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Abstract This paper provides a detailed review of the global/local non-intrusive coupling

algorithm. Such method allows to alter a global finite element model, without actually mod-

ifying its corresponding numerical operator. We also look into improvement of the initial

algorithm (Quasi-Newton and dynamic relaxation), and provide comparison based on sev-

eral relevant test cases. Innovative examples and advanced applications of the non-intrusive

coupling algorithm are provided, granting a handy framework for both researchers and engi-

neers willing to make use of such process. Finally, a novel nonlinear domain decomposition

method is derived from the global/local non-intrusive coupling strategy, without the need to

use a parallel code or software. Such method being intended to large scale analysis, we show

its scalability. Jointly, an efficient high level Message Passing Interface coupling framework

is also proposed, granting an universal and flexible way for easy software coupling. A sam-

ple code is also given.

Keywords Finite Element Method · Multi-scale · Coupling Algorithms · Non-intrusive ·
Message Passing Interface · Domain Decomposition

1 Introduction

Simulation in solid mechanics suffers from an intrinsic issue: physical phenomena are com-

plex and heterogeneous, which makes the use of accurate numerical models uneasy. Indeed,

simulations are closely bound to computing resources (both hardware and software), which

prevents systematic use of complex, accurate numerical models.

Hopefully, most of time simplest models (i.e. computationally cheap) are good enough at a
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global scale, and one can rely on specific models (i.e. complex and computationally expen-

sive) only on small areas, at a local scale.

Such assumption allowed the emergence of a wide variety of numerical methods dedicated

to multi-scale and/or multi-model computing. For simplicity of the presentation, we will di-

vide them into two main classes of numerical method: finite element model enrichment and

finite element model coupling.

First, one can cite enrichment methods based on the Partition of Unity Method [66]: the Gen-

eralised Finite Element Method [81, 27, 53] and the eXtended Finite Element Method [67]

being the most famous ones. Their principle is to enrich the finite element functional space

with specific functions, which can result from asymptotic expansion [16] or pre-computed

local finite element problem solution [18, 19] for instance.

Then, enrichment methods are based on micro-macro models. Their objective is to compute

a solution u as a combination of a macro scale solution uM and a micro scale correction

um, so that u = uM + um. Then the micro scale solution acts as a correction of the macro

scale solution, while ensuring unknowns (displacements, forces, stress, strain) equality at

the interface between the macro and the micro scale [59, 40]. There exists a wide range

of micro-macro methods. The micro model can either be solved analytically as done in the

Variational MultiScale method [47], or using the finite element method as well as done by

the Strong Coupling Method [48]. When dealing with highly heterogeneous models, the

whole macro domain can even be entirely mapped with micro models, as done is the Hi-

erarchical Dirichlet Projection Method [87, 70]. In some cases, micro-macro principle is

applied to the finite element solver itself, providing efficient multi-grid numerical methods

[78, 73, 36].

Finally, one can also cite structural zooming [25] and finite element patches [76, 77, 55]. The

principle of structural zooming is to use a computed global solution as boundary condition

for a local refined problem; this method is widespread in structural engineering. Besides, the

finite element patches method relies on an iterative process in order to take into account the

effect of the local model on the global solution. The main interest of such methods is their

ability to compute local corrections in a flexible way, i.e. make the local patch definition

independent from the global model characteristic.

Following the same idea, structural reanalysis [46, 3] intends to compute a posteriori a local

correction from a given global solution. In that case, not only the solution is to be corrected,

but the global model itself.

Despite all these efforts, it may appear that model enrichment cannot be practically used.

Indeed, in an industrial context, most of time one has to rely on existing commercial soft-

ware which may have been developed and certified for a specific purpose. Though, it is not

always easy or even possible to use a given software in order to achieve multi-scale, het-

erogeneous computation. Moreover, supercomputers recent developments allow to run very

ambitious simulations thanks to parallel computations. Thus, instead of embedding all the

needing specificities into a unique finite element model, the present-day trend is to rely on

model coupling.

