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Abstract This paper provides a detailed review of the global/local non-intrusive coupling
algorithm. Such method allows to alter a global finite element model, without actually mod-
ifying its corresponding numerical operator. We also look into improvements of the initial
algorithm (Quasi-Newton and dynamic relaxation), and provide comparisons based on sev-
eral relevant test cases. Innovative examples and advanced applications of the non-intrusive
coupling algorithm are provided, granting a handy framework for both researchers and engi-
neers willing to make use of such process. Finally, a novel nonlinear domain decomposition
method is derived from the global/local non-intrusive coupling strategy, without the need to
use a parallel code or software. Such method being intended to large scale analysis, we show
its scalability. Jointly, an efficient high level Message Passing Interface coupling framework
is also proposed, granting an universal and flexible way for easy software coupling. A sam-
ple code is also given.

Keywords Finite Element Method · Multi-scale · Coupling Algorithms · Non-intrusive ·
Message Passing Interface · Domain Decomposition

1 Introduction

Simulation in solid mechanics suffers from an intrinsic issue: physical phenomena are com-
plex and heterogeneous, which makes the use of accurate numerical models uneasy. Indeed,
simulations are closely bound to computing resources (both hardware and software), which
prevents systematic use of complex, accurate numerical models.
Hopefully, most of time simplest models (i.e. computationally cheap) are good enough at a
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global scale, and one can rely on specific models (i.e. complex and computationally expen-
sive) only on small areas, at a local scale.
Such assumption allowed the emergence of a wide variety of numerical methods dedicated
to multi-scale and/or multi-model computing. For simplicity of the presentation, we will di-
vide them into two main classes of numerical method: finite element model enrichment and
finite element model coupling.

First, one can cite enrichment methods based on the Partition of Unity Method [66]: the Gen-
eralised Finite Element Method [81, 27, 53] and the eXtended Finite Element Method [67]
being the most famous ones. Their principle is to enrich the finite element functional space
with specific functions, which can result from asymptotic expansion [16] or pre-computed
local finite element problem solution [18, 19] for instance.
Then, enrichment methods are based on micro-macro models. Their objective is to compute
a solution u as a combination of a macro scale solution uM and a micro scale correction
um, so that u = uM + um. Then the micro scale solution acts as a correction of the macro
scale solution, while ensuring unknowns (displacements, forces, stress, strain) equality at
the interface between the macro and the micro scale [59, 40]. There exists a wide range
of micro-macro methods. The micro model can either be solved analytically as done in the
Variational MultiScale method [47], or using the finite element method as well as done by
the Strong Coupling Method [48]. When dealing with highly heterogeneous models, the
whole macro domain can even be entirely mapped with micro models, as done is the Hi-
erarchical Dirichlet Projection Method [87, 70]. In some cases, micro-macro principle is
applied to the finite element solver itself, providing efficient multi-grid numerical methods
[78, 73, 36].
Finally, one can also cite structural zooming [25] and finite element patches [76, 77, 55]. The
principle of structural zooming is to use a computed global solution as boundary condition
for a local refined problem; this method is widespread in structural engineering. Besides, the
finite element patches method relies on an iterative process in order to take into account the
effect of the local model on the global solution. The main interest of such methods is their
ability to compute local corrections in a flexible way, i.e. make the local patch definition
independent from the global model characteristic.
Following the same idea, structural reanalysis [46, 3] intends to compute a posteriori a local
correction from a given global solution. In that case, not only the solution is to be corrected,
but the global model itself.

Despite all these efforts, it may appear that model enrichment cannot be practically used.
Indeed, in an industrial context, most of time one has to rely on existing commercial soft-
ware which may have been developed and certified for a specific purpose. Though, it is not
always easy or even possible to use a given software in order to achieve multi-scale, het-
erogeneous computation. Moreover, supercomputers recent developments allow to run very
ambitious simulations thanks to parallel computations. Thus, instead of embedding all the
needing specificities into a unique finite element model, the present-day trend is to rely on
model coupling.
Most common coupling methods are based upon iterative sub-structuring algorithms [15,
64], possibly combined with static condensation [35, 85, 86], and Schwarz algorithms [32,
37, 60].
As for the models and/or domains connexions, a wide range of numerical methods are avail-
able in the literature. Among them, there is the Mortar method [12, 8, 13] which is based
upon weak equality enforcing at the interface through Lagrange multipliers or the Nitsche
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method [42, 7, 43, 31, 65, 68]. Besides, energy averaging method, namely the Arlequin
method [10, 11, 9] brought a flexible tool for coupling models.

Nevertheless all the above cited methods require quite deep adaptation or modification of
finite element solvers and software, which is not always doable in an industrial context.
More recently, a new class of method is emerging: the non-intrusive coupling. It allows to
locally modify an existing finite element model, without actually altering its corresponding
numerical operator [82, 34].
Thus, a main consequence of non-intrusiveness is the possibility to easily merge commercial
software and research codes, as no modification of the software will be required. In addi-
tion, such algorithm will easily fit the standard input/output specifications of most industrial
software.
Actually, the non-intrusive global/local coupling strategy is currently under investigation
through several applications.
One can cite crack propagation [74, 41]. In that case, a two-level non-intrusive coupling is
proposed, either within a multi-grid or a GFEM framework: a first global model is used in
order to represent the global structure behaviour, a second local model takes into account
the crack.
Then, non-intrusive coupling is also investigated within a stochastic framework [21]. The
objective is here to take into account local uncertainties into a global problem with deter-
ministic operator, using a non-intrusive strategy. The main property of such coupling is its
ability to represent the stochastic effect of the local uncertainties at the global scale without
altering the initial global deterministic operator.
One can finally cite 2D/3D coupling [39]. The strategy developed here aims at coupling a
global plate model with local 3D models on localised zones where plate modelling is inad-
equate.
All in all, such flexible method can be applied to a very wide variety of static mechani-
cal analysis, including quasi-static crack propagation, plasticity, contact, composite failure
[24],... , and even transient dynamics problems [14, 20].

In this paper, we propose to analyse the effectiveness of this algorithm through various
applications (crack, plasticity, contact), and a comparative analysis of some existing accel-
eration methods in the literature.
It is also proposed to extend the method to the case of multiple patches. We also show that
this type of method can be used to locally redefine the geometry and boundary conditions.

In fact, model coupling is also widely used for domain decomposition. Among them one
can cite the well-known Finite Element Tearing and Interconnecting method [28], the Bal-
anced Domain Decomposition method [62] and the LArge Time INcremental method [58]
which are the most used in structural engineering.
In that context, nonlinear localisation algorithms have also recently been proposed [23, 75,
6, 5]. The objective of nonlinear localisation algorithm is to bring an efficient way to apply
domain decomposition method to nonlinear problem through the general Newton-Krylov-
Schur solvers class.

We then propose a new algorithm for nonlinear domain decomposition based on the con-
cept of non-intrusive coupling.
All the examples illustrated in this paper have been computed using Code Aster, an open
source software package for numerical simulation in structural mechanics developed by the
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French company EDF [88] for industrial applications. The complete code used to run one of
the given examples is also provided as appendix.

2 Non-intrusive coupling: a state of the art

2.1 Mechanical problem

Let us consider an elastic body represented by a geometrical domain Ω . Displacement uD
is prescribed on the Dirichlet boundary ΓD, surface force fN is applied on the Neumann
boundary ΓN and body force fΩ is applied on Ω . Then we seek to solve the following
mechanical problem:

(P) : min
u∈U

J(u) (1)

For the sake of simplicity, we consider here a linear elastic model (C being the corresponding
Hooke tensor and ε being the infinitesimal strain tensor). We then give the definition of
the affine space U (we will also make use of its corresponding vector space U 0) and the
potential function J.

U = {u ∈ H1(Ω), u|ΓD = uD} (2)

U 0 = {u ∈ H1(Ω), u|ΓD = 0} (3)

J(u) =
1
2

∫
Ω

Cε(u(x)) : ε(u(x))dx−
∫

ΓN

fN(x) ·u(x)dx−
∫

Ω

fΩ (x) ·u(x)dx (4)

In the context of the finite element method, we will make use of the equivalent variational
formulation

u ∈U , ∀v ∈U 0, a(u,v) = l(v) (5)

with the following definition of the bilinear and linear forms a and l:

a(u,v) =
∫

Ω

Cε(u(x)) : ε(v(x))dx (6)

l(v) =
∫

ΓN

fN(x) · v(x)dx+
∫

Ω

fΩ (x) · v(x)dx (7)

When using the finite element method to solve such a problem, a mesh will be set up, a
stiffness matrix and a right hand side vector will be assembled, and finally a linear system
will be solved. Now, let us consider that a local detail is missing from the modelling (crack,
hole,...). One cannot easily use the initial homogeneous model defined above, as it would
require to adapt it. When the detail location is not known a priori, such model adaptation
can be very intrusive and computationally expensive.
Then a possible way to deal with heterogeneous models is to use domain decomposition
based model coupling, each domain being represented with its own ad hoc model. With-
out loss of generality, we will take here the example of a cracked domain (see Fig. 1). The
domain is then divided into a global part ΩG and a local part ΩL, thus those two non-
overlapping sub-domains share a common interface Γ . The Dirichlet and Neumann bound-
aries are also partitioned as following:

• ΓD,G = ΓD∩∂ΩG and ΓD,L = ΓD∩∂ΩL
• ΓN,G = ΓN ∩∂ΩG and ΓN,L = ΓN ∩∂ΩL
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Fig. 1: Situation overview: global/local mechanical problem

We then need to define new functional spaces in order to give an adapted formulation to the
global/local problem, UG and UL (and their corresponding vector spaces U 0

G and U 0
L ).

UG = {u ∈ H1(ΩG), u|ΓD,G = uD} (8)

UL = {u ∈ H1(ΩL), u|ΓD,L = uD} (9)

We also consider Uψ ⊂ L2(Γ ) the Lagrange multipliers functional space.
Displacement and efforts continuity will be imposed in a weak sense via a mortar method
at the interface [12, 8, 13, 33]. We then get the following dual formulation for the domain
decomposition problem:

uG ∈UG, uL ∈UL, ψ ∈Uψ (10)

∀vG ∈U 0
G , aG(uG,vG)+b(ψ,vG) = lG(vG)

∀vL ∈U 0
L , aL(uL,vL)−b(ψ,vL) = lL(vL)

∀ϑ ∈Uψ , b(ϑ ,uG−uL) = 0

where the definitions of the bilinear forms aG, aL and b are given below.

aG(u,v) =
∫

ΩG

Cε(u(x)) : ε(v(x))dx (11)

aL(u,v) =
∫

ΩL

Cε(u(x)) : ε(v(x))dx (12)

lG(v) =
∫

ΓN,G

fN(x) · v(x)dx+
∫

ΩG

fΩ (x) · v(x)dx (13)

lL(v) =
∫

ΓN,L

fN(x) · v(x)dx+
∫

ΩL

fΩ (x) · v(x)dx (14)

b(ϑ ,u) =
∫

Γ

ϑ(x) ·u(x)dx (15)

According to our example (the locally cracked body), one can use a standard Finite Element
Method (FEM) on the global part, and an eXtended Finite Element Method (XFEM, [67])
on the local cracked part (another solution would be to rely on an analytical model for the
local part , [80]), as it is done in [86, 85]. Let us define ϕG, ϕL and ϕψ the basis functions
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of the finite element spaces corresponding to the discretization of UG, UL and Uψ . We will
give more details on the discretization of the Lagrangian dual space further, still it may be
noted that the mortar coupling used here allows non-conforming meshes at the interface Γ .
Let us also consider the triangulations TG and TL of ΩG and ΩL respectively, and TΓ ,G
and TΓ ,L their restriction on Γ . We will denote nG the number of degrees of freedom of TG
and nΓ ,G the number of degrees of freedom of TΓ ,G. Then nL and nΓ ,L will follow the same
definition on the local domain. Finally, TΓ ,ψ will stands for the Lagrangian multipliers mesh
on the interface Γ , with nΓ ,ψ its number of degrees of freedom.
Then we can define the finite element matrices (stiffness matrices, coupling matrices and
right-hand side vector):

– the stiffness matrices KG (nG×nG matrix) and KL (nL×nL matrix)

(KG)i j =
∫

ΩG

Cε(ϕ i
G(x)) : ε(ϕ j

G(x))dx (16)

(KL)i j =
∫

ΩL

Cε(ϕ i
L(x)) : ε(ϕ j

L(x))dx (17)

– the right-hand side load vectors FG (vector of size nG) and FL (vector of size nL)

(FG) j =
∫

ΓN,G

fN(x) ·ϕ j
G(x)dx+

∫
ΩG

fΩ (x) ·ϕ j
G(x)dx (18)

(FL) j =
∫

ΓN,L

fN(x) ·ϕ j
L(x)dx+

∫
ΩL

fΩ (x) ·ϕ j
L(x)dx (19)

– the coupling matrices CG (nΓ ,ψ ×nΓ ,G matrix) and CL (nΓ ,ψ ×nΓ ,L matrix)

(CG)i j =
∫

Γ

ϕ
i
ψ ·ϕ

j
Gdx (20)

(CL)i j =
∫

Γ

ϕ
i
ψ ·ϕ

j
Ldx (21)

If one had to use a monolithic solver when computing the solution of Eq. (10), the resulting
finite element linear system would be the following:KG 0 C

>
G

0 KL −C
>
L

CG −CL 0


UG

UL
Ψ

=

FG
FL
0

 (22)

Remark: In order to simplify notations, we decided to not explicitly use restriction and pro-
longation operators. Instead, we will denote the restriction operation with ·|, and the prolon-
gation operation with · each time it is needed. Such restriction and prolongation operators
are merely boolean-matrix based operators which cast a shape-given object into an other one
by gathering selected values or by supplementing it with zeros.
For instance, we define here CG the prolongation of CG from TΓ ,ψ ×TΓ ,G to TΓ ,ψ ×TG.
Then CG stands for a matrix of shape nΓ ,ψ × nG, all the remaining coefficients being filled
with zeros. The same procedure defines CL, the prolongation of CL from TΓ ,ψ ×TΓ ,L to
TΓ ,ψ ×TL.

