firable.

Each evolution evol ∈ Evol is defined by a 3 − tuple (lU , lD, E(IG))
where:

– lU ∈ L is the upstream location of the evolution,
– lD ∈ L is the downstream location of the evolution,
– E(IG) is the firing condition of the evolution, Boolean expression on the input

variables; when the upstream location is active and this expression true, the evolution
must be fired.

The graphical representation of the elements of a location automaton is given Fig-
ure 8.

As a LA is deterministic, the firing conditions of the evolutions that start from a
location are exclusive:
∀l ∈ L, ∀evoli ∈ Evol, ∀evolj ∈ Evol, i 6= j where:
evoli ∈ {Evol|evoli.lU = l} and
evolj ∈ {Evol|evolj .lU = l} as

(evoli.E(IG)) ∧ (evolj .E(IG)) = False (7)

4. There is only one initial location because a LA represents the expected behavior of a controller then
must be deterministic.

Figure 8. Representation of a location and evolutions

And the stability condition of a location l ∈ L is:

l.C(IG) =
∑

evolk.lU=l

evolk.E(IG) (8)

4.2. Formalization of the evolution rules of the Grafcet language

The evolution rules of the location automaton built from a Grafcet model must be
consistent with those given in section 2.1. Then it matters to express formally these
textual explanations before constructing the equivalent location automaton.

The Rule n°2 indicates the conditions to fire a Grafcet transition: all the immedi-
ately upstream steps must be active, i.e. the transition is enabled, and the associated
transition-condition must be True. Then, the firing condition of a transition for a given
situation can be stated formally from the transition-condition by replacing the step ac-
tivity variables by their values for this situation:
Let SAct be a Grafcet situation,
the firing condition of a transition t ∈ TG is:

t.F (IG) = t.F (IG, XG) (9)

with

{
∀s ∈ SAct Xs = True
∀s /∈ SAct Xs = False

Therefore, a transition t is firable for a given combination of values of the input
variables if it is enabled and its firing condition is True for this combination, i.e.:
t ∈ Tenab and ∃iG ∈ IG such as:

t.F (iG) = True (10)

The Rule n°4 specifies that several transitions may be fired simultaneously. The
firing condition of a set of transitions Fτ (IG) must then be defined as follows.

Let τ ⊆ Tenab be a subset of the set of enabled transitions. The firing condition of this
set of transitions is the conjunction of the firing conditions of each transition of this
subset and the negation of the firing conditions of the enabled transitions that do not
belong to this subset.

Fτ (IG) =
∏

t∈Tenab
t∈τ

t.F (IG) ∧
∏

t∈Tenab

t/∈τ

t.F (IG) (11)

The relation (11) is not true whatever τ , however, because it is not always possible
to find a combination iG that satisfies this relation. A subset of simultaneously firable
transitions SFT , for a given situation SAct, is a subset that satisfies (11) for at least
one combination of values of the input variables.

∃iG ∈ IG, FSFT (iG) = True (12)

This set may be not unique; the set of the subsets of simultaneous firable transi-
tions, noted SSFT , is to be introduced:

SSFT = {SFT ⊆ Tenab | ∃iG ∈ IG, FSFT (iG) = True} (13)

When a set of transitions SFT is fired, all upstream steps are deactivated and all
downstream steps are activated according to the Rule n°3; then, the step activity vari-
ables are updated in the formal model. Nevertheless, concurrency between activation
and deactivation may occur for some steps. This is solved by the Rule n°5 that means
that activation has priority over deactivation. To respect this rule, the update of the
step activity variables must merely treat the set operations after the reset ones.

4.3. Definitions of the locations and evolutions of the LA from the Grafcet

As the sets of inputs and outputs of the Grafcet and the equivalent location au-
tomation are identical by definition, only the sets of locations and evolutions are to be
created.

A location is defined by a situation, a set of outputs that must be set in this situ-
ation and a stability condition. The set of locations L is then defined from the set of
situations SAct by considering every situation of the Grafcet model, if the selected ex-
ecution mode is without stability search, and only the stable situations if it is assumed
that the PLC executes the specification model without stability search. The set of out-
puts to set is derived from the set of the Grafcet actions associated to the steps that
define the situation. Last, the stability condition C(IG) is obtained from the firing
conditions of the evolutions that start from the location as stated by (8); it matters then
to formalize these conditions.