Most common coupling methods are based upon iterative sub-structuring algorithms [15,

64], possibly combined with static condensation [35, 85, 86], and Schwarz algorithms [32,

37, 60].

As for the models and/or domains connexions, a wide range of numerical methods are avail-

able in the literature. Among them, there is the Mortar method [12, 8, 13] which is based

upon weak equality enforcing at the interface through Lagrange multipliers or the Nitsche
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method [42, 7, 43, 31, 65, 68]. Besides, energy averaging method, namely the Arlequin

method [10, 11, 9] brought a flexible tool for coupling models.

Nevertheless all the above cited methods require quite deep adaptation or modification of

finite element solvers and software, which is not always doable in an industrial context.

More recently, a new class of method is emerging: the non-intrusive coupling. It allows to

locally modify an existing finite element model, without actually altering its corresponding

numerical operator [82, 34].

Thus, a main consequence of non-intrusiveness is the possibility to easily merge commercial

software and research codes, as no modification of the software will be required. In addi-

tion, such algorithm will easily fit the standard input/output specifications of most industrial

software.

Actually, the non-intrusive global/local coupling strategy is currently under investigation

through several applications.

One can cite crack propagation [74, 41]. In that case, a two-level non-intrusive coupling is

proposed, either within a multi-grid or a GFEM framework: a first global model is used in

order to represent the global structure behaviour, a second local model takes into account

the crack.

Then, non-intrusive coupling is also investigated within a stochastic framework [21]. The

objective is here to take into account local uncertainties into a global problem with deter-

ministic operator, using a non-intrusive strategy. The main property of such coupling is its

ability to represent the stochastic effect of the local uncertainties at the global scale without

altering the initial global deterministic operator.

One can finally cite 2D/3D coupling [39]. The strategy developed here aims at coupling a

global plate model with local 3D models on localised zones where plate modelling is inad-

equate.

All in all, such flexible method can be applied to a very wide variety of static mechani-

cal analysis, including quasi-static crack propagation, plasticity, contact, composite failure

[24],... , and even transient dynamics problems [14, 20].

In this paper, we propose to analyse the effectiveness of this algorithm through various

applications (crack, plasticity, contact), and a comparative analysis of some existing accel-

eration methods in the literature.

It is also proposed to extend the method to the case of multiple patches. We also show that

this type of method can be used to locally redefine the geometry and boundary conditions.

In fact, model coupling is also widely used for domain decomposition. Among them one

can cite the well-known Finite Element Tearing and Interconnecting method [28], the Bal-

anced Domain Decomposition method [62] and the LArge Time INcremental method [58]

which are the most used in structural engineering.

In that context, nonlinear localisation algorithms have also recently been proposed [23, 75,

6, 5]. The objective of nonlinear localisation algorithm is to bring an efficient way to apply

domain decomposition method to nonlinear problem through the general Newton-Krylov-

Schur solvers class.

We then propose a new algorithm for nonlinear domain decomposition based on the con-

cept of non-intrusive coupling.

All the examples illustrated in this paper have been computed using Code Aster, an open

source software package for numerical simulation in structural mechanics developed by the
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French company EDF [88] for industrial applications. The complete code used to run one of

the given examples is also provided as appendix.

2 Non-intrusive coupling: a state of the art

2.1 Mechanical problem

Let us consider an elastic body represented by a geometrical domain Ω . Displacement uD

is prescribed on the Dirichlet boundary ΓD, surface force fN is applied on the Neumann

boundary ΓN and body force fΩ is applied on Ω . Then we seek to solve the following

mechanical problem:

(P) : min
u∈U

J(u) (1)

For the sake of simplicity, we consider here a linear elastic model (C being the corresponding

Hooke tensor and ε being the infinitesimal strain tensor). We then give the definition of

the affine space U (we will also make use of its corresponding vector space U 0) and the

potential function J.