Remark: It is not an easy task to set up a ”good” basis of Uψ when discretizing the La-
grange multipliers [83, 84]. If the basis is bad-chosen (i.e. the inf-sup conditions are not
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fulfilled), the mortar operator can lead to undesirable energy-free oscillations of the dis-
placement fields. For the sake of ease, we chose in this paper to use the local finite element
basis on the interface for the Lagrange multiplier as well (i.e. TΓ ,ψ = TΓ ,L and ϕψ = ϕL on
Γ ). The main consequence of such a choice is that matrix CL is a square invertible matrix:
we will not have to rely on least squares methods (i.e. generalised inverse matrix) when per-
forming the interface projections. We never encountered instabilities in all the test cases we
set up using that Lagrange multipliers basis.

Of course, the idea behind such a domain decomposition is to dissociate ΩG and ΩL when
solving the problem. A solution is to set up an asymmetric global/local algorithm, i.e. solv-
ing alternately Dirichlet and Neumann problems on the local and global models until con-
vergence.
To that end, let us define interface projection like operator P and P

>
from the global to the

local model and from the local to the global model respectively, so that P = C−1
L CG and

P
>
=C

>
GC

−>
L ).

We will also denote ΛG = (KGUG−FG)|Γ and ΛL = (KLUL−FL)|Γ the global and local
reaction forces at the interface Γ .

Algorithm 1: Global/local domain decomposition – Fixed point solver

Data: ε , Λ 0
L

k = 0
while η > ε do

Global problem computation (Neumann problem)
KGUk+1

G = FG−P
>

Λ
k
L

Local problem computation (Dirichlet problem)[
KL −C

>
L

−CL 0

][
Uk+1

L
Ψ k+1

]
=

[
FL

−CLP Uk+1
G

∣∣
Γ

]
Convergence test

η = ‖Λ k+1
G +P

>
Λ

k+1
L ‖/

√
‖FG‖2 +‖FL‖2

k = k+1
end
Result: Uk

G, Uk
L

The convergence test used here relies on the reaction equilibrium between the two do-
mains.

Global/local model coupling is a powerful tool to handle heterogeneity at a local scale when
performing structural analysis. Nevertheless, it implies to set up the two models each time
one wants to run a computation. For instance, in our example, if the crack grows, the mesh
partitioning will not stand right for long; then one needs to adapt both global and local
models, which can be very time consuming (in terms of human and computer resources).
Still, there exists a way to keep a global model unchanged when performing a global/local
computation: the non-intrusive coupling [82].
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2.2 Global/local non-intrusive coupling method

The principle of non-intrusive coupling is to rely on an existing global model on Ω = ΩG∪
ΩG̃ (see Fig. 2), its triangulation T , and its corresponding stiffness matrix K (a n×n matrix).
From now on, we denote TG̃ the triangulation of ΩG̃ and the corresponding stiffness matrix

Fig. 2: Situation overview: non-intrusive global/local problem

KG̃ (a nG̃×nG̃ matrix). As TG̃ is a part of T (i.e. T =TG∪TG̃), we naturally have TΓ ,G =
T

Γ ,G̃.
Then the objective is to replace the global model on ΩG̃ by the local one on ΩL without
actually modifying the global finite element operator K on Ω . From a practical point of
view, we define U the fictitious prolongation of UG to the full domain Ω , so that U |

ΩG
=UG

and U |
ΩG̃

=UG̃ (i.e. UG̃ is the prolonged part of the global solution U).
In our example, such a prolonged model will stand to a standard FEM model, the crack
being absent from the prolongation.
We define F = FG +F G̃ the load vector defined on Ω . Then, applying the Chasles relation
on Eq. (11) in the discrete form gives us the following equality which will be used to adapt
Alg. 1.

KU = KGU +KG̃U (23)

Using this equality at the global computation step gives us the expression of the equation
standing for the global model at each iteration k, with ΛG̃ = (KG̃UG̃−FG̃)

∣∣
Γ

.

KUk+1 = F−P
>

Λ
k
L +Λ

k
G̃

(24)
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The global/local coupling algorithm can then be given in its non-intrusive form.

Algorithm 2: Global/local domain decomposition – Non-intrusive fixed point solver

Data: ε , Λ 0
L , Λ 0

G̃
k = 0
while η > ε do

Global problem computation
KUk+1 = F−P

>
Λ

k
L +Λ

k
G̃

Local problem computation[
KL −C

>
L

−CL 0

][
Uk+1

L
Ψ k+1

]
=

[
FL

−CLP Uk+1
∣∣
Γ

]
Convergence test

η = ‖Λ k+1
G +P

>
Λ

k+1
L ‖/

√
‖FG‖2 +‖FL‖2

k = k+1
end
Result: Uk, Uk

L

It must be noted that, thanks to the prolongation of the global model (i.e. the non-
intrusiveness of the coupling), the stiffness matrix K will be assembled and factorised only
once. In our example, even if the crack grows, the global model will stand unmodified. The
coupling will only involve displacements and forces exchange at the interface Γ (see Fig. 3).
It may also be noted that the fictitious prolongation of the global solution U on ΩG̃ has no

Fig. 3: Situation overview: non-intrusive coupling

physical meaning, and that its value depends on the initialisation (i.e. the values of Λ 0
L and

Λ 0
G̃

). Nevertheless, as such fictitious solution has to be replaced by the one obtained from
the local model, that is of no consequence.
There are several advantages arising from non-intrusive coupling:
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– the global mesh on Ω is always left unchanged (so is the global stiffness matrix K),
which is convenient when the objective is to investigate local details on large scale struc-
tures (i.e. involving a large number of degrees of freedom)

– when dealing with local nonlinear details (we will present applications involving non-
linear local behaviour further), one can use a linear (i.e. fast) solver for the global model
and use a nonlinear solver only for the local part

– the local model acts as a correction applied to the global model on the right-hand side,
so that different research codes or commercial software can be easily merged in a non-
intrusive way.

2.3 Incremental formulation – Additive global correction

The main drawback of Alg. 2 is its low convergence speed. In fact, the convergence speed
depends of the stiffness gap between ΩL and ΩG̃: the more the gap is important, the more
the convergence is slow. Such phenomenon is not shown to be significant for local plasticity
problem [34, 61]. In our example, we shall see that it can be a severe disadvantage when the
crack grows: the stiffness gap increases as the crack spreads since the global model does not
include any representation of the crack. Then, acceleration techniques will be used in order
to improve the convergence speed of the algorithm.
We propose in that section an incremental formulation of the non-intrusive global/local al-
gorithm as a prerequisite for the acceleration technique setting up.

First of all, let us remark the following equilibrium equation of the global model at iter-
ation k:

KUk = F +Λ
k
G +Λ

k
G̃

(25)

It is possible to reformulate Alg. 2 into a Newton-like algorithm (i.e. in an incremental
formulation) by adding a −KUk term both on the left and right side of the global domain
equation at iteration k.

K
(

Uk+1−Uk
)
= F−P

>
Λ

k
L +Λ

k
G̃
−KUk (26)

Indeed, making use of Eq. (25) into Eq. (26), one can give the following formulation:

Uk+1 =Uk−K−1 f (Uk) (27)

where f is the finite element operator computing the forces equilibrium residual between
ΩG and ΩL obtained from the global displacement Uk at iteration k.

f (Uk) = Λ
k
G +P

>
Λ

k
L (28)

One can remark that Eq. (27) looks very much like a modified Newton method prescribed
on f = 0 (we look for the solution which verify the interface forces equilibrium). In fact, let
us show now that K ≈ ∇ f .
Let us define SL and SG̃ the primal Schur complements (Dirichlet problem with prescribed
displacement on Γ ) corresponding to the local model KL and to the fictitious global model
KG̃ respectively [38]. Then we get the following condensed equilibrium equations on the
interface Γ :

ΛL = SLP U |
Γ

(29)

ΛG̃ = SG̃ U |
Γ

(30)
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We then introduce ΛG̃ in Eq. (28) so that it can be rewritten in the following way:

f (Uk) = Λ
k
G +P

>
Λ

k
L +Λ

k
G̃
−Λ

k
G̃

(31)

Still, from Eq. (25) we have Λ
k
G +Λ

k
G̃
= KUk−F . We finally get the exact formulation of

the interface residual function f .

f (Uk) = KUk−F +(P
>

SLP−SG̃)U
k (32)

We can then give the expression for ∇ f :

∇ f = K +(P
>

SLP−SG̃) (33)

It can be seen that K is a good approximation of ∇ f as soon as the condensed stiffness
between the local and the global models at the interface are close.

‖∇ f −K‖= ‖P>SLP−SG̃‖ (34)

In practice (e.g. local cracked domain, see Fig. 3), the previous hypothesis does not stand for
true any longer: in that case, matrix K is a bad approximation of the true gradient ∇ f . Thus,
the modified Newton scheme (27), when used as such, would lead to tremendous iterations
number when the crack grows.
In fact, as soon as ΩL is stiffer than ΩG̃, the algorithm becomes divergent [21].

2.4 Convergence properties – Relaxation

In our case Eq. (27) is fully equivalent to the fixed point equation prescribed on Uk+1 =
g(Uk) with the following definition of g.

g(U) =U−K−1 f (U) (35)

Then, using relaxation (with a well-chosen constant parameter ω) enforces stability of the
numerical scheme, ensuring convergence of the algorithm even if ΩL is stiffer than ΩG̃. In
the present situation, relaxation will consist in a two-step computation at iteration k. First a
predicted value Ūk+1 is computed from the previous solution Uk, then this value is corrected
using a relaxation parameter ω .

Ūk+1 = g(Uk) (36)

Uk+1 = ωŪk+1 +(1−ω)Uk (37)

The optimal relaxation parameter ω can be computed upon the knowledge of the eigenvalues
of the iteration operator [21], or using a power-type method during the first global/local
iterations in order to get an cheaper approximation.
Still, computing a good relaxation parameter remains computationally very expensive.
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2.5 Dynamic relaxation: Aitken’s Delta Squared acceleration

Then a possibility is to rely on dynamic relaxation, i.e. computing a new parameter ωk for
each iteration, assuming that we can provide an easy and cheap way for the computation of
ωk.

Ūk+1 = g(Uk) (38)

Uk+1 = ωkŪk+1 +(1−ωk)Uk (39)

In this paper, we investigate dynamic relaxtion based upon the Aitken’s Delta Squared for-
mula [49, 54, 61], also used in Fluid-Structure Interaction (FSI).
Let us define the predicted displacement increment δ such as δk+1 = (Ūk+1−Uk)|Γ . Then
the relaxation parameter ω is dynamically updated following the recursive formula below.

ωk+1 =−ωk
δ
>
k+1 (δk+2−δk+1)

‖δk+2−δk+1‖2 (40)

No relaxation is applied to the first two iterations (U0 = Ū0 and U1 = Ū1) and the relaxation
parameter initial value is set to ω0 = 1.
The Aitken’s Delta Squared method involves very few computing overhead, as it only in-
volve displacement value at the interface obtained from the two previous iterations. More-
over, such method will be shown to improve the convergence speed of the initial algorithm.

2.6 Quasi-Newton acceleration

An other possible way to speed up the convergence is to rely on Quasi-Newton methods
to update matrix K. The Symmetric Rank One (SR1) update is an easy-to-implement and
efficient way to build a sequence of matrices Kk convergent toward ∇ f , assuming K0 = K
when initialising the algorithm [22, 51, 50, 69, 34, 52].
Let us define dk =Uk+1−Uk and yk = f (Uk+1)− f (Uk). At iteration k, we seek to update
Kk into Kk+1 with the SR1 formula, i.e. with a rank-one symmetric update, while verifying
the secant equation for each iteration k > 1:

Kk+1 = Kk +ρvv
>

(41)

Kk+1dk = yk (42)

In Eq. (41), v is a vector with the same shape than U and ρ =±1. Then, making use of Eq.
(41) into Eq. (42) gives us the following relation:

yk−Kkdk = ρvv
>

dk (43)

As it can be seen in Eq. (43), yk−Kkdk and v are collinear (ρv
>

dk being a scalar), thus there
exists a real α such as v get the following expression:

v = α(yk−Kkdk) (44)

Then, again from Eq. (43), we have d
>
k (yk−Kkdk) = ρd

>
k vv

>
dk which leaves us with

ρ = sgn{d>k (yk−Kkdk)} (45)
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as vv
>

is a positive-semidefinite matrix. Finally, the value of α arises using Eq. (44) into Eq.
(43).

α
2 =

1∣∣∣d>k (yk−Kkdk)
∣∣∣ (46)

All in all, one can retrieve the well-known SR1 update formula:

Kk+1 = Kk +
(yk−Kkdk)(yk−Kkdk)

>

d>k (yk−Kkdk)
(47)

Note that in the context of the SR1 update, Eq. (27) rewrites Kkdk = − fk, so that Eq. (47)
can be given in a simplified form (where fk = f (Uk)):

Kk+1 = Kk +
fk+1 f

>
k+1

d>k fk+1
(48)

Finally, thanks to the SR1 formula, we get a simple expression of the tangent matrix update
for each iteration k. Nevertheless, one has to keep in mind the non-intrusiveness constraint
of the coupling algorithm, i.e. do not modify the global stiffness matrix K. This can be
achieved using the Sherman-Morrison formula on Eq. (48), leaving us with the following
relation which can be used in order to compute K−1

k f in a iterative manner based upon the
knowledge of K−1

0 f .