An evolution of a location automaton describes the firing of a set of transitions
SFT , if no stability search is considered, or a sequence of SFTs otherwise. Thus,

the set of evolutions Evol is defined from the sets SSFT for every situation of the
corresponding Grafcet. The upstream location of an evolution is the location associ-
ated to the current situation and its downstream location is the one associated to the
new situation that is reached once the evolution fired.

When every situation is considered (no stability search), the evolution condition is
merely the firing condition of the SFT that is represented by the evolution:

E(IG) = FSFT (IG) (14)

When only stable situations are kept (stability search), the evolution condition is
the conjunction of the firing conditions of the sequence of SFTs that is represented
by the evolution:

E(IG) =
∏

SFT∈σSFT

FSFT (IG) (15)

Where σSFT is a sequence of SFTs between two stable situations.

4.4. Construction of the location automaton

4.4.1. Execution without stability search

This construction may be described in a synthetic manner by the Algorithm 3
that defines the sets of inputs and outputs of the location automaton, its initial loca-
tion and the outputs that are set in this location. It also calls the recursive function
LocationCondition(l) detailed by the Algorithm 4.

The aim of the function LocationCondition(l) is to compute the stability condi-
tion of a location l. This condition is obtained by:

– Determining the sets of SFTs for the current situation (function
CreateSFT (SG)),

– Updating the values of the step activity variables, i.e. defining the new situation,
when a set SFT is fired (function StepUpdate(SG, SFT)),

– Updating the values of the output variables in this new situation (function
EmitOut(SG)),

– Creating a location from this new situation and output values (function
CreateLocation(SG, OG)),

– Creating the evolution from the the old location to the new reached location,
labeled with the expression E(IG) (funtion CreateEvol(L,L,E(IG))).

The function is then recalled till all locations and evolutions have been found; the sta-
bility conditions are computed from the firing conditions of the evolutions according
(8).

Only the update of the step activity variables is detailed in this paper (Algorithm
5) for room reasons; it may be noted that this algorithm satisfies the Rule n°5 of

the Grafcet language (an active step that is simultaneously activated and deactivated
remains active).

Algorithm 3 Construction of the equivalent location automaton
1: function BUILDLA(Grafcet)
2: ILA = IG;
3: OLA = OG;
4: OsetInit = EmitOut(Sinit);
5: Linit = CreateLocation(SInit, OsetInit);
6: Linit.C = LocationCondition(Linit);
7: return: Location Automaton
8: end function

Algorithm 4 Recursive function to obtain the stability condition of a location
1: function LOCATIONCONDITION(l) . After having defined all the possible

evolutions from a location, determines the stability condition of this location
2: ActSteps = l.SAct; . Active Grafcet steps for the current location
3: NotC = False . Negation of C(Ig)
4: for t ∈ TG do
5: Calculation of the firing condition of each enabled transition
6: end for
7: SSFT = CreateSFT ((ActSteps))
8: for SFT ∈ SSFT do . Determination of the new location reached for each

evolution
9: NewS = StepUpdate(ActSteps, SFT)

10: E = FSFT ;
11: NewO = EmitOut(NewS);
12: if The reached location already exists then
13: CreateEvol(l, lnew, E); . with lnew the location reached
14: else . Defines the new location and possible evolutions
15: NewL = CreateLocation(NewS,NewO);
16: NewL.C = LocationCondition(NewL);
17: CreateEvol(L,NewL,E);
18: end if
19: NotC = NotC + E; . Updates the stability condition of the location
20: end for
21: C = NotC;
22: return: C
23: end function

Algorithm 3 can be applied to a Grafcet model composed of only one connected
graph or a set of several connected graphs which are synchronized by step activity
variables but are not hierarchically ordered (flat model). However, some PLCs require
that the set of connected graphs, when this structure is selected, be ordered, i.e. that an

Algorithm 5 Function which updates the set of active steps after the firing of a set of
simultaneously firable transitions

1: function STEPUPDATE(SAct, SFT)
2: NewSteps = SAct . Initial situation
3: for t ∈ SFT do
4: NewSteps = NewSteps/t.SU . Deactivation
5: end for
6: for t ∈ SFT do
7: NewSteps = NewSteps ∪ t.SD . Activation
8: end for
9:

10: return: NewSteps . Final situation
11: end function

order relation be defined to execute sequentially the different graphs. In that case, the
computations of the evolutions must integrate the hierarchy introduced by this order
relation.