U = {u ∈ H1(Ω), u|ΓD
= uD} (2)

U
0 = {u ∈ H1(Ω), u|ΓD

= 0} (3)

J(u) =
1

2

∫

Ω
Cε(u(x)) : ε(u(x))dx−

∫

ΓN

fN(x) ·u(x)dx−
∫

Ω
fΩ (x) ·u(x)dx (4)

In the context of the finite element method, we will make use of the equivalent variational

formulation

u ∈ U , ∀v ∈ U
0, a(u,v) = l(v) (5)

with the following definition of the bilinear and linear forms a and l:

a(u,v) =
∫

Ω
Cε(u(x)) : ε(v(x))dx (6)

l(v) =
∫

ΓN

fN(x) · v(x)dx+
∫

Ω
fΩ (x) · v(x)dx (7)

When using the finite element method to solve such a problem, a mesh will be set up, a

stiffness matrix and a right hand side vector will be assembled, and finally a linear system

will be solved. Now, let us consider that a local detail is missing from the modelling (crack,

hole,...). One cannot easily use the initial homogeneous model defined above, as it would

require to adapt it. When the detail location is not known a priori, such model adaptation

can be very intrusive and computationally expensive.

Then a possible way to deal with heterogeneous models is to use domain decomposition

based model coupling, each domain being represented with its own ad hoc model. With-

out loss of generality, we will take here the example of a cracked domain (see Fig. 1). The

domain is then divided into a global part ΩG and a local part ΩL, thus those two non-

overlapping sub-domains share a common interface Γ . The Dirichlet and Neumann bound-

aries are also partitioned as following:

• ΓD,G = ΓD ∩∂ΩG and ΓD,L = ΓD ∩∂ΩL

• ΓN,G = ΓN ∩∂ΩG and ΓN,L = ΓN ∩∂ΩL
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Fig. 1: Situation overview: global/local mechanical problem

We then need to define new functional spaces in order to give an adapted formulation to the

global/local problem, UG and UL (and their corresponding vector spaces U 0
G and U 0

L ).

UG = {u ∈ H1(ΩG), u|ΓD,G
= uD} (8)

UL = {u ∈ H1(ΩL), u|ΓD,L = uD} (9)

We also consider Uψ ⊂ L2(Γ ) the Lagrange multipliers functional space.

Displacement and efforts continuity will be imposed in a weak sense via a mortar method

at the interface [12, 8, 13, 33]. We then get the following dual formulation for the domain

decomposition problem:

uG ∈ UG, uL ∈ UL, ψ ∈ Uψ (10)

∀vG ∈ U
0

G , aG(uG,vG)+b(ψ,vG) = lG(vG)

∀vL ∈ U
0

L , aL(uL,vL)−b(ψ,vL) = lL(vL)

∀ϑ ∈ Uψ , b(ϑ ,uG −uL) = 0

where the definitions of the bilinear forms aG, aL and b are given below.

aG(u,v) =
∫

ΩG

Cε(u(x)) : ε(v(x))dx (11)

aL(u,v) =
∫

ΩL

Cε(u(x)) : ε(v(x))dx (12)

lG(v) =
∫

ΓN,G

fN(x) · v(x)dx+
∫

ΩG

fΩ (x) · v(x)dx (13)

lL(v) =
∫

ΓN,L

fN(x) · v(x)dx+
∫

ΩL

fΩ (x) · v(x)dx (14)

b(ϑ ,u) =
∫

Γ
ϑ(x) ·u(x)dx (15)

According to our example (the locally cracked body), one can use a standard Finite Element

Method (FEM) on the global part, and an eXtended Finite Element Method (XFEM, [67])

on the local cracked part (another solution would be to rely on an analytical model for the

local part , [80]), as it is done in [86, 85]. Let us define ϕG, ϕL and ϕψ the basis functions
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of the finite element spaces corresponding to the discretization of UG, UL and Uψ . We will

give more details on the discretization of the Lagrangian dual space further, still it may be

noted that the mortar coupling used here allows non-conforming meshes at the interface Γ .