K−1
k+1 = K−1

k −K−1
k fk+1

f
>
k+1K−1

k

f >k+1(dk +K−1
k fk+1)

(49)

We give here the algorithmic version of such iterative relation [34].

Algorithm 3: Non-intrusive global correction
Data: fk
i = 0
Compute K−1

0 fk
while i < k do

K−1
i+1 fk = K−1

i fk−K−1
i fi+1

f
>
i+1K−1

i fk

f>i+1(di+K−1
i fi+1)

i = i+1
end
dk =−K−1

k fk
Result: dk

At iteration k, we suppose that {( fi)i<k}, {(di)i<k},{(K−1
i fi+1)i<k−1} have been stored

from the previous iterations. The overhead involved by the non-intrusive SR1 formula re-
mains very low compared to the acceleration provided in terms of convergence speed. In-
deed, it can be seen in Alg. 3 that, at iteration k, the global solver is called only once when
computing K−1

0 fk; then the value of K−1
k fk is computed recursively and requires only scalar

products on the interface Γ .



14 M. Duval, J.C. Passieux, M. Salaün and S. Guinard

2.7 Non-intrusive coupling illustration: crack growth simulation

Actually, crack propagation is the most obvious example of local detail whose effects on the
global structure are the most visible (structure failure in the worst case).
In this section, we give a simple example to illustrate the non-intrusive global/local coupling
algorithm and its properties.
We consider here a rectangular two-dimensional domain (200× 80 mm). The material law
is linear elastic in plane strain conditions (E = 200 GPa and ν = 0.3) and the global loading
is represented by a uniform pressure of magnitude 10 MPa as depicted in Fig. 2. The initial
crack is defined by a vertical notch extending from the crack tip position (xct =−50 mm and
yct = 35 mm from the center of the plate).
We investigated quasi-static crack growth simulation using the non-intrusive coupling method
presented in the previous sections. We computed fourteen quasi-static propagation steps, us-
ing a constant growth increment ∆ = 3.75 mm (this value is linked to the patch mesh size
at crack tip, hct , such as ∆ = 8hct ). For each step, the crack bifurcation angle is determined
using the maximal hoop stress criterion.
We give in Fig. 4 an illustration of the displacement field (modulus) from the last prop-

(a) Global FEM solution (b) Local XFEM solution

(c) Composite solution

U (mmmmmm)

3.31803.3180

6.63616.6361

9.95419.9541

13.27213.272

0

x10

Fig. 4: Non-intrusive crack growth simulation

agation step. As one may notice, the initial mesh on Ω (see Fig. 4a) is unaffected by the
crack spreading, while the global solution is. Global and local meshes are not bound to be
coinciding at the interface, allowing for a flexible local mesh refinement.
We applied both Quasi-Newton SR1 and Aitken’s Delta Squared acceleration techniques to
the non-intrusive coupling algorithm with relative tolerance ε = 10−10 for each crack prop-
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agation step.
The main properties of the coupling algorithm and the acceleration techniques can be pulled
out from Fig. 5. The first graph gives the link between the crack length and the number of
iterations needed to reach the equilibrium, and the second one represents the residual evolu-
tion over the algorithm iterations (for the last crack propagation step).
Two main observations can be underlined. First, it can be observed in Fig. 5a that, using no
acceleration, the number of iterations required to reach the chosen tolerance ε is strongly
dependant of the crack length (i.e. the stiffness gap between the local XFEM model and the
global FEM model, as shown in Eq. (34)). The Quasi-Newton acceleration allows to nearly
get rid of such problem as the tangent stiffness of the FEM model is updated through the
SR1 procedure, in a non-intrusive way.
When focusing on a specific crack propagation step (here the final one, see Fig. 5b), the
different acceleration techniques show quite heterogeneous results. First, the number of it-
erations required to reach the given precision when no acceleration is used is clearly not
affordable compared to the other results. In the context of crack propagation, the Aitken’s
Delta Squared method proves to be less efficient than the Quasi-Newton acceleration. In
the present case, the last propagation step took 3006 iterations without any acceleration to
converge, 389 with the Aitken’s accelerator and 18 using the Quasi-Newton update.
Note that as soon as the crack nearly divides the plate into two parts, one can no longer
reasonably speak of ”global/local” situation. Nevertheless, nothing prevents the coupling
scheme to be applied to such critical situation, which allows us to distinctly analyse the dif-
ferences between the two acceleration techniques.

2.8 Patch geometry: influence on the convergence speed

In the previous example, the patch is defined on the region of interest which needs to get
worked out with a specific local model (the crack). However, we never gave details about
how is defined the patch, and what is the influence of its spatial extend until now.
In fact, there is no constrain nor generic rule about the way to define the patch extend. In
the crack propagation case, we simply select a given number of stitch layers from the global
mesh around the crack location. Then those stitches are duplicated and saved as local mesh
(see Fig. 4a and 4b). Any refinement of the freshly generated local mesh is possible, partic-
ularly at crack tip.
Nevertheless, the patch extend is not without consequence on the algorithm convergence
properties. Indeed, as said previously, the convergence rate depends on the stiffness gap
between the local and the global model. Let us consider the bending plate case with a
static crack defined by a vertical ray extending from the crack tip position (xct = 0 mm
and yct = 10 mm from the center of the plate). We applied the non-intrusive coupling algo-
rithm considering several patch thicknesses (one to ten global stitch layers), as depicted on
Fig. 6. In the present example, the global model stands for a non-cracked plate whereas the
local model stands for the cracked one. According to the Saint-Venant principle, the crack
influence will decrease when getting far from the perturbation. Thus, the more the patch
extends far from the crack, the less the stiffness gap between the global and the local model
will be important, allowing for faster convergence (this is numerically illustrated on Fig 7).
Moreover such phenomenon can be observed both with standard and accelerated algorithms.
Nevertheless the Quasi-Newton update is the only one guaranteeing a reasonable number of
iterations which is almost independent from the patch thickness.
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(a) Crack spreading: dependence between crack length and convergence speed
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(b) Final crack propagation step: residual evolution

Fig. 5: Crack growth simulation: acceleration techniques comparison

Still one should keep in mind that the more the patch extends, the more it will be compu-
tationally expensive to work out as it will involve a larger number of degrees of freedom,
particularly in the nonlinear case. Meanwhile, the local patch should be large enough in
order to fully take into account the local behaviour (XFEM enrichment for instance). Then
engineer’s skills must prevail in order to determine the best choice of parameters in such
situations.
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(a) Global mesh (One stitch thick layer) (b) Local refined mesh

(c) Global mesh (Five stitches thick layer) (d) Local refined mesh

(e) Global mesh (Ten stitches thick layer) (f) Local refined mesh

Fig. 6: Patch definition and extend: global stitches selection

3 New advances based on the non-intrusive coupling

3.1 Parallel processing and multi-patch approach

In this part, we seek to extend the non-intrusive coupling method to the multi-patch situa-
tion. We give here detailed explanations about the way multi-patching is handled in specific
situations (e.g. two patches share a common interface), and we provide a MPI based parallel
processing method to increase the computational efficiency of the algorithm.
Let us consider a multi-perforated plate subjected to a uniform tension (see Fig. 8).
In order to set up the coupling algorithm, one has to define the following items:
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Fig. 7: Convergence speed: patch thickness influence

• The united local domain ΩL = ∪6
i=1ΩL,i

• The united global fictitious domain ΩG̃ = ∪6
i=1ΩG̃,i

• The patches boundary Γ = ∪6
i=1Γi with Γi = ∂ΩG̃,i = ∂ΩL,i

• The global domain internal boundary ΓG = ∂ΩG \∂Ω = ∂ΩG̃ so that ΓG ⊂ Γ

Note that as soon as all the local models do not share any common interface (e.g. if we added
a gap between the local domains), then ΓG = Γ .

Remark: In the previous application (crack propagation), we considered ΩL = ΩG̃ (i.e. as
the crack was represented through the XFEM method, the geometrical domain remained
unaffected). In the present situation, we allow the local patches to redefine the geometry of
the pre-existing global model, so that ΩL 6= ΩG̃ because of holes [21]. The only required
condition is that the interfaces remain coincident (from a geometrical point of view, non-
conforming meshes are still handled using the mortar method).
In the non-intrusive coupling context, we consider the global model on Ω = ΩG∪ΩG̃ as a

linear elastic material, the holes being absent from the global model on ΩG̃. The holes will
be represented only through the local models on (ΩL,i)i∈{1..6} and elastic-plastic constitutive
law will be applied.
From now on, we need to extend the projection operator P to each interface Γi, so that Pi =

C−1
L,i CG,i. We will also keep the definition of ΛG = (KGUG−FG)|ΓG

and ΛG̃,i = (KG̃,iUG̃,i−FG̃,i)
∣∣∣
Γi

.

Nevertheless, as we consider elastic-plastic (i.e. nonlinear) behaviour on the local models,
the local reaction reads ΛL,i = ζ (UL,i,FL,i,Xi) where ζ is a nonlinear function computing the
reaction forces from the displacement UL,i, the right-hand side loading FL,i and the plastic
internal variables Xi.
Thus, the multi-patch non-intrusive coupling algorithm can be established, KL being the
nonlinear local solver.
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Fig. 8: Situation overview: multi-patch problem

Algorithm 4: Multi-patch coupling – Non-intrusive fixed point solver

Data: ε ,
(

Λ 0
L,i

)
i∈{1..6}

,
(

Λ 0
G̃,i

)
i∈{1..6}

k = 0
while η > ε do

Global problem computation
KUk+1 = F +∑

6
i=1

(
−P

>
i Λ

k
L,i +Λ

k
G̃,i

)
Local problems computations

Uk+1
L,i = KL,i

(
Pi Uk+1

∣∣
Γi
,FL,i,Xi

)
∀i ∈ {1..6}

Convergence test
η = ‖Λ k+1

G +∑
6
i=1

(
P
>
i Λ

k+1
L,i

)
‖/
√
‖FG‖2 +∑

6
i=1 ‖FL,i‖2

k = k+1
end
Result: Uk,

(
Uk

L,i

)
i∈{1..6}

As it has been done in the previous section (mono-patch case), the problem can be
rewritten in an incremental version as Uk+1 =Uk−K−1 f (Uk). Thus the difference here is
that f is a nonlinear operator as soon as the local domains involve elastic-plastic behaviour.

f (Uk) = Λ
k
G +

6

∑
i=1

(
P
>
i Λ

k
L,i

)
(50)

For the example presented here, we keep the same rectangular domain than the one from the
previous example (cracked plate) and the same elastic properties for the global model. The
tensile load applied is of magnitude fN = 140 MPa.
The local models (with holes) are assigned with an elastic-plastic behaviour which elastic
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limit is Re = 250 MPa and tangent plastic modulus is ET = 40 GPa (we assume a linear
kinematic hardening law). The local elastic behaviour is also assumed to be the same than
the global one before plasticity occurs. It can be seen on Fig. 9 that plasticity occurs at hole

(a) Global elastic solution

(b) Composite solution (global elastic and local plastic models)

σe (MPa)

21.286

85.274

149.26

213.26

277.24

Fig. 9: Non-intrusive multi-patch simulation (Von Mises equivalent stress)

edges in the local models. Thus, there is no need to extend the plastic area outside the local
patches, which makes global elastic model hypothesis lawful. However if the plasticity was
to go out of the local domain (i.e. the global Von Mises equivalent stress exceeds the elastic
limit), then convergence of the algorithm would not be endangered at all. Still, the computed
solution would be false, but such property allows to easily check whether or not the patch
extend is well chosen.
Also recall that the global prolonged solution on ΩG̃ has no physical meaning and depends
only on the algorithm initialisation. The greater stress which can be observed on that area is
simply the result of the equilibrium between ΩG and ΩG̃ with prescribed additional forces
on Γ .

Last but not least, at iteration i, each local model is independent from the others as it re-
quires only prescribed displacement from the global model. That means we can use parallel
processing when computing the local solutions. In our example we considered six local
patches, each one being processed by a different thread. One thread was dedicated to the
global linear model computing, one to the coupling operations (mainly computing the pro-
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jections at the interface) and six to the local models. One of the algorithm most attractive
properties here is the fact that only interface displacements and reactions are sent from one
thread to the others through MPI (Message Passing Interface) communications. The conse-
quence is the possibility to directly use it within commercial software.

Again, we compare here the Quasi-Newton and Aitken’s Delta Squared acceleration meth-
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Fig. 10: Multi-patch problem: residual evolution

ods (see Fig. 10). When using the standard method (without any acceleration), the algorithm
takes a few iterations to reach the fixed tolerance (ε = 10−10). Still, when dealing with non-
linear local models, reducing the number of iterations required at the lowest possible value
is wholesome. Both Quasi-Newton and Aitken’s Delta Squared accelerations allow to divide
by two the required number of iterations with comparable efficiency.
Let us recall that the Aitken formula is much easier to compute than the non-intrusive Sy-
metric Rank One formula. In such a low stiffness gap case, the Aitken’s Delta Squared
acceleration will provide quite similar convergence speed but will imply less computational
overhead than the Quasi-Newton acceleration. Plasticity is thus a typical example for which
Aitken’s acceleration could be preferred to Quasi-Newton.