The upper bounds of the numbers of transitions and situations of the Grafcet
model, as well as locations and evolutions of the LA can be easily given. If s = |SG| is
the number of Grafcet steps and n = |IG| the number of input variables, these bounds
are respectively:

– |TG| = 2s ∗ 2n transitions; this bound is reached when as many transitions as
there are combinations of the input values start from every situation of the Grafcet.

– |L| = 2s; this bound is also that of the number of situations of the Grafcet, by
definition.

– |Evol| = 2s ∗ 2n; 2n evolutions start from every location in that case.

Nonetheless, it must be underlined that these bounds are extremely pessimistic. Real
Grafcet models are compact representations of control laws which have been designed
by competent automation engineers; hence, the transition conditions of the transitions
which start from any step correspond generally to sets of combinations of the input
values and not only one, for instance. This remark will be illustrated in section 5.

Concerning the algorithm, the function LocationCondition (Algorithm 4) will be
called for every location. In this function, a first loop (line 4.) on transitions is per-
formed with performs an elementary operation. Then (line 8.), an other loop on simul-
taneous firable transitions, which corresponds to evolutions, starts. Inside this loop,
on line 10., an operation containing a loop on all transitions is done. All the other
operations are elementary ones.

The figure 9 details all the terms of the complexity. In this expression, a product
of two terms means that the second is inside the loop described by the first and an
addition of two terms means that they are following operations.

Figure 9. Origin of terms of the complexity equation

This expression can be reduced to:

complexity = O(2s ∗ (2s ∗ 2n + 2s ∗ 2n ∗ (2s ∗ 2n)))
= O(22s+n + 23s+2n)
= O(23s+2n)

(16)

4.4.2. Execution with stability search

The location automaton which corresponds to an implementation without stability
search contains all the information required to construct the location automaton that
models an implementation with stability search. This last automaton can be indeed
built from the model obtained at the previous section by removing the unstable loca-
tions and merging the successive evolutions that represent a transient evolution. This
is performed by Algorithm 6.

To detect whether an evolution leads to a stable or unstable location, this algorithm
first checks that the evolution condition of the evolution is included in the stability
condition of its downstream location; if this is not the case, this evolution is part of a
transient evolution and will be merged with other consecutive evolutions of the initial
automaton to give rise to a unique evolution of the location automation with stability
search. The condition of this evolution is then constructed by iterating the computation
until a stable location is reached.

5. Illustrative example

The algorithms presented in the previous section have been applied to the case
study presented in section 2.1. The formal models that correspond to the two execution
modes are depicted Figure 10 and Figure 11. These figures show clearly the main
differences between the two models:

– The model without stability search contains one more location than the model
with stability search. This location corresponds to the situation {4,7} in the initial
Grafcet which is always unstable because the transition-condition of t6 is always True;
when both steps 4 and 7 are active, the firing condition of t6 is True whatever the
combination of the input values.

– The model with stability search contains (eleven) more evolutions. These
evolutions correspond to transient evolutions (sequences of firings of SFTs); that kind
of evolution is only possible with this execution mode.

Algorithm 6 Construction of the location automaton with stability search
1: for each location L do
2: EvolList = evolutions from L
3: while EvolList is not empty do
4: Pick evol from EvolList
5: dest = evol.lD
6: if dest.C ∧ evol.F 6= dest.C then . If there is a transient evolutions
7: exp = evol.F ∧ dest.C
8: for each evolD as evolD.lU = dest do
9: if evolD.F ∧ exp 6= False then . Detection of the successively

firable evolutions
10: newEvol.lU = L . Creation of the new evolution
11: newEvol.lD = evolD.lD
12: newEvol.F = evolD.F ∧ exp
13: Add newEvol to EvolList . Operation must be repeated for

longer transient evolutions
14: end if
15: end for
16: evol.F = evol.F ∧ exp . Suppression of the non stable part of the

evolution
17: end if
18: end while
19: end for

These remarks can be generalized whatever the specification model. The number
of locations of the automaton without stability search is always equal or greater than
the number of locations of the automaton with stability search, because only the stable
situations of the Grafcet are considered when building the last one. On the opposite,
no definite conclusion can be drawn for the number of evolutions which depends on
both the number of locations and the number of transient evolutions in the Grafcet.