Let us also consider the triangulations TG and TL of ΩG and ΩL respectively, and TΓ ,G

and TΓ ,L their restriction on Γ . We will denote nG the number of degrees of freedom of TG

and nΓ ,G the number of degrees of freedom of TΓ ,G. Then nL and nΓ ,L will follow the same

definition on the local domain. Finally, TΓ ,ψ will stands for the Lagrangian multipliers mesh

on the interface Γ , with nΓ ,ψ its number of degrees of freedom.

Then we can define the finite element matrices (stiffness matrices, coupling matrices and

right-hand side vector):

– the stiffness matrices KG (nG ×nG matrix) and KL (nL ×nL matrix)

(KG)i j =
∫

ΩG

Cε(ϕ i
G(x)) : ε(ϕ j

G(x))dx (16)

(KL)i j =
∫

ΩL

Cε(ϕ i
L(x)) : ε(ϕ j

L(x))dx (17)

– the right-hand side load vectors FG (vector of size nG) and FL (vector of size nL)

(FG) j =
∫

ΓN,G

fN(x) ·ϕ
j

G(x)dx+
∫

ΩG

fΩ (x) ·ϕ j
G(x)dx (18)

(FL) j =
∫

ΓN,L

fN(x) ·ϕ
j

L(x)dx+
∫

ΩL

fΩ (x) ·ϕ j
L(x)dx (19)

– the coupling matrices CG (nΓ ,ψ ×nΓ ,G matrix) and CL (nΓ ,ψ ×nΓ ,L matrix)

(CG)i j =
∫

Γ
ϕ i

ψ ·ϕ j
Gdx (20)

(CL)i j =
∫

Γ
ϕ i

ψ ·ϕ j
Ldx (21)

If one had to use a monolithic solver when computing the solution of Eq. (10), the resulting

finite element linear system would be the following:




KG 0 C
⊤

G

0 KL −C
⊤

L

CG −CL 0







UG

UL

Ψ


=




FG

FL

0


 (22)

Remark: In order to simplify notations, we decided to not explicitly use restriction and pro-

longation operators. Instead, we will denote the restriction operation with ·|, and the prolon-

gation operation with · each time it is needed. Such restriction and prolongation operators

are merely boolean-matrix based operators which cast a shape-given object into an other one

by gathering selected values or by supplementing it with zeros.

For instance, we define here CG the prolongation of CG from TΓ ,ψ ×TΓ ,G to TΓ ,ψ ×TG.

Then CG stands for a matrix of shape nΓ ,ψ × nG, all the remaining coefficients being filled

with zeros. The same procedure defines CL, the prolongation of CL from TΓ ,ψ ×TΓ ,L to

TΓ ,ψ ×TL.

Remark: It is not an easy task to set up a ”good” basis of Uψ when discretizing the La-

grange multipliers [83, 84]. If the basis is bad-chosen (i.e. the inf-sup conditions are not
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fulfilled), the mortar operator can lead to undesirable energy-free oscillations of the dis-

placement fields. For the sake of ease, we chose in this paper to use the local finite element

basis on the interface for the Lagrange multiplier as well (i.e. TΓ ,ψ = TΓ ,L and ϕψ = ϕL on

Γ ). The main consequence of such a choice is that matrix CL is a square invertible matrix:

we will not have to rely on least squares methods (i.e. generalised inverse matrix) when per-

forming the interface projections. We never encountered instabilities in all the test cases we

set up using that Lagrange multipliers basis.

Of course, the idea behind such a domain decomposition is to dissociate ΩG and ΩL when

solving the problem. A solution is to set up an asymmetric global/local algorithm, i.e. solv-

ing alternately Dirichlet and Neumann problems on the local and global models until con-

vergence.

To that end, let us define interface projection like operator P and P
⊤

from the global to the

local model and from the local to the global model respectively, so that P = C−1
L CG and

P
⊤
=C

⊤

GC
−⊤

L ).