Remark: One can notice that, in the present example, some patches share a common in-
terface: such choice is not trivial. Indeed, the algorithm is designed so that data exchange
never occurs between local models, but only between the global model and each local one.
When using non-conforming meshes at the interface the global displacement is transferred
to the local mesh using a mortar projection. Thus, the global mesh (which is supposed to
be coarser than the local mesh) acts as a low-pass filter on the displacement field. It can be
seen from Fig. 9b that the global mesh is coarser than the local ones: filtering does occur at
the common boundary shared by ΩL,1, ΩL,2, ΩL,3 and ΩL,4, which would not be the case
if we used a single patch on ΩL,1 ∪ΩL,2 ∪ΩL,3 ∪ΩL,4 instead of four. If the global mesh
is too coarse or if the strain is too sharp near the interface, then the solution may not be
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mechanically relevant.

3.2 Local geometric changes, local loading and boundary conditions

In that section, we propose another new advance based upon the non-intrusive coupling
method which allows us to extend the method to a more generic application framework.
Indeed, in the previous examples, we always considered that the patches were included in
the global domain (i.e. ΩL ∈ Ω ), and that the loading (both Neumann and Dirichlet con-
ditions) was applied to the global domain ΩG. In fact, nothing prevent us to consider any
arbitrary local patches. In the present example (see Fig. 11), we consider a global model
whose boundary conditions are badly represented. Then, two patches are set up in order
to locally redefine both the geometrical domain Ω and the boundary conditions: the first
patch (on the left) redefines the global Dirichlet condition, whereas the second patch (on the
right) redefines the global Neumann condition. The most important property of such cou-
pling is the fact that the local model on ΩL literally substitutes the global model on ΩG̃, i.e.
the boundary conditions applied on the global domain will have absolutely no effect on the
composite solution when converged. Thus, the local patches are allowed to partially lay out-
side the global domain, and the boundary conditions applied to it will overcome the global
ones. As for previous examples, we consider the same rectangular domain and the same

Fig. 11: Situation overview: local loading and boundary conditions

elastic properties for the global model. The global tensile loading is of magnitude 80 MPa.
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The local models are assigned with the same plastic behaviour than from the previous ex-
ample (the multi-perforated plate). The local Dirichlet condition is applied through a zero
displacement condition at holes edges contained in ΩL,1, and the local Neumann condition
is applied with a uniform pressure on the right half-edge of the hole in ΩL,2. The force ap-
plied to the local model have the same resultant than the one applied to the global one. This
condition is not mandatory at all, but as the local model is here to redefine the rough global
boundary conditions, such choice is wholesome.
Moreover, it can be seen from Fig. 12 there is no restriction on the choice of elements (e.g.

(a) Global solution (Von Mises equivalent stress)

σe (MPa)

0.3962

98.653

196.91

295.17

393.42

(b) Composite solution (Von Mises equivalent stress)

Fig. 12: Non-intrusive local loading and boundary conditions

P1 / Q1), as we used a mortar gluing at the interface.
In that example, we deliberately forced the local domain ΩL,1 to be stiffer than the global

domain ΩG̃,1 by embedding the three holes (see Fig. 11). The consequence of such a choice
is the non-convergence of the algorithm when the initial fixed point algorithm is used alone
(see Fig. 13).
Still, it is possible to enforce the stability of the algorithm using relaxation with a constant
parameter ω [21]. We used here ω = 0.115 which has been found empirically to be the
optimal relaxation parameter, but ω can also be optimised during the first iterations thanks
to a power-type method [21]. Still, it may be noted that Aitken’s dynamic relaxation pro-
vides a faster convergence. Nevertheless, it can be seen again that the Quasi-Newton SR1
update remains the best option when the local patches strongly affect the global mechanical
behaviour.
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Fig. 13: Local loading problem: residual evolution

Such non-intrusive geometric changes may remind the reader of the fictitious domain meth-
ods. Actually, one could use fictitious domain principle to take into account local geometric
changes in an even less intrusive way, i.e. allowing non-coincident interfaces [44, 4]. Indeed,
in the present paper, we stand to coincident interfaces, and consider only the mortar method
in order to compute the interface projection.

3.3 Local contact problem

The last example of non-intrusive coupling we give here is a three-dimensional contact
problem. Such nonlinear behaviour is commonly considered in structural analysis, mostly
when dealing with assemblies (e.g. bolted structures). Then, to dissociate the local contact
area from the global structure when computing such problems is of great interest for many
engineers.
In the present example (see Fig. 14) we consider an elastic body (200× 80× 20 mm, E =
40 MPa, ν = 0.45) as the global model. Then we want to investigate a contact condition
with a rigid spindle (E = 200 GPa, ν = 0.3, with radius r = 10 mm) at the center of the
body (the local model is constituted with the rigid spindle and a part of the elastic body).
Tensile loading is applied to the boundary of the plate with magnitude fN = 1 MPa, the
spindle ends being assigned with zero displacement. Actually, if one had to deal with bolted
structures, a local patch could be considered for each bolt (i.e. each contact area). Indeed,
solving a multi-contact problem in a monolithic way is not an easy task as convergence
properties of the nonlinear solvers are worsened by the increase of contact surfaces number.
Then, using non-intrusive coupling allows to dissociate each local contact problem, and is
expected to lead to an easier convergence of the nonlinear solvers. Here, Fig. 16 shows the
greater efficiency of the Quasi-Newton update against the Aitken’s acceleration. Note that,
in that case, we could not use the coupling algorithm in its standard formulation as it led
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Fig. 14: Situation overview: local contact problem

(a) Global solution (b) Local solution

(c) Composite solution

U (mmmmmm)

0

x1

1.0149

2.0298

3.0447

4.0596

Fig. 15: Non-intrusive local contact simulation

to very quick divergence, preventing the local nonlinear solver to convergence after the first
two global/local iterations.

3.4 Nonlinear local patches: caution

Special attention should be given to local nonlinear problems. Indeed, the local Dirichlet
problem is computed using global displacement as boundary condition, which is by defini-
tion far from the final solution during the firsts global/local iterations. In some cases, such
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Fig. 16: Local contact problem: residual evolution

imposed displacement appears to be too severe, preventing the local nonlinear solver to con-
verge, or at least worsening the convergence properties. Such situation mostly occurs when
the local patch redefine the geometry or the structure loading, e.g. we embed the holes in Fig.
11 or add a contact condition in Fig. 14. Then, a possible workaround is to use a local linear
model for the firsts global/local iterations (i.e. compute a predicted initial solution), before
switching to the desired nonlinear model. For instance, when dealing with local plasticity,
using a linear elastic law during the firsts global/local iterations allows to approximate the
actual solution at lower cost. Then, when switching to elasto-plastic law, a few more (that
will depend on the situation considered) global/local iterations will be required in order to
achieve the convergence. In the same way, when dealing with the local contact problem, one
can replace the contact condition by a mesh gluing during the first global/local iterations.
In a general manner, U0 = K−1F is a ”bad” starting point from which convergence of the
global/local iterative algorithm is not guaranteed when dealing with local nonlinear models.
Thus, computing a ”good” starting point U0 is essential. Note that in the above examples,
we used such linear initialisation only for the contact problem, while we did not need it for
all the others examples.
Of course, computing such predicted solution U0 is not always an easy task, and one cannot
hope such trick to be efficient for every encountered problem. Another workaround would be
to apply the global loading F in an incremental manner and apply the global/local iterative
algorithm for each load increment, though it would result in larger computation time.

4 A novel domain decomposition method based on non-intrusive coupling

In this section, an attempt is made to extend the concept of non-intrusive coupling to nonlin-
ear domain decomposition (DD). In fact, domain decomposition methods and global/local
methods share several similarities: they are both based upon multi-domain equilibrium prob-
lem, and they both allow to connect non-conforming models.
Historically, domain decomposition relied on overlapping partition of the domain, such as
Schwarz methods [60, 32]. Non overlapping approaches were preferred for implementation
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issues, but also because they better correspond to mechanical assemblies. The principle of
dual domain decomposition (like Finite Element Tearing and Interconnecting, FETI [28]) is
to enforce interface reaction equilibrium, while seeking to reach displacement equality. On
the contrary, primal domain decomposition enforces displacement equality at the interface,
while converging toward reaction equilibrium throughout the iterative process. Mixed ap-
proaches (like Large Time Increment Method LATIN [56] or FETI-2LM [79]) gather both
primal and dual principle by enforcing a linear combination of displacement and effort at the
interface (i.e. Fourier-Robin condition). A hybrid method has also been developped which
unifies primal and dual approaches [38]. It allows the use of a primal method on a set of
degrees of freedom and a dual method on the remainder, which may be relevant for multi-
physic problems.
Initial methods [56, 28] suffered from several drawbacks among which bad scalability. Many
improvements have therefore been made to allow for analysing efficiently large number of
sub-domains. First, the primal approach, referred to as Balancing Domain Decomposition,
BDD [62], introduced a kind of coarse problem associated to the use of a dual precondi-
tionner. A coarse problem based on the rigid body modes of floating subdomains is also
introduced in FETI [29]. In a similar way, a macro problem is used in the mixed LATIN
method [59] to ensure the equilibrium of resultant moments and forces at interfaces. These
coarse problems provide better scalability properties to the domain decomposition methods.
Special treatments of subdomain corners, FETI-DP [30] and BDDC [26, 63] was shown
to improve even further the convergence and scalability properties over standard FETI and
BDD methods. Finally, in the case of time dependant problems, a space-time macro problem
can also be used to make space-time decomposition methods scalable [72].
Nonlinear problems can also be solved by domain decomposition methods. Most often, the
DD solver is used to solve the linear predictions arising from a Newton-type algorithm.
They are known as Newton-Krylov-Shur methods (NKS). Domain decomposition methods
with nonlinear localisation problems have been proposed [23, 75, 6, 5]. It was shown that
such approaches were more efficient in the case of localised nonlinearities, since they focus
the computational efforts on the local nonlinearities which reduces the number of global
iterations. This is also the basic idea of the LATIN method [56, 57, 72]. However, the main
drawback of these methods is that they have a high degree of intrusiveness. So far, they have
been implemented only in research codes adapted for academic test cases, but still engi-
neers face difficulties to use it on representative applications. Conversely, industrial partners
would favour developments within commercial (certified) software.
In the following, we propose to use the non-intrusive coupling as a scalable nonlinear do-
main decomposition method. The idea is to consider a mesh partition of the global structure,
and use each part as a local model, the global model being thus completely covered by local
patches. Then, the global/local non-intrusive coupling algorithm is used in the same way is
has been done in the previous examples (see Fig. 17 and 18):

• a global linear (e.g. elastic) computation is completed on the full structure, with addi-
tional reaction forces at the interface

• local nonlinear (e.g. elastic-plastic) computation is completed on each sub-domain, with
prescribed displacement on the interface.

Compared to classical domain decomposition methods, such method requires to compute a
linear problem on the full structure at each iteration in addition to the local nonlinear compu-
tation. Nevertheless, such overhead can be neglected beside the nonlinear computation cost.
Moreover, such linear computation could also be achieved using a domain-decomposition
based solver (e.g. using the same mesh partition), or possibly with model reduction.
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Fig. 17: Non-intrusive domain decomposition

In addition to its non-intrusive character which makes it easy to use (even in a sequential
and black box software), such a method have the following advantages:

• The global linear problem plays the role of a physically relevant macro (or coarse) prob-
lem that was used in FETI-DP [30], BDD-C [26], and the multiscale LATIN method
[59]. As it will be shown in the examples below, such a coarse problem provides good
scalability properties.

• The independant local problems embed the nonlinearities like the nonlinear localisation
solvers do [23, 75]. This makes the algorithm efficient even in the case of localised
nonlinearities.

• When domain decomposition is used as a parallel solver, interfaces are most of time
mesh-conforming. Nevertheless, nothing prevent the use of non-conforming interfaces
[2, 71, 45, 17] especially when one is dealing with heterogeneous models. As shown
before, the above presented non-intrusive domain coupling solver is also ready for in-
compatible meshes at interface.

• The method can be seen as a dual domain decomposition based upon an asymmetric
Neumann-Dirichlet algorithm. Due to that Neumann-Dirichlet formulation, one is not
constrained by floating substructures.

As a purpose of illustration, we consider here the example of a planetary gear carrier (di-
ameter d = 155 mm). A torque is applied to the central axe (C = 50 kNm), and a zero
displacement condition is applied to the gear carrier sideboards (see Fig. 19). The mesh
(about 70,000 degrees of freedom) has been divided into twelve parts (see Fig. 20). We then
applied the non-intrusive coupling algorithm, i.e. solving alternately a linear elastic problem
on the full mesh, and an elastic-plastic problem on each of the twelve sub-domains. In that
case, the local meshes are just a part of the global mesh, so that no mortar method is needed
here (still we could easily handle a non-conforming situation). Fig. 21 shows the Von Mises
equivalent stress when converged. As usually, the same acceleration techniques can be ap-
plied in the present case, allowing for substantial iteration saving when using the iterative
algorithm (with relative tolerance ε = 10−10, see Fig. 22). As expected, both Quasi-Newton
and Aitken updates provide a significant acceleration of the algorithm with quite similar
efficiency (the Quasi-Newton acceleration still proves to be the better method in terms of
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COUPLING ENGINE

= CPU

= MPI

Fig. 18: Non-intrusive MPI communication

Fig. 19: Situation overview: planetary gear carrier

iteration number reduction).