These two examples illustrate the remark on the size of a location automaton which
has been made at the end of 4.4.1. For the considered Grafcet (7 steps and 5 inputs),
the upper bounds of the numbers of locations and evolutions of the equivalent LA are
respectively 27 = 128 and 128 ∗ 25 = 4096; these values are far greater than those
obtained (11 and 19 for the first automaton and 10 and 30 for the second).

6. Location automaton for conformance test

A location automaton may be translated, without semantics loss, into an equivalent
Mealy machine from which it is possible to construct a test sequence that covers at
least once each transition of the machine as shown in (Provost et al., 2011b); the test
sequence thus depends on the initial location automaton. If this automaton models
the expected behavior of a PLC, correct test verdicts will be obtained if and only if

Figure 10. Formal model of a PLC that executes the Grafcet of figure 4 without
stability search

Figure 11. Formal model of a PLC that executes the Grafcet of figure 4 with stability
search

the appropriate automaton, formalizing an execution mode without or with stability
search, is selected, as shown below.

The table 1 presents the main differences between the models generated assum-
ing that the execution is with or without stability search. Some observations may be
done:

– The number of states of the Mealy machine is equal to the number of locations of
the location automaton minus one. This slight size reduction is obtained by merging
the initial state, derived from the initial location, with the state that corresponds to
the location whose situation and emitted outputs are identical to those of the initial

location (1 in the example). This is possible because a state of this machine does
not store indeed any information, like the stability condition or the emitted outputs.
At initialization, the stability condition of the initial location: False in the example,
which means that all input values are False, is not necessarily satisfied and if not,
an evolution (towards the location 1 or 2 in the example) will occur. An equivalent
behavior in the Mealy machine is obtained by merging the two states and removing
the transitions between them.

– The number of transitions of the Mealy machine is equal to t = m ∗ 2n where
m is the number of states and n the number of input variables, From any state, there
are as many transitions as there are combinations of input variables.

– The number of test steps in the test sequence built from the automaton without
stability search is greater than that of the test sequence obtained from the automaton
with stability search because a transient evolution of the Grafcet corresponds to several
evolutions in the first model and only one in the second. The reader is reminded at this
point that the aim of the Transition-Tour method is to build a test sequence that crosses
at least once each transition of the Mealy machine while minimizing the number of
test steps.

Table 1. Characteristic variables with or without stability search

Location automaton Mealy machine Test sequence
Locations Evolutions States Transitions Steps

With stability search 10 30 9 288 283
Without stability search 11 19 10 320 446

The table 2 presents a sequence of three test steps that has been built from the
location automaton presented figure 11, which means that the controller is supposed to
execute the Grafcet specification with stability search. The three test steps correspond
respectively to an evolution from location 0 to location 1, then from location 1 to
location 3, and finally from location 3 to location 5. In this table, 0 means that the
variable is False and 1 means that the variable is True. The duration of each test step
is greater than the maximal cycle time of the controller, a mandatory condition to
insure that each change of the combination of the input values is detected by the PLC.

If this sequence is used to test a controller which executes the same specification
model but without stability search (usual industrial case), and assuming that the con-
troller executes correctly the automaton presented figure 10, the test verdicts will be
the following ones for each test step:

– For the first test step, the active location becomes the location 1 and the observed
combination of output values on the first step is O(1) = (0; 0; 0; 0) is the same as the
expected one; the test is positive.

– For the second test step, the active location becomes the location 2 and the
observed combination of output values O(2) = (1; 1; 0; 0) is different from the
expected one; the test is negative, which was easily predictable because there is no
evolution between locations 1 and 3 in the model of figure 10.