We will also denote ΛG = (KGUG −FG)|Γ and ΛL = (KLUL −FL)|Γ the global and local

reaction forces at the interface Γ .

Algorithm 1: Global/local domain decomposition – Fixed point solver

Data: ε , Λ 0
L

k = 0

while η > ε do
Global problem computation (Neumann problem)

KGUk+1
G = FG −P

⊤
Λ k

L

Local problem computation (Dirichlet problem)[
KL −C

⊤

L

−CL 0

][
Uk+1

L

Ψ k+1

]
=

[
FL

−CLP Uk+1
G

∣∣
Γ

]

Convergence test

η = ‖Λ k+1
G +P

⊤
Λ k+1

L ‖/
√
‖FG‖2 +‖FL‖2

k = k+1
end

Result: Uk
G, Uk

L

The convergence test used here relies on the reaction equilibrium between the two domains.

Global/local model coupling is a powerful tool to handle heterogeneity at a local scale when

performing structural analysis. Nevertheless, it implies to set up the two models each time

one wants to run a computation. For instance, in our example, if the crack grows, the mesh

partitioning will not stand right for long; then one needs to adapt both global and local

models, which can be very time consuming (in terms of human and computer resources).

Still, there exists a way to keep a global model unchanged when performing a global/local

computation: the non-intrusive coupling [82].
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2.2 Global/local non-intrusive coupling method

The principle of non-intrusive coupling is to rely on an existing global model on Ω =
ΩG ∪Ω

G̃
(see Fig. 2), its triangulation T , and its corresponding stiffness matrix K (a n×n

matrix).

From now on, we denote T
G̃

the triangulation of Ω
G̃

and the corresponding stiffness ma-

Fig. 2: Situation overview: non-intrusive global/local problem

trix K
G̃

(a n
G̃
× n

G̃
matrix). As T

G̃
is a part of T (i.e. T = TG ∪T

G̃
), we naturally have

TΓ ,G = T
Γ ,G̃.

Then the objective is to replace the global model on Ω
G̃

by the local one on ΩL without ac-

tually modifying the global finite element operator K on Ω . From a practical point of view,

we define U the fictitious prolongation of UG to the full domain Ω , so that U |ΩG
=UG and

U |Ω
G̃
=U

G̃
(i.e. U

G̃
is the prolonged part of the global solution U).

In our example, such a prolonged model will stand to a standard FEM model, the crack be-

ing absent from the prolongation.

We define F = FG +F
G̃

the load vector defined on Ω . Then, applying the Chasles relation

on Eq. (11) in the discrete form gives us the following equality which will be used to adapt

Alg. 1.

KU = KGU +K
G̃

U (23)

Using this equality at the global computation step gives us the expression of the equation

standing for the global model at each iteration k, with Λ
G̃
= (K

G̃
U

G̃
−F

G̃
)
∣∣
Γ

.

KUk+1 = F −P
⊤

Λ k
L +Λ k

G̃
(24)

The global/local coupling algorithm can then be given in its non-intrusive form.
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Algorithm 2: Global/local domain decomposition – Non-intrusive fixed point solver

Data: ε , Λ 0
L , Λ 0

G̃
k = 0

while η > ε do
Global problem computation

KUk+1 = F −P
⊤

Λ k
L +Λ k

G̃
Local problem computation[

KL −C
⊤

L

−CL 0

][
Uk+1

L

Ψ k+1

]
=

[
FL

−CLP Uk+1
∣∣
Γ

]

Convergence test

η = ‖Λ k+1
G +P

⊤
Λ k+1

L ‖/
√
‖FG‖2 +‖FL‖2

k = k+1
end

Result: Uk, Uk
L

It must be noted that, thanks to the prolongation of the global model (i.e. the non-intrusiveness

of the coupling), the stiffness matrix K will be assembled and factorised only once. In our

example, even if the crack grows, the global model will stand unmodified. The coupling

will only involve displacements and forces exchange at the interface Γ (see Fig. 3). It may

Fig. 3: Situation overview: non-intrusive coupling

also be noted that the fictitious prolongation of the global solution U on Ω
G̃

has no physical

meaning, and that its value depends on the initialisation (i.e. the values of Λ 0
L and Λ 0

G̃
). Nev-

ertheless, as such fictitious solution has to be replaced by the one obtained from the local

model, that is of no consequence.