Let us now study the effect of the number of sub-domains. We thus did the same com-
putation considering several sub-domains numbers, from two to sixty. The most important
result about the application of the non-intrusive coupling to domain decomposition is illus-
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Fig. 20: Planetary gear carrier: mesh partition (twelve sub-domains)
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Fig. 21: Planetary gear carrier: Von Mises equivalent stress

trated by Fig. 23. Indeed as one can see, when using acceleration techniques, the number
of iterations required to reach a fixed tolerance nearly does not depend on the number of
sub-domains.
Actually, in standard methods, each sub-domain shares data only with its neighbours, which
makes the algorithm not directly scalable. Using non-intrusive coupling algorithm, each sub-
domain shares data with the global model only, allowing for instantaneous propagation of
the information (stress residual). The consequence is the scalability of the method.

5 Conclusion

We proposed in this paper a detailed review of the non-intrusive coupling algorithm. Such al-
gorithm allows for taking into account localised details into an existing finite element model,
without actually modifying its corresponding numerical operator. We also investigated two



Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition 31

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 10 20 30 40 50 60 70 80

R
e
la

ti
v
e

re
si

d
u
a
l

Iteration number

Standard method
Aitken's Delta Squared acceleration

Quasi-Newton acceleration

Fig. 22: Domain decomposition: residual evolution (twelve sub-domains)
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Fig. 23: Domain decomposition: scalability

existing improvements (Quasi-Newton update and Aitken dynamic relaxation), allowing for
better efficiency of the algorithm, while focusing on the relative benefits of both processes:
we showed the Quasi-Newton acceleration to be more efficient than the Aitken dynamic re-
laxation in all situations, while requiring slightly more computational overhead.
We also extended the coupling method and algorithm to various situations and advanced ap-
plications we consider useful in both research and engineering context: crack propagation,
multi-patching, boundary condition modification, geometric changes and contact. Addition-
ally to those extensions, we setted up a flexible and efficient implementation of the coupling,
based upon the Message Passing Library (MPI) granting a universal way to use non-intrusive
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coupling in a given software environment.
We finally proposed a novel domain decomposition method based upon the the non-intrusive
coupling algorithm, intended to large scale nonlinear analysis, and showed its scalability.
Such novel method has several advantages:

• the possibility to use sequential commercial software thanks to the non-intrusiveness
property of the algorithm,

• the use of a global model provides scalability of the algorithm and releases one from
taking care of floating sub-structures, moreover such global model is kept unmodified
whatever happens to the sub-structures and the interfaces,

• non-conforming meshes at the interface between two sub-structures are easily handled,
allowing for an easy and flexible design of the model,

• the algorithm provides a straightforward localisation of the nonlinearities, and thus al-
lows to reduce the overall number of iterations.

As a short term perspective, such domain decomposition method is expected to be highly
optimised in order to make it usable on very large models (millions of degrees of freedom).
Moreover, the non-intrusive coupling procedure remains under constant investigation in or-
der to improve its integration into common nonlinear Newton-Krylov-Schur (NKS) solvers.
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A Non-intrusive coupling program

Jointly to this paper, the complete code used to run example from §3.2 is also provided as
an attached file . It can also be downloaded from [1].
The overall code is organised as follow:

• the global model is computed by Code Aster using structure.comm, global.py and opti-
misation.py files,

• the local model is computed by Code Aster using patch.comm and local.py
• the interface coupling is achieved by a Python script using coupling engine.py and cou-

pleur.py files,
• the finite element meshes have been saved into the mesh.med file,
• the Code Aster global and local programs configuration files are global.export and lo-

cal.export respectively (such files have to be adapted to the version of Code Aster used,
the one used here is STA11.4).

Each program (global, local and coupling engine) have to be launched separately (see file
run.sh) with the mpirun command as we use MPI communications between them for the
interface data exchange (see Fig 24). In fact, the MPI communication is based upon a
client–server model, so that there is no need for a parallel version of Code Aster. Paral-
lelism is thus ensured by the simultaneous run of several sequential instances.




code/clear.sh

#!/bin/bash

## This script erases all temporary files from the current folder
## in order to get a clean workspace before running a new computation

# Number of patches
nb_patch=2;

# Deleting '.comm' and '.export' local patches files
for n in `seq 1 $nb_patch`    
    do 
        rm local$n.export;
        rm patch$n.comm;
    done     
 
# Deleting temporary and output files
rm *.mess;
rm *.erre;
rm *.resu;
rm *.rmed;
rm *.pyc;
rm *~;
rm server.txt;
rm output.txt;







code/code_global.py

from Cata.cata import *  
from Accas import _F
from Utilitai.partition import *
import numpy as np


## We use the 'g' array for the storage of all Code_Aster concepts.
## AsterDim is the max number of storable concepts,
## and AsterCount is a Python iterator.
AsterDim = 1000000;       
g = [None]*AsterDim;
AsterCount = iter(range(AsterDim));

## ------------------------------------##
## Global model class
##-------------------------------------##
class ModeleGlobal :
    

    """ This class contains all the methods and attributes of the global model. """


    ## Class constructor
    def __init__ (self, nb_patch) : 

        global AsterDim, g, AsterCount;

        # Young's modulus
        self.E = 200.0E09;
        # Poisson's ratio
        self.nu = 0.3;
        # Tensile loading strenght
        self.p = 80.0E06;
        
        # Reading the mesh from the '.med' file
        mesh = LIRE_MAILLAGE (FORMAT = 'MED',
                              NOM_MED = 'STRUCTURE');
                              
        # Nodes groups are defined upon already existing boundary stitches groups
        mesh = DEFI_GROUP (reuse = mesh,
                           MAILLAGE = mesh,
                           CREA_GROUP_NO = _F (NOM = 'GAMMA',
                                               GROUP_MA = 'GAMMA',
                                               CRIT_NOEUD = 'TOUS'));   
        for i in range(nb_patch+1):
            mesh = DEFI_GROUP (reuse = mesh,
                               MAILLAGE = mesh,
                               CREA_GROUP_NO = _F (NOM = 'GAMMA%d'%i,
                                                   GROUP_MA = 'GAMMA%d'%i,
                                                   CRIT_NOEUD = 'TOUS'));  
                                          
        # Assignment of the mesh to the class 'ModeleGlobal'
        self.maillage = mesh;
        
        # Extracting the mesh into the Python workspace
        mailpy = MAIL_PY();
        mailpy.FromAster(self.maillage);
        self.mailpy = {'gma':mailpy.gma, 'gno':mailpy.gno, 'co':mailpy.co.data, 'cn':mailpy.cn, 'corresp':mailpy.correspondance_noeuds};
        
        # Material law definition (linear elastic)
        AsterIter = AsterCount.next();
        g[AsterIter] = DEFI_MATERIAU (ELAS = _F (E = self.E,
                                                 NU = self.nu));
        # Assignment of the material to the class
        self.materiau = g[AsterIter];

        # Applying the material to the structure
        AsterIter = AsterCount.next();
        g[AsterIter] = AFFE_MATERIAU (MAILLAGE = self.maillage,
                                      AFFE = _F (TOUT = 'OUI',
                                                 MATER = self.materiau));
        # Assignment of the materialised structure to the class
        self.champ_materiau = g[AsterIter];

        # Mechanical behaviour definition (plane strain)
        AsterIter = AsterCount.next();
        g[AsterIter] = AFFE_MODELE (MAILLAGE = self.maillage,
                                    AFFE = _F (TOUT = 'OUI',
                                               PHENOMENE = 'MECANIQUE', 
                                               MODELISATION = 'D_PLAN'));
        # Assignment of the mechanical behaviour to the class
        self.modele = g[AsterIter];
 
        # Global loading definition
        AsterIter = AsterCount.next(); 
        g[AsterIter] = AFFE_CHAR_MECA (MODELE = self.modele,
                                       DDL_IMPO = _F (GROUP_NO = ('REF_UP','REF_DOWN'),
                                                      LIAISON = 'ENCASTRE'), 
                                       FORCE_CONTOUR = _F (GROUP_MA = 'RIGHT',
                                                           FX = self.p));
        # Assignment of the global laoding to the class
        self.chargement = g[AsterIter];


        # Stiffness matrix and load vector assembly        
        AsterIter = AsterCount.next();  
        g[AsterIter] = CO('g_%d' % AsterIter);
        AsterIter = AsterCount.next(); 
        g[AsterIter] = CO('g_%d' % AsterIter);
        AsterIter = AsterCount.next(); 
        g[AsterIter] = CO('g_%d' % AsterIter);
        ASSEMBLAGE (MODELE = self.modele,
                    CHAM_MATER = self.champ_materiau,
                    CHARGE = self.chargement,
                    NUME_DDL = g[AsterIter-2],
                    MATR_ASSE = _F (MATRICE = g[AsterIter-1],
                                    OPTION = 'RIGI_MECA'),
                    VECT_ASSE = _F (VECTEUR = g[AsterIter],
                                    OPTION = 'CHAR_MECA'));       
        # Stiffness matrix factorisation
        g[AsterIter-1] = FACTORISER (reuse = g[AsterIter-1],
                                     MATR_ASSE = g[AsterIter-1]);        
        # Assignment of the dof numbering to the class
        self.numerotation_ddl = g[AsterIter-2]; 
        # Assignment of the stiffness matrix to the class
        self.matrice_K = g[AsterIter-1];
        # Assignment of the load vector to the class
        self.vecteur_F = g[AsterIter];



    ## Global problem solver with additional right hand side vector on the interface
    def Resolution (self, vect = None) :

        global g, AsterCount;
    
        if vect is None :
            # No additional right hand side vector
            AsterIter = AsterCount.next(); 
            g[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                       NUME_DDL = self.numerotation_ddl,
                                       OPERATION = 'COMB',
                                       COMB = (_F (CHAM_GD = self.vecteur_F,
                                                   COEF_R = 1.0)));
        else :
            # Additional right hand side vector (actually taking place of the initial load vector)
            AsterIter = AsterCount.next(); 
            g[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                       NUME_DDL = self.numerotation_ddl,
                                       OPERATION = 'COMB',
                                       COMB = (_F (CHAM_GD = self.vecteur_F,
                                                   COEF_R = 0.0),
                                               _F (CHAM_GD = vect,
                                                   COEF_R = 1.0)));

        # Linear system solving
        AsterIter = AsterCount.next(); 
        g[AsterIter] = RESOUDRE (MATR = self.matrice_K,
                       CHAM_NO = g[AsterIter-1]);

        return g[AsterIter];



    ## Computes the global model reaction forces
    def Calc_Reaction (self, vect_u) :

        # Creates a new result concept in the Code_Aster workspace
        AsterIter = AsterCount.next(); 
        g[AsterIter] = CREA_RESU (OPERATION = 'AFFE',
                                  TYPE_RESU = 'EVOL_ELAS',
                                  NOM_CHAM = 'DEPL',
                                  AFFE = _F (INST = 0.0,
                                             CHAM_GD = vect_u,
                                             MODELE = self.modele,
                                             CHAM_MATER = self.champ_materiau));  
                                             
        # Computes the stress field
        g[AsterIter] = CALC_CHAMP (reuse = g[AsterIter], 
                                   RESULTAT = g[AsterIter],
                                   CONTRAINTE = 'SIEF_ELGA',
                                   TOUT = 'OUI'); 
                   
        # Computes the generalised reaction forces from the solution
        g[AsterIter] = CALC_CHAMP (reuse = g[AsterIter], 
                                   RESULTAT = g[AsterIter],
                                   FORCE = 'FORC_NODA',
                                   GROUP_MA = 'OMEGA0');
        
        # Computes the Von Mises equivalent stress
        g[AsterIter] = CALC_CHAMP (reuse = g[AsterIter], 
                                   RESULTAT = g[AsterIter],
                                   CRITERES = 'SIEQ_ELGA',
                                   TOUT = 'OUI');
        self.Post = g[AsterIter];
        
        # Extracts the reaction field
        AsterIter = AsterCount.next(); 
        g[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                   OPERATION = 'EXTR',
                                   RESULTAT = g[AsterIter-1],
                                   NOM_CHAM = 'FORC_NODA');

        return g[AsterIter];

        
        
    ## Casts a Code_Aster field into Python vectors on the interface
    def ReprAster2Python (self, vect, num_patch) :

        global g, AsterCount;     
        
        vect_x = vect.EXTR_COMP('DX',['GAMMA%d'%num_patch],1).valeurs;
        vect_y = vect.EXTR_COMP('DY',['GAMMA%d'%num_patch],1).valeurs;
        
        return [vect_x, vect_y];
        
        
        
    ## Casts Python vectors into a Code_Aster field on the interface
    def ReprPython2Aster (self, vect, num_patch) :

        global g, AsterCount;    
        
        [vect_x, vect_y] = vect;
        
        # Interface nodes list
        noeuds =  ["".join(self.mailpy['corresp'][n]).rstrip() for n in sorted(self.mailpy['gno']['GAMMA%d'%num_patch])];
        
        # Casts the Python vectors into a Code_Aster table
        AsterIter = AsterCount.next(); 
        g[AsterIter] = CREA_TABLE (LISTE = (_F (LISTE_K = noeuds,
                                                PARA = 'NOEUD'),
                                            _F (LISTE_R = vect_x.tolist(),
                                                PARA = 'DX'),
                                            _F (LISTE_R = vect_y.tolist(),
                                                PARA = 'DY')));

        # Creates a Code_Aster field from the table
        AsterIter = AsterCount.next(); 
        g[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                   OPERATION = 'EXTR',
                                   PROL_ZERO = 'OUI',
                                   NUME_DDL = self.numerotation_ddl,
                                   TABLE = g[AsterIter-1],
                                   MAILLAGE = self.maillage);
        
        return g[AsterIter];  
        
        
        
    ## Combines the local and global reactions forces into a unique residual loading vector
    def Combiner_Effort (self, r) :    
        
        global g, AsterCount;            
        
        champslist = [];        
        for ind in range(len(r)) :
            champslist.append({'CHAM_GD' : self.ReprPython2Aster(r[ind], ind), 'COEF_R' : -1.0});