Table 2. Results of test sequence execution

Test step
Step 1 Step 2 Step 3

Input
sequence

s
h1

h2

l1
l2

0
0
0
1
1

1
1
0
1
1

0
0
1
1
1

Expected
output

sequence

V1

V2

W1

W2

0
0
0
0

0
1
1
0

0
0
1
1

Observed
output

sequence
O(i)=

V1

V2

W1

W2

0
0
0
0

1
1
0
0

1
0
0
1

or
1
1
0
0

0
1
1
0

0
0
1
1

As the Grafcet is implemented without stability search, the transient evolution will
be at least 2 cycles long because it is composed by two successive firing of transitions
(t1 and t4). The second step corresponds to the firing of the first transition t1. On
the next PLC cycle, either there is no input changes and the LA will reach its sta-
ble location, or the input values have been updated and taken in count for the next
firing of transitions. Two cases are then possible according to the duration of a test
step:

– If the duration of a test step is smaller than two PLC cycles, the location 4 is
reached at the third step and the observed combination of output values is O(3) = (1;
0; 0; 1).

– Else, the automaton evolves from location 2 to location 3 without any change of
the combination of input values; the observed combination of output values becomes
O(2’) = (0; 1; 1; 0). Then, when the input values are modified (test step 3), the
automaton evolves from location 3 to location 5 and the observed combination of
output values becomes O(3) = (0; 0; 1; 1).

Whatever the considered case, the test is negative: the observed output sequence
is different from the expected one.

7. Conclusions and perspectives

Construction of a formal model that can be used to build a test sequence for con-
formance test of a PLC requires to consider not only the specification model of the

logic control, in a tailored-made language, but also the execution mode of this model
by the PLC to test. This paper has proposed a method to construct this formal model
for two execution modes and in particular for the most common mode in industry,
without stability search; then, it has been shown, on the basis of a simple example,
that the consideration of the execution mode is mandatory to obtain valid test results.

On-going works are aiming to remove the hypotheses introduced in this study; in
particular, extension to models that include time-dependent elements is under investi-
gation. As Mealy machines are not appropriate to model timed systems, this extension
requires to select a class of timed automata to represent the formal models.

Furthermore, the validation process in the lifecycle of an automated system does
not focus on the behavior of the PLC in isolation but on the behavior of the PLC
connected to the plant to form a closed-loop system. This system can be modeled by
an automaton whose state space is a subset of the state space of the automaton which
represents the isolated PLC, because some combinations of input/output variables are
not feasible in the plant. It is thus not necessary to explore the whole state space of
the PLC model to validate the closed-loop system. Hence, a promising perspective
for further research is to develop formal techniques for validation of PLCs that are
complementary to conformance test and rely on the observation of the input/output
sequences in the closed-loop system.

References

Bierel E., Douchin O., Lhoste P. (1997, May). Grafcet : from theory to implementation. Journal
Européen des Systèmes Automatisés, Vol. 31, No. 3, pp. 543-559.

David R., Alla H. (1992). Petri nets and grafcet - tools for modelling discrete event systems.
Prentice Hall.

IEC 1012. (2004). Ieee standard for software verification and validation. Institute of Electrical
and Electronics Engineers.

IEC 60848. (2002). Grafcet specification language for sequential function charts (2nd ed.).
International Electrotechnical Commission.

Lee D., Yannakakis M. (1996, August). Principles and methods of testing finite state machines-
a survey. Proceedings of the IEEE, Vol. 84, No. 8, pp. pp. 1090–1123.

Lesage J.-J., Roussel J.-M. (1993, March). Hierarchical approach to grafcet using forcing order.
Automatique Productique Informatique Industrielle, Vol. 27, No. 1, pp. 25-38.

Lhoste P., Panetto H., Roesch M. (1993). Grafcet : from syntax to semantics. Automatique Pro-
ductique Informatique Industrielle, Vol. 27, No. 1, pp. 127-141. (Special issue "Advances
in Grafcet", ISSN 0296-1598)

Naito S., Tsunoyama M., Nagaoka N. (1981). Fault detection by sequential machines by
transition-tours. In Digest of papers: Ftcs-11: the eleventh annual international symposium
on fault-tolerant computing, june 24-26, 1981, portland, maine, p. 238.

Provost J., Roussel J.-M., Faure J.-M. (2011a, August). A formal semantics for Grafcet spec-
ifications. In 7th IEEE Conference on Automation Science and Engineering (IEEE CASE
2011), p. 488-494. Trieste, Italia.

Provost J., Roussel J.-M., Faure J.-M. (2011b, September). Translating Grafcet specifications
into Mealy machines for conformance test purposes. Control Engineering Practice, Vol. 19,
No. 9, pp. pp. 947–957.