There are several advantages arising from non-intrusive coupling:

– the global mesh on Ω is always left unchanged (so is the global stiffness matrix K),

which is convenient when the objective is to investigate local details on large scale struc-

tures (i.e. involving a large number of degrees of freedom)
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– when dealing with local nonlinear details (we will present applications involving non-

linear local behaviour further), one can use a linear (i.e. fast) solver for the global model

and use a nonlinear solver only for the local part

– the local model acts as a correction applied to the global model on the right-hand side,

so that different research codes or commercial software can be easily merged in a non-

intrusive way.

2.3 Incremental formulation – Additive global correction

The main drawback of Alg. 2 is its low convergence speed. In fact, the convergence speed

depends of the stiffness gap between ΩL and Ω
G̃

: the more the gap is important, the more

the convergence is slow. Such phenomenon is not shown to be significant for local plasticity

problem [34, 61]. In our example, we shall see that it can be a severe disadvantage when the

crack grows: the stiffness gap increases as the crack spreads since the global model does not

include any representation of the crack. Then, acceleration techniques will be used in order

to improve the convergence speed of the algorithm.

We propose in that section an incremental formulation of the non-intrusive global/local al-

gorithm as a prerequisite for the acceleration technique setting up.

First of all, let us remark the following equilibrium equation of the global model at iter-

ation k:

KUk = F +Λ k
G +Λ k

G̃
(25)

It is possible to reformulate Alg. 2 into a Newton-like algorithm (i.e. in an incremental

formulation) by adding a −KUk term both on the left and right side of the global domain

equation at iteration k.

K
(

Uk+1 −Uk
)
= F −P

⊤
Λ k

L +Λ k

G̃
−KUk (26)

Indeed, making use of Eq. (25) into Eq. (26), one can give the following formulation:

Uk+1 =Uk −K−1 f (Uk) (27)

where f is the finite element operator computing the forces equilibrium residual between

ΩG and ΩL given the global displacement Uk at iteration k.

f (Uk) = Λ k
G +P

⊤
Λ k

L (28)

One can remark that Eq. (27) looks very much like a modified Newton method prescribed

on f = 0 (we look for the solution which verify the interface forces equilibrium). In fact, let

us show now that K ≈ ∇ f .

Let us define SL and S
G̃

the primal Schur complements (Dirichlet problem with prescribed

displacement on Γ ) corresponding to the local model KL and to the fictitious global model

K
G̃

respectively [38]. Then we get the following condensed equilibrium equations on the

interface Γ :

ΛL = SLP U |Γ (29)

Λ
G̃
= S

G̃
U |Γ (30)



Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition 11

We then introduce Λ
G̃

in Eq. (28) so that it can be rewritten in the following way:

f (Uk) = Λ k
G +P

⊤
Λ k

L +Λ k

G̃
−Λ k

G̃
(31)

Still, from Eq. (25) we have Λ k
G +Λ k

G̃
= KUk −F . We finally get the exact formulation of

the interface residual function f .

f (Uk) = KUk −F +(P
⊤

SLP−S
G̃
)Uk (32)

We can then give the expression for ∇ f :

∇ f = K +(P
⊤

SLP−S
G̃
) (33)

It can be seen that K is a good approximation of ∇ f as soon as the condensed stiffness

between the local and the global models at the interface are close.

‖∇ f −K‖= ‖P
⊤

SLP−S
G̃
‖ (34)

In practice (e.g. local cracked domain, see Fig. 3), the previous hypothesis does not stand for

true any longer: in that case, matrix K is a bad approximation of the true gradient ∇ f . Thus,

the modified Newton scheme (27), when used as such, would lead to tremendous iterations

number when the crack grows.