        # Creates the Code_Aster residual field to be sent to the global solver
        AsterIter = AsterCount.next(); 
        g[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                   PROL_ZERO = 'OUI',
                                   NUME_DDL = self.numerotation_ddl,
                                   OPERATION = 'COMB',
                                   COMB = champslist);

        return g[AsterIter];        






code/code_local.py

from Cata.cata import *  
from Accas import _F
from Utilitai.partition import *
import numpy as np


AsterDim = 1000000;       
l = [None]*AsterDim;
AsterCount = iter(range(AsterDim));

## ---------------------------------------------------------------------------##
## Local model class
##----------------------------------------------------------------------------##
class ModeleLocal :
    

    """ This class contains all the methods and attributes of the local model. """


    ## Class constructor
    def __init__ (self, num_patch) : 

        global AsterDim, l, AsterCount;

        # Young's modulus
        self.E = 200.0E09;
        # Poisson's ratio
        self.nu = 0.3;
        # Elastic limit
        self.K = 250.0E06;
        # Tangent elastic modulus (linear kinematic hardening)
        self.n = 0.2*self.E;
        # Tensile loading strenght
        self.p = 640.0E06/np.pi;
        
        # Patch number
        self.num_patch = num_patch;

        # Reading the mesh from the '.med' file
        AsterIter = AsterCount.next();
        l[AsterIter] = LIRE_MAILLAGE (FORMAT = 'MED',
                                      NOM_MED = 'PATCH%d'%num_patch);
        # Nodes groups are defined upon already existing boundary stitches groups                      
        l[AsterIter] = DEFI_GROUP (reuse = l[AsterIter],
                                   MAILLAGE = l[AsterIter],
                                   CREA_GROUP_NO = _F (NOM = 'GAMMA%d'%num_patch,
                                                       GROUP_MA = 'GAMMA%d'%num_patch,
                                                       CRIT_NOEUD = 'TOUS'));  
                                      
        # Assignment of the mesh to the class 'ModeleLocal'
        self.maillage = l[AsterIter];

        # Extracting the mesh into the Python workspace
        mailpy = MAIL_PY();
        mailpy.FromAster(self.maillage);
        self.mailpy = {'gma':mailpy.gma, 'gno':mailpy.gno, 'co':mailpy.co.data, 'cn':mailpy.cn, 'corresp':mailpy.correspondance_noeuds};
        
        # Material law definition (linear kinematic hardening) 
        AsterIter = AsterCount.next();     
        l[AsterIter] = DEFI_MATERIAU (ELAS = _F (E = self.E,
                                                 NU = self.nu),
                                      ECRO_LINE = _F (D_SIGM_EPSI = self.n,
                                                      SY = self.K));
        # Assignment of the material to the class
        self.materiau = l[AsterIter];

        # Applying the material to the structure
        AsterIter = AsterCount.next();  
        l[AsterIter] = AFFE_MATERIAU (MAILLAGE = self.maillage,
                                      AFFE = _F (TOUT = 'OUI',
                                                 MATER = self.materiau));
        # Assignment of the materialised structure to the class
        self.champ_materiau = l[AsterIter];

        # Mechanical behaviour definition (plane strain)
        AsterIter = AsterCount.next();  
        l[AsterIter] = AFFE_MODELE (MAILLAGE = self.maillage,
                                    AFFE = _F (TOUT = 'OUI',
                                               PHENOMENE = 'MECANIQUE', 
                                               MODELISATION = 'D_PLAN'));
        # Assignment of the mechanical behaviour to the class
        self.modele = l[AsterIter];

        # Dof numbering
        AsterIter = AsterCount.next();  
        l[AsterIter] = NUME_DDL (MODELE = self.modele);    
        # Assignment of the numbering to the class'
        self.numerotation_ddl = l[AsterIter];
        
        

    ## Local problem solver with prescribed Dirichlet condition on the interface
    def Resolution (self, depl_impo, tag) :

        global AsterDim, l, AsterCount;   
        
        
        if (self.num_patch == 1):
            
            # Loading definition for the first patch
            AsterIter = AsterCount.next();  
            l[AsterIter] = AFFE_CHAR_MECA (MODELE = self.modele,  
                                           CHAMNO_IMPO = _F (CHAM_NO = depl_impo, 
                                                             COEF_MULT = 1.0),
                                           DDL_IMPO = _F (GROUP_MA = 'LEFT',
                                                          LIAISON = 'ENCASTRE')); 
                
        elif (self.num_patch == 2):  
        
            # Loading definition for the second patch
            AsterIter = AsterCount.next();  
            l[AsterIter] = AFFE_CHAR_MECA (MODELE = self.modele,  
                                           CHAMNO_IMPO = _F (CHAM_NO = depl_impo, 
                                                             COEF_MULT = 1.0), 
                                           FORCE_CONTOUR = _F (GROUP_MA = 'RIGHT',
                                                               FX = self.p));
                                                               
        # Linear elastic behaviour
        if (tag == 1): 
            
            # Solving the local problem      
            AsterIter = AsterCount.next();   
            l[AsterIter] = MECA_STATIQUE (MODELE = self.modele,
                                          CHAM_MATER = self.champ_materiau,
                                          EXCIT = _F (CHARGE = l[AsterIter-1]));
            
            # Computes the generalised reaction forces from the solution 
            l[AsterIter] = CALC_CHAMP (reuse = l[AsterIter], 
                                    RESULTAT = l[AsterIter],
                                    FORCE = 'FORC_NODA',
                                    TOUT = 'OUI');
                                    
            # Computes the Von Mises equivalent stress                        
            l[AsterIter] = CALC_CHAMP (reuse = l[AsterIter], 
                                    RESULTAT = l[AsterIter],
                                    CRITERES = 'SIEQ_ELGA',
                                    TOUT = 'OUI');
            self.Post = l[AsterIter];
            
            # Extracts the displacement field
            AsterIter = AsterCount.next();                                 
            l[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                    OPERATION = 'EXTR',
                                    RESULTAT = l[AsterIter-1],
                                    NOM_CHAM = 'DEPL'); 
            u = l[AsterIter];
            
            # Extracts the reaction field      
            AsterIter = AsterCount.next(); 
            l[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                    OPERATION = 'EXTR',
                                    RESULTAT = l[AsterIter-2],
                                    NOM_CHAM = 'FORC_NODA');                               
            r = l[AsterIter];                                                                       

        # Elastic-plastic non-linear behaviour
        elif (tag == 2):
                                        
            # Load increments
            AsterIter = AsterCount.next();  
            l[AsterIter] = DEFI_LIST_REEL (DEBUT = 0.0,
                                        INTERVALLE = _F (JUSQU_A = 1.0,
                                                            NOMBRE = 10));

            # Solving the local problem
            AsterIter = AsterCount.next();  
            l[AsterIter] = STAT_NON_LINE (MODELE = self.modele,
                                        CHAM_MATER = self.champ_materiau,
                                        EXCIT = _F (CHARGE = l[AsterIter-2]),
                                        COMP_INCR = _F (RELATION = 'VMIS_CINE_LINE'),
                                        INCREMENT = _F (LIST_INST = l[AsterIter-1]),
                                        NEWTON = _F (REAC_ITER = 2),
                                        ARCHIVAGE = _F (INST = 1.0),
                                        CONVERGENCE = _F (ITER_GLOB_MAXI = 100));  
            
            # Computes the generalised reaction forces from the solution 
            l[AsterIter] = CALC_CHAMP (reuse = l[AsterIter], 
                                    RESULTAT = l[AsterIter],
                                    INST = 1.0,
                                    FORCE = 'FORC_NODA',
                                    TOUT = 'OUI');
            
            # Computes the Von Mises equivalent stress
            l[AsterIter] = CALC_CHAMP (reuse = l[AsterIter], 
                                    RESULTAT = l[AsterIter],
                                    INST = 1.0,
                                    CRITERES = 'SIEQ_ELGA',
                                    TOUT = 'OUI');
            self.Post = l[AsterIter]; 
            
            # # Extracts the displacement field  
            AsterIter = AsterCount.next();                                 
            l[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                    OPERATION = 'EXTR',
                                    INST = 1.0,
                                    RESULTAT = l[AsterIter-1],
                                    NOM_CHAM = 'DEPL'); 
            u = l[AsterIter];
            
            # Extracts the reaction field      
            AsterIter = AsterCount.next(); 
            l[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                    OPERATION = 'EXTR',
                                    INST = 1.0,
                                    RESULTAT = l[AsterIter-2],
                                    NOM_CHAM = 'FORC_NODA');                               
            r = l[AsterIter];                                                    
                                                      
                                   
        return [u,r];

        
        
    ## Casts a Code_Aster field into Python vectors on the interface    
    def ReprAster2Python (self, vect) :

        global l, AsterCount;     
        
        vect_x = vect.EXTR_COMP('DX',['GAMMA%d'%self.num_patch],1).valeurs;
        vect_y = vect.EXTR_COMP('DY',['GAMMA%d'%self.num_patch],1).valeurs;
        
        return [vect_x, vect_y];
        
        
        
    ## Casts Python vectors into a Code_Aster field on the interface   
    def ReprPython2Aster (self, vect) :

        global l, AsterCount;    
        
        [vect_x, vect_y] = vect;
        
        # Interface nodes list
        noeuds =  ["".join(self.mailpy['corresp'][n]).rstrip() for n in sorted(self.mailpy['gno']['GAMMA%d'%self.num_patch])];
        
        # Casts the Python vector into a Code_Aster table
        AsterIter = AsterCount.next(); 
        l[AsterIter] = CREA_TABLE (LISTE = (_F (LISTE_K = noeuds,
                                                PARA = 'NOEUD'),
                                            _F (LISTE_R = vect_x.tolist(),
                                                PARA = 'DX'),
                                            _F (LISTE_R = vect_y.tolist(),
                                                PARA = 'DY')));

        # Creates a Code_Aster field from the table
        AsterIter = AsterCount.next(); 
        l[AsterIter] = CREA_CHAMP (TYPE_CHAM = 'NOEU_DEPL_R',
                                   OPERATION = 'EXTR',
                                   TABLE = l[AsterIter-1],
                                   MAILLAGE = self.maillage);
        
        return l[AsterIter];  






code/coupleur.py

import numpy as np
import scipy.sparse as sp
import scipy.sparse.linalg as splg

## ---------------------------------------------------------------------------##
## Coupler class
##----------------------------------------------------------------------------##
class Coupleur :
    

    """ This class contains all the methods and attributes of the coupler. """


    ## Class constructor
    def __init__ (self, maillage_global, maillage_local, num_patch) : 

        # Patch number
        self.num_patch = num_patch;
        
        # Mesh (Python representation)
        self.mailpyg = maillage_global;
        self.mailpyl = maillage_local;
        
        # Assignment of coupling matrice to the class
        self.matrice_C_G = self.Calc_Matr_Couplage_Global();
        self.matrice_C_L = self.Calc_Matr_Couplage_Local();
        
        
                
    # Calculation of the local coupling matrix     
    def Calc_Matr_Couplage_Local (self) :
        
        # Stitches group 'GAMMA'
        # Variable 'm_gamma' contains the stitches numbers array 
        m_gamma =  self.mailpyl['gma']['GAMMA%d'%self.num_patch];
        # Nodes group 'GAMMA'
        # Variable 'n_gamma' contains the nodes numbers array
        n_gamma =  sorted(self.mailpyl['gno']['GAMMA%d'%self.num_patch]);
        # Connectivity matrix
        table_connec = self.mailpyl['co'];
        # Nodes coordinates
        coord = self.mailpyl['cn'];
        # Number of stitches from the group 'GAMMA'
        nb_mailles = len(m_gamma);
        # Number of nodes from the group 'GAMMA'
        nb_noeuds = len(n_gamma);
        # Nodes re-numbering
        num = {n_gamma[n] : n for n in range(nb_noeuds)};
        
        # Local coupling matrix initialisation
        matrice_C = sp.lil_matrix((nb_noeuds,nb_noeuds));
        
        # Iterations over the stitches group 'GAMMA'
        for m in m_gamma :
            # We get the nodes from the stich m
            noeuds = table_connec[m];
            i = noeuds[0];
            j = noeuds[1];
            # We get the coordinates of the nodes
            [xi, yi] = coord[i];
            [xj, yj] = coord[j];            
            # We mesure the length of element m
            d = np.sqrt((xi-xj)**2 + (yi-yj)**2);
            # We assemble the coupling matrix
            matrice_C[num[i],num[i]] += d/3;
            matrice_C[num[j],num[j]] += d/3;
            matrice_C[num[i],num[j]] += d/6;
            matrice_C[num[j],num[i]] += d/6;
            
        matrice_C = matrice_C.tocsc();        
        matrice_C = splg.splu(matrice_C);
        
        return matrice_C;
              
                

    # Calculation of the global coupling matrix 
    def Calc_Matr_Couplage_Global (self) :

        # Global interface mesh
        # Stitches group 'GAMMA'
        # Variable 'm_gamma' contains the stitches numbers array 
        m_gamma_g =  self.mailpyg['gma']['GAMMA%d'%self.num_patch];
        # Nodes group 'GAMMA'
        # Variable 'n_gamma' contains the nodes numbers array
        n_gamma_g =  sorted(self.mailpyg['gno']['GAMMA%d'%self.num_patch]);
        # Number of nodes from the group 'GAMMA'
        nb_noeuds_g = len(n_gamma_g);
        # Nodes coordinates
        coord_g = self.mailpyg['cn'];
        # Connectivity matrix
        table_connec_g = self.mailpyg['co'];