In fact, as soon as ΩL is stiffer than Ω
G̃

, the algorithm becomes divergent [21].

2.4 Convergence properties – Relaxation

In our case Eq. (27) is fully equivalent to the fixed point equation prescribed on g(U) = U

with the following definition of g.

g(U) =U −K−1 f (U) (35)

Then, using relaxation (with a well-chosen constant parameter ω) enforces stability of the

numerical scheme, ensuring convergence of the algorithm even if ΩL is stiffer than Ω
G̃

. In

the present situation, relaxation will consist in a two-step computation at iteration k. First a

predicted value Ūk+1 is computed from the previous solution Uk, then this value is corrected

using a relaxation parameter ω .

Ūk+1 = g(Uk) (36)

Uk+1 = ωŪk+1 +(1−ω)Uk (37)

The optimal relaxation parameter ω can be computed upon the knowledge of the eigenvalues

of the iteration operator [21], or using a power-type method during the first global/local

iterations in order to get an cheaper approximation.

Still, computing a good relaxation parameter remains computationally very expensive.
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2.5 Dynamic relaxation: Aitken’s Delta Squared acceleration

Then a possibility is to rely on dynamic relaxation, i.e. computing a new parameter ωk for

each iteration, assuming that we can provide an easy and cheap way for the computation of

ωk.

Ūk+1 = g(Uk) (38)

Uk+1 = ωkŪ
k+1 +(1−ωk)U

k (39)

In this paper, we investigate dynamic relaxtion based upon the Aitken’s Delta Squared for-

mula [49, 54, 61], also used in Fluid-Structure Interaction (FSI).

Let us define the predicted displacement increment δ such as δk+1 = (Ūk+1 −Uk)|Γ . Then

the relaxation parameter ω is dynamically updated following the recursive formula below.

ωk+1 =−ωk

δ
⊤

k+1 (δk+2 −δk+1)

‖δk+2 −δk+1‖2
(40)

No relaxation is applied to the first two iterations (U0 = Ū0 and U1 = Ū1) and the relaxation

parameter initial value is set to ω0 = 1.

The Aitken’s Delta Squared method involves very few computing overhead, as it only in-

volve displacement value at the interface obtained from the two previous iterations. More-

over, such method will be shown to improve the convergence speed of the initial algorithm.

2.6 Quasi-Newton acceleration

An other possible way to speed up the convergence is to rely on Quasi-Newton methods

to update matrix K. The Symmetric Rank One (SR1) update is an easy-to-implement and

efficient way to build a sequence of matrices Kk convergent toward ∇ f , assuming K0 = K

when initialising the algorithm [22, 51, 50, 69, 34, 52].

Let us define dk =Uk+1 −Uk and yk = f (Uk+1)− f (Uk). At iteration k, we seek to update

Kk into Kk+1 with the SR1 formula, i.e. with a rank-one symmetric update, while verifying

the secant equation for each iteration k > 1:

Kk+1 = Kk +ρvv
⊤

(41)

Kk+1dk = yk (42)

In Eq. (41), v is a vector with the same shape than U and ρ =±1. Then, making use of Eq.

(41) into Eq. (42) gives us the following relation:

yk −Kkdk = ρvv
⊤

dk (43)

As it can be seen in Eq. (43), yk −Kkdk and v are collinear (ρv
⊤

dk being a scalar), thus there

exists a real α such as v get the following expression:

v = α(yk −Kkdk) (44)

Then, again from Eq. (43), we have d
⊤

k (yk −Kkdk) = ρd
⊤

k vv
⊤

dk which leaves us with

ρ = sgn{d
⊤

k (yk −Kkdk)} (45)
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as vv
⊤

is a positive-semidefinite matrix. Finally, the value of α arises using Eq. (44) into Eq.

(43).