        # Local interface mesh
        # Stitches group 'GAMMA'
        # Variable 'm_gamma' contains the stitches numbers array 
        m_gamma_l =  self.mailpyl['gma']['GAMMA%d'%self.num_patch];
        # Nodes group 'GAMMA'
        # Variable 'n_gamma' contains the nodes numbers array
        n_gamma_l =  sorted(self.mailpyl['gno']['GAMMA%d'%self.num_patch]);
        # Connectivity matrix
        table_connec_l = self.mailpyl['co'];
        # Nodes coordinates
        coord_l = self.mailpyl['cn'];
        # Number of nodes from the group 'GAMMA'
        nb_noeuds_l = len(n_gamma_l);

        # Nodes re-numbering
        numg = {n_gamma_g[n] : n for n in range(nb_noeuds_g)};
        numl = {n_gamma_l[n] : n for n in range(nb_noeuds_l)};

        # Global coupling matrix initialisation
        matrice_C = sp.lil_matrix((nb_noeuds_g,nb_noeuds_l));

        # This function determine whether or not a node lies inside a stitch
        def Noeud_Dans_Maille (noeud, maille) :                
            # Node n coordinates 
            [nx, ny] = noeud;
            # Nodes ni and nj coordinates
            [[nix, niy], 
             [njx, njy]] = maille;        
            # We create the vector [n ni]
            n_nix = nix - nx;
            n_niy = niy - ny;
            # We create the vector [n nj]
            n_njx = njx - nx;
            n_njy = njy - ny;
            # We compute the dot product 'n_ni . n_nj'
            ps = n_nix*n_njx + n_niy*n_njy;
            # We compute the cross product 'n_ni x n_nj'
            pv = n_nix*n_njy - n_nix*n_njy;
            # If (ps < 0) and (pv = 0), then 'noeud' is in 'maille'
            # Remark : we add tolerance due to machine error
            if ((ps < 1.0E-10) and (abs(pv) < 1.0E-10)) :
                return True;
            else : 
                return False;

        # We iterate over the global stitches
        for g in m_gamma_g :
            # We iterate over the local stitches
            for l in m_gamma_l :

                # We get the nodes from the stich g
                noeuds_g = table_connec_g[g];
                gi = noeuds_g[0];
                gj = noeuds_g[1];
                # We get the coordinates
                [gix, giy] = coord_g[gi];
                [gjx, gjy] = coord_g[gj];
        
                # We get the nodes from the stich l
                noeuds_l = table_connec_l[l];
                li = noeuds_l[0];
                lj = noeuds_l[1];
                # We get the coordinates
                [lix, liy] = coord_l[li];
                [ljx, ljy] = coord_l[lj];
                
                # We test if 'li' or 'lj' lies inside 'g'
                test_li = Noeud_Dans_Maille ([lix, liy], [[gix, giy],
                                                          [gjx, gjy]]);
                test_lj = Noeud_Dans_Maille ([ljx, ljy], [[gix, giy],
                                                          [gjx, gjy]]);
                # We test if 'gi' or 'gj' lies inside 'l'
                test_gi = Noeud_Dans_Maille ([gix, giy], [[lix, liy],
                                                          [ljx, ljy]]);
                test_gj = Noeud_Dans_Maille ([gjx, gjy], [[lix, liy],
                                                          [ljx, ljy]]);

                # We use case analysis about the intersection between 'g' and 'l'

                # Intersection between 'g' and 'l' is not empty
                if (test_li or test_lj or test_gi or test_gj) :

                    # One stitch fully lies inside the other one
                    if ((test_li and test_lj) or (test_gi and test_gj)) :

                        # Stitch 'l' lies inside 'g'
                        if (test_li and test_lj) :

                            # Then 'g' is assigned as master stitch and 'l' as slave stitch
                            [[vix, viy], [vjx, vjy]] = [[gix, giy], [gjx, gjy]];
                            [[wix, wiy], [wjx, wjy]] = [[lix, liy], [ljx, ljy]];

                        # Stitch 'g' lies inside 'l'
                        elif (test_gi and test_gj) :

                            # Then 'l' is assigned as master stitch and 'g' as slave stitch
                            [[vix, viy], [vjx, vjy]] = [[lix, liy], [ljx, ljy]];
                            [[wix, wiy], [wjx, wjy]] = [[gix, giy], [gjx, gjy]];

                        # We compute the integration between points 'wi' and 'wj'

                        # Value of basis function 'Vi' at point 'wi'
                        fvi_wi = 1 - np.sqrt((vix-wix)**2 + (viy-wiy)**2)/np.sqrt((vix-vjx)**2 + (viy-vjy)**2);
                        # Value of basis function 'Vi' at point 'wj'
                        fvi_wj = 1 - np.sqrt((vix-wjx)**2 + (viy-wjy)**2)/np.sqrt((vix-vjx)**2 + (viy-vjy)**2);
                        # Value of basis function 'Vj' at point 'wi'
                        fvj_wi = 1 - np.sqrt((vjx-wix)**2 + (vjy-wiy)**2)/np.sqrt((vix-vjx)**2 + (viy-vjy)**2);
                        # Value of basis function 'Vj' at point 'wj'
                        fvj_wj = 1 - np.sqrt((vjx-wjx)**2 + (vjy-wjy)**2)/np.sqrt((vix-vjx)**2 + (viy-vjy)**2);

                        # Integrating 'Vi*Wi' over [wi,wj] using Simpson formula
                        matrice_C[numg[gi],numl[li]] += np.sqrt((wix-wjx)**2 + (wiy-wjy)**2)*(2*fvi_wi + fvi_wj)/6;
                        # Integrating 'Vj*Wj' over [wi,wj] using Simpson formula
                        matrice_C[numg[gj],numl[lj]] += np.sqrt((wix-wjx)**2 + (wiy-wjy)**2)*(2*fvj_wj + fvj_wi)/6;
                        # Integrating 'Vi*Wj' over [wi,wj] using Simpson formula
                        matrice_C[numg[gi],numl[lj]] += np.sqrt((wix-wjx)**2 + (wiy-wjy)**2)*(2*fvi_wj + fvi_wi)/6;
                        # Integrating 'Vj*Wi' over [wi,wj] using Simpson formula
                        matrice_C[numg[gj],numl[li]] += np.sqrt((wix-wjx)**2 + (wiy-wjy)**2)*(2*fvj_wi + fvj_wj)/6; 

                    # The two stitches partially overlap
                    else :

                        # Node 'li' lies inside stitch 'g' and node 'gi' lies inside stitch 'l'
                        if ((test_li) and (test_gi)) :

                            # We rename variable to fit the reference case
                            [g1, g2] = [gj, gi];
                            [[g1x, g1y], [g2x, g2y]] = [[gjx, gjy], [gix, giy]];
                            [l1, l2] = [li, lj];
                            [[l1x, l1y], [l2x, l2y]] = [[lix, liy], [ljx, ljy]];

                        # Node 'lj' lies inside stitch 'g' and node 'gi' lies inside stitch 'l'
                        elif ((test_lj) and (test_gi)) :

                            # We rename variable to fit the reference case
                            [g1, g2] = [gj, gi];
                            [[g1x, g1y], [g2x, g2y]] = [[gjx, gjy], [gix, giy]];
                            [l1, l2] = [lj, li];
                            [[l1x, l1y], [l2x, l2y]] = [[ljx, ljy], [lix, liy]];

                        # Node 'lj' lies inside stitch 'g' and node 'gj' lies inside stitch 'l'
                        elif ((test_lj) and (test_gj)) :

                            # We rename variable to fit the reference case
                            [g1, g2] = [gi, gj];
                            [[g1x, g1y], [g2x, g2y]] = [[gix, giy], [gjx, gjy]];
                            [l1, l2] = [lj, li];
                            [[l1x, l1y], [l2x, l2y]] = [[ljx, ljy], [lix, liy]];

                        # Node 'li' lies inside stitch 'g' and node 'gj' lies inside stitch 'l'
                        elif ((test_li) and (test_gj)) :

                            # We rename variable to fit the reference case
                            [g1, g2] = [gi, gj];
                            [[g1x, g1y], [g2x, g2y]] = [[gix, giy], [gjx, gjy]];
                            [l1, l2] = [li, lj];
                            [[l1x, l1y], [l2x, l2y]] = [[lix, liy], [ljx, ljy]];

                        # We compute the integration between points 'l1' et 'g2'

                        # Value of basis function 'G2' at point 'l1'
                        fg2_l1 = 1 - np.sqrt((g2x-l1x)**2 + (g2y-l1y)**2)/np.sqrt((g2x-g1x)**2 + (g2y-g1y)**2); 
                        # Value of basis function 'L1' at point 'g2'
                        fl1_g2 = 1 - np.sqrt((g2x-l1x)**2 + (g2y-l1y)**2)/np.sqrt((l1x-l2x)**2 + (l1y-l2y)**2);
                        # Value of basis function 'G1' at point 'l1'
                        fg1_l1 = 1 - np.sqrt((g1x-l1x)**2 + (g1y-l1y)**2)/np.sqrt((g2x-g1x)**2 + (g2y-g1y)**2); 
                        # Value of basis function 'L2' at point 'g2'
                        fl2_g2 = 1 - np.sqrt((g2x-l2x)**2 + (g2y-l2y)**2)/np.sqrt((l1x-l2x)**2 + (l1y-l2y)**2); 

                        # Integrating 'G2*L1' over [l1,g2] using Simpson formula
                        matrice_C[numg[g2],numl[l1]] += np.sqrt((g2x-l1x)**2 + (g2y-l1y)**2)*(1 + 2*fg2_l1 + 2*fl1_g2 + fg2_l1*fl1_g2)/6;
                        # Integrating 'G1*L2' over [l1,g2] using Simpson formula
                        matrice_C[numg[g1],numl[l2]] += np.sqrt((g2x-l1x)**2 + (g2y-l1y)**2)*(fg1_l1*fl2_g2)/6;
                        # Integrating 'G2*L2' over [l1,g2] using Simpson formula
                        matrice_C[numg[g2],numl[l2]] += np.sqrt((g2x-l1x)**2 + (g2y-l1y)**2)*(2*fl2_g2 + fg2_l1*fl2_g2)/6;
                        # Integrating 'G1*L1' over [l1,g2] using Simpson formula
                        matrice_C[numg[g1],numl[l1]] += np.sqrt((g2x-l1x)**2 + (g2y-l1y)**2)*(2*fg1_l1 + fg1_l1*fl1_g2)/6;

        matrice_C = matrice_C.tocsr();   
                        
        return matrice_C;



    ## This function compute the projection from the interface local mesh to the interface global mesh
    def Projection_Local_To_Global (self, vect) :

        [vect_x, vect_y] = vect;
     
        p_vect_x = self.matrice_C_G.dot(self.matrice_C_L.solve(vect_x));
        p_vect_y = self.matrice_C_G.dot(self.matrice_C_L.solve(vect_y));
        
        return [p_vect_x, p_vect_y];



    ## This function compute the projection from the interface global mesh to the interface local mesh
    def Projection_Global_To_Local (self, vect) :
        
        [vect_x, vect_y] = vect;
      
        p_vect_x = self.matrice_C_L.solve(self.matrice_C_G.T.dot(vect_x));
        p_vect_y = self.matrice_C_L.solve(self.matrice_C_G.T.dot(vect_y));

        return [p_vect_x, p_vect_y];








code/coupling_engine.py

import sys;
from mpi4py import MPI
import numpy as np


##########################################################'
#         MPI communication initialisation               #
##########################################################'

# Communication with the global model
comm_port_global = MPI.Open_port (MPI.INFO_NULL);
service_global = "comm_global";
MPI.Publish_name(service_global, MPI.INFO_NULL, comm_port_global);
comm_global = MPI.COMM_SELF.Accept(comm_port_global, MPI.INFO_NULL);

# Initial exchanges with the global model
maillage_global = comm_global.recv();


# Communication with the local models
nb_patchs = 2;
comm_port_local = [None];
service_local = [None];
comm_local = [None];
for i in range(1,nb_patchs+1):
    comm_port_local.append(MPI.Open_port (MPI.INFO_NULL));
    service_local.append("comm_local_%i"%i);
    MPI.Publish_name(service_local[-1], MPI.INFO_NULL, comm_port_local[-1]);
    comm_local.append(MPI.COMM_SELF.Accept(comm_port_local[-1], MPI.INFO_NULL));
    
    
##########################################################'
#               Coupler preparation                      #
##########################################################'

# Sending the global mesh to the patchs
for i in range(1,nb_patchs+1):
    comm_local[i].send(maillage_global); 
    
    
##########################################################'
#             Coupling and MPI communication             #
##########################################################'

while (True):
    
    # Receive global displacement           
    [ug, tag] = comm_global.recv(); 
    
    if (tag == 0):
        for i in range(1,nb_patchs+1):
            comm_local[i].send([None,tag]); 
        break;
            
    for i in range(1,nb_patchs+1):
        # Send displacement to the patchs
        comm_local[i].send([ug[i],tag]);

    rl = [];
    for i in range(1,nb_patchs+1):       
        # Receiving reactions from the patches
        rl.append(comm_local[i].recv());        
    
    # Sending reactions to the global model  
    comm_global.send(rl);






code/global.export

P rep_trav /tmp/aster/global

F comm structure.comm D  1
F mmed mesh.med D  20
F rmed global.rmed R  80
F erre global.erre R  9
F mess global.mess R  6
F resu global.resu R  8







code/local.export

P rep_trav /tmp/aster/localNUM_PATCH

F comm patchNUM_PATCH.comm D  1
F mmed mesh.med D  20
F rmed localNUM_PATCH.rmed R  80
F erre localNUM_PATCH.erre R  9
F mess localNUM_PATCH.mess R  6
F resu localNUM_PATCH.resu R  8







code/mesh.med





code/optimisation.py

from Cata.cata import *  
from Accas import _F
from Utilitai.partition import *
import numpy as np


AsterDim = 1000000;       
o = [None]*AsterDim;
AsterCount = iter(range(AsterDim));

## ----------------------------------------------------------------------------##
## Optimisation Toolbox class
##-----------------------------------------------------------------------------##
class Optimisation_Toolbox :
    
    
    """ This class contains all the methods and attributes of the optimisation toolbox. 
        It allows using Quasi-Newton SR1 and Aitken's Delta Squared accelerations. """

          
    ## Class constructor
    def __init__ (self, modele_global) : 

        # Affectation of the global model to the class
        self.mg = modele_global;
        
        # Reference value for the relative residual computation  
        ref = self.mg.vecteur_F;
        ref_x = ref.EXTR_COMP('DX',[],1).valeurs;
        ref_y = ref.EXTR_COMP('DY',[],1).valeurs;
        self.ref = np.sqrt(np.linalg.norm(ref_x)**2 + np.linalg.norm(ref_y)**2); 
                   
    # Computes the norm of a vector over the interface
    def Norme (self, vect):
        
        vect_x = vect.EXTR_COMP('DX',['GAMMA'],1).valeurs;
        vect_y = vect.EXTR_COMP('DY',['GAMMA'],1).valeurs;
        
        return np.sqrt(np.linalg.norm(vect_x)**2 + np.linalg.norm(vect_y)**2); 
                  
    # Computes dot product
    def ProduitScalaire (self, vect1, vect2):
        
        vect1_x = vect1.EXTR_COMP('DX',['GAMMA'],1).valeurs;
        vect1_y = vect1.EXTR_COMP('DY',['GAMMA'],1).valeurs;
        
        vect2_x = vect2.EXTR_COMP('DX',['GAMMA'],1).valeurs;
        vect2_y = vect2.EXTR_COMP('DY',['GAMMA'],1).valeurs;
        
        return np.dot(vect1_x,vect2_x) + np.dot(vect1_y,vect2_y) ; 
                             
    # Computes linear combination   
    def CombLineaire (self, vect1, c1, vect2, c2):
                
        global o, AsterCount;
        
        AsterIter = AsterCount.next(); 
        o[AsterIter] = CREA_CHAMP (OPERATION = 'ASSE',
                                   TYPE_CHAM = 'NOEU_DEPL_R',
                                   MODELE = self.mg.modele,
                                   NUME_DDL = self.mg.numerotation_ddl,
                                   ASSE = (_F (TOUT = 'OUI',
                                               CHAM_GD = vect1,
                                               CUMUL = 'OUI',
                                               COEF_R = c1),
                                           _F (TOUT = 'OUI',
                                               CHAM_GD = vect2,
                                               CUMUL = 'OUI',
                                               COEF_R = c2))); 
                                               
        return o[AsterIter];      
              
    # Compute the non-corrected displacement increment given the residual r
    def Calcul_Delta_u (self, r):        
        return self.mg.Resolution(r);
     
                
        
class QN_Toolbox (Optimisation_Toolbox) :
    
    def __init__ (self, modele_global) : 
    
        Optimisation_Toolbox.__init__(self, modele_global);
        
        # Iterations indicator
        self.n = 0;
        # We stock some variables for the Quasi-Newton SR1 acceleration
        self.r = [];                # Residual
        self.du = [None];           # Displacement increment
        self.Kr = [None];           # K(i)^-1 * r(i+1) term
        
    # Compute the corrected displacement increment
    def Calcul_Quasi_Newton (self, r):
         
        # Non-corrected displacement increment
        du = self.Calcul_Delta_u(r);
        self.r.append(r);
           
        # No SR1 correction at the first iteration
        if (self.n == 0):
            self.du.append(du);
            self.n = self.n + 1;
        # SR1 correction otherwise
        else :  
            for k in range(1,self.n): 
                du = self.CombLineaire(du,1.0, self.Kr[k],self.ProduitScalaire(self.r[k],du)/self.ProduitScalaire(self.r[k],self.CombLineaire(self.du[k],1.0, self.Kr[k],-1.0)));
            self.Kr.append(du);
            self.du.append(self.CombLineaire(du,1.0, du,self.ProduitScalaire(self.r[self.n],du)/self.ProduitScalaire(self.r[self.n],self.CombLineaire(self.du[self.n],1.0, du,-1.0))));
            self.n = self.n + 1;      
                    
        return self.du[-1]; 
    
    # Compute the Quasi-Newton update
    def Calc_Update (self, u, r):
            
        # Compute the corrected displacement increment
        du = self.Calcul_Quasi_Newton(r);
        # Compute the full displacement
        u = self.CombLineaire(u, 1.0, du, 1.0);
        
        return u;    
    
    
    
class Aitken_Toolbox (Optimisation_Toolbox) :  
    
    def __init__ (self, modele_global, u) : 
    
        Optimisation_Toolbox.__init__(self, modele_global);
    
        # We stock interface displacement for the relaxation process
        self.u_pred = [u,None]; # Predicted displacement
        self.u_corr = [u,None]; # Corrected displacement
        # Aitken relaxation coefficient
        self.omega = 1.0;     
            
    # We update stored predicted values
    def MaJ_Prediction (self, u):
        
        self.u_pred[1] = self.u_pred[0]; 
        self.u_pred[0] = u;       
        return 0;        
                        
    # We update stored corrected values
    def MaJ_Correction (self, u):
        
        self.u_corr[1] = self.u_corr[0]; 
        self.u_corr[0] = u;       
        return 0;   
             
    # We compute the relaxation coefficient
    def Calc_Coeff_Aitken (self) :
            
        # Relaxation coefficient is equal to 1 for the first two iterations
        if self.u_corr[1] is None :            
            omega = 1.0;    
        # Otherwise, we use the Aitken's Delta Squared formula
        else :        
            r0 = self.CombLineaire(self.u_pred[0],1.0,self.u_corr[0],-1.0);
            r1 = self.CombLineaire(self.u_pred[1],1.0,self.u_corr[1],-1.0);
            dr = self.CombLineaire(r1,1.0,r0,-1.0);
            omega = self.omega*self.ProduitScalaire(r1,dr)/self.Norme(dr)**2;        
            self.omega = omega;
            
        return omega;   
            
    # We compute the relaxation
    def Calcul_Relaxation (self, u):
                
        omega = self.Calc_Coeff_Aitken();        
        u = self.CombLineaire(self.u_corr[0],1.0,self.CombLineaire(u,1.0*omega,self.u_corr[0],-1.0*omega),1.0);  
                            
        return u;   
                
    # We compute the Aitken's update
    def Calc_Update (self, u, r):
            
        du = self.Calcul_Delta_u(r);
        u = self.CombLineaire(u, 1.0, du, 1.0);
        self.MaJ_Prediction(u);
        u = self.Calcul_Relaxation(u);
        self.MaJ_Correction(u);
        
        return u;






code/patch.comm

#! /usr/bin/env python

DEBUT (PAR_LOT = 'NON');

from mpi4py import MPI
import numpy as np
import sys;
sys.path.append('PATH') # <-- Write down the absolute file path here
from code_local import *
from coupleur import *


##########################################################'
# MPI initialisation with the coupling engine            #
##########################################################'

# Service look-up
service = "comm_local_NUM_PATCH";
while True :
    try :
        comm_port = MPI.Lookup_name(service);
        break;
    except :
        time.sleep(1.0);

# Connection
comm = MPI.COMM_SELF.Connect(comm_port, MPI.INFO_NULL);


##########################################################'
#             Local model setting up                    #
##########################################################'

# Local model class instantiation
L = ModeleLocal(NUM_PATCH);

# Receiving global mesh
maillage_global = comm.recv();
maillage_local = L.mailpy;

# Coupler instanciation
C = Coupleur(maillage_global, maillage_local, NUM_PATCH);


##########################################################'
#          Computations and MPI communcations            #
##########################################################'

while (True):

    # Receiving displacement
    [ud, tag] = comm.recv();
    if (tag == 0):
        break;
        
    # Solving local Dirichlet problem
    [u,r] = L.Resolution(L.ReprPython2Aster(C.Projection_Global_To_Local(ud)), tag);      
    
    # Extraction local reaction
    r_gamma = C.Projection_Local_To_Global(L.ReprAster2Python(r));    
    
    # Sending reaction
    comm.send(r_gamma);     
       
# Printing the results             
IMPR_RESU (FORMAT = 'MED',
           RESU = _F (RESULTAT = L.Post,
                      INST = 1.0,
                      NOM_CHAM_MED = 'local%d'%NUM_PATCH)); 
           
FIN ();








code/run.sh

#!/bin/bash

## This script is organised into two major steps:


## --> First, local models files are generated using 'local.export' and 'patch.comm' templates.
##     Linux 'sed' command allows to replace 'NUM_PATCH' by the actual patch number.

## Automatic generation of local '.comm' and '.export' files
nb_patch=2;
for num_patch in `seq 1 $nb_patch`    
    do 
       n="$num_patch";
       cp local.export local$n.export;
       sed -i s/NUM_PATCH/$n/g local$n.export;
       cp patch.comm patch$n.comm;
       sed -i s/NUM_PATCH/$n/g patch$n.comm;
done


## --> Then, computations are carried out.

## Computation with MPI communications
killall ompi-server; sleep 2.50;
ompi-server -r ./server.txt; sleep 2.50;
mpirun --ompi-server file:./server.txt python ./coupling_engine.py &
mpirun --ompi-server file:./server.txt /opt/aster/bin/as_run ./global.export &
for num_patch in `seq 1 $nb_patch`    
    do      
        mpirun --ompi-server file:./server.txt /opt/aster/bin/as_run ./local$num_patch.export &       
    done






code/structure.comm

#! /usr/bin/env python

DEBUT (PAR_LOT = 'NON');

import sys;
sys.path.append('PATH') # <-- Write down the absolute folder path here
import numpy as np
from mpi4py import MPI
from code_global import *
from optimisation import *


##########################################################'
#             Global model setting up                    #
##########################################################'

# Number of patches
nb_patchs = 2;

# Global model class instantiation
G = ModeleGlobal(nb_patchs); 

# Global problem initial resolution
u = G.Resolution();

# Optimisation class instantiation
Opt = Optimisation_Toolbox (G);
QN = QN_Toolbox (G);
Aitken = Aitken_Toolbox (G,u);


##########################################################'
# MPI initialisation with the coupling engine            #
##########################################################'

# Service look-up
service = "comm_global";
while True :
    try :
        comm_port = MPI.Lookup_name(service);
        break;
    except :
        time.sleep(1.0);

# Connection
comm = MPI.COMM_SELF.Connect(comm_port, MPI.INFO_NULL);

# Sending the global mesh to the coupling engine
comm.send(G.mailpy);
                   
                      
##########################################################'
#          Computations and MPI communcations            #
##########################################################'
err = [];
epsilon = 1.0e-10;

# tag = 1 --> elastic behaviour (local patch)
# tag = 2 --> elastic-plastic behaviour (local patch)
tag = 1; 
while (True):

    # Interface displacement extraction
    u_gamma = [None];     
    for i in range(1,nb_patchs+1):    
        u_gamma.append(G.ReprAster2Python(u,i));
        
    # Sending the interface displacement to the coupling engine
    comm.send([u_gamma,tag]);
    
    # Computes and extracts the interface reaction
    r_gamma = G.Calc_Reaction(u);
    r_gamma = [G.ReprAster2Python(r_gamma,0)]; 
        
    # Receves the local interface reaction
    rl = comm.recv();
   
    # Compute the reaction residual on the interface
    r_gamma.extend(rl);    
    r = G.Combiner_Effort(r_gamma);
    
    # Compute the relative error
    err.append(Opt.Norme(r)/Opt.ref);
    
    if (err[-1] < sqrt(epsilon)):
    #if (len(err) > 150):
        tag = 2;
        
    if (err[-1] < epsilon):
    #if (len(err) > 300):
        tag = 0;
        comm.send([None,tag]);
        break;

    ## Choose between the three methods below
        
    # Standard algorithm
    du = Opt.Calcul_Delta_u (r);
    u = Opt.CombLineaire(u, 1.0, du, 1.0) 
    
    ## Accelerated algorithm (Quasi-Newton SR1)
    #u = QN.Calc_Update (u, r);
    
    ## Accelerated algorithm (Aitken's Delta Squared)
    #u = Aitken.Calc_Update (u, r);
    


# Printing the results
IMPR_RESU (FORMAT = 'MED',
           RESU = _F (RESULTAT = G.Post,
                      NOM_CHAM_MED = 'global')); 

fichier = open('PATH', 'w'); # <-- Write down the absolute folder path here
for i in range(len(err)):
    fichier.write(repr(err[i])+'\n');
fichier.close ();   
           
FIN ();








Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition 33

COUPLING

ENGINE

MPI

MPI

Fig. 24: Non-intrusive coupling: MPI communication between Code Aster and Python

References

1. Agence Nationale de la Recherche (2014) Icare project. URL http://www.

institut-clement-ader.org/icare/

2. Agouzal A, Thomas JM (1995) Une méthode d’éléments finis hybrides en
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73. Passieux JC, Gravouil A, Réthoré J, Baietto MC (2011) Direct estimation of generalized
stress intensity factors using a three-scale concurrent multigrid XFEM. International
Journal for Numerical Methods in Engineering 85(13):1648–1666
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