α2 =
1∣∣∣d⊤

k (yk −Kkdk)
∣∣∣

(46)

All in all, one can retrieve the well-known SR1 update formula:

Kk+1 = Kk +
(yk −Kkdk)(yk −Kkdk)

⊤

d
⊤

k (yk −Kkdk)
(47)

Note that in the context of the SR1 update, Eq.(27) rewrites Kkdk = − fk, so that Eq. (47)

can be given in a simplified form (where fk = f (Uk)):

Kk+1 = Kk +
fk+1 f

⊤

k+1

d
⊤

k fk+1

(48)

Finally, thanks to the SR1 formula, we get a simple expression of the tangent matrix update

for each iteration k. Nevertheless, one has to keep in mind the non-intrusiveness constraint

of the coupling algorithm, i.e. do not modify the global stiffness matrix K. This can be

achieved using the Sherman-Morrison formula on Eq. (48), leaving us with the following

relation which can be used in order to compute K−1
k f in a iterative manner based upon the

knowledge of K−1
0 f .

K−1
k+1 = K−1

k −K−1
k fk+1

f
⊤

k+1K−1
k

f
⊤

k+1(dk +K−1
k fk+1)

(49)

We give here the algorithmic version of such iterative relation [34].

Algorithm 3: Non-intrusive global correction

Data: fk

i = 0

Compute K−1
0 fk

while i < k do

K−1
i+1 fk = K−1

i fk −K−1
i fi+1

f
⊤
i+1K−1

i fk

f
⊤
i+1(di+K−1

i fi+1)

i = i+1
end

dk =−K−1
k fk

Result: dk

At iteration k, we suppose that {( fi)i<k}, {(di)i<k},{(K−1
i fi+1)i<k−1} have been stored from

the previous iterations. The overhead involved by the non-intrusive SR1 formula remains

very low compared to the acceleration provided in terms of convergence speed. Indeed, it

can be seen in Alg. 3 that, at iteration k, the global solver is called only once when computing

K−1
0 fk; then the value of K−1

k fk is computed recursively and requires only scalar products

on the interface Γ .
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2.7 Non-intrusive coupling illustration: crack growth simulation

Actually, crack propagation is the most obvious example of local detail whose effects on the

global structure are the most visible (structure failure in the worst case).

In this section, we give a simple example to illustrate the non-intrusive global/local coupling

algorithm and its properties.

We consider here a rectangular two-dimensional domain (200× 80 mm). The material law

is linear elastic in plane strain conditions (E = 200 GPa and ν = 0.3) and the global loading

is represented by a uniform pressure of magnitude 10 MPa as depicted in Fig. 2. The initial

crack is defined by a vertical notch extending from the crack tip position (xct =−50 mm and

yct = 35 mm from the center of the plate).

We investigated quasi-static crack growth simulation using the non-intrusive coupling method

presented in the previous sections. We computed fourteen quasi-static propagation steps, us-

ing a constant growth increment ∆ = 3.75 mm (this value is linked to the patch mesh size

at crack tip, hct , such as ∆ = 8hct ). For each step, the crack bifurcation angle is determined

using the maximal hoop stress criterion.

We give in Fig. 4 an illustration of the displacement field (modulus) from the last prop-

(a) Global FEM solution (b) Local XFEM solution

(c) Composite solution

U (mmmmmm)

3.31803.3180

6.63616.6361

9.95419.9541

13.27213.272

0

x10

Fig. 4: Non-intrusive crack growth simulation

agation step. As one may notice, the initial mesh on Ω (see Fig. 4a) is unaffected by the

crack spreading, while the global solution is. Global and local meshes are not bound to be

coinciding at the interface, allowing for a flexible local mesh refinement.

We applied both Quasi-Newton SR1 and Aitken’s Delta Squared acceleration techniques to

the non-intrusive coupling algorithm with relative tolerance ε = 10−10 for each crack prop-



Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition 15

agation step.

The main properties of the coupling algorithm and the acceleration techniques can be pulled

out from Fig. 5. The first graph gives the link between the crack length and the number of

iterations needed to reach the equilibrium, and the second one represents the residual evolu-

tion over the algorithm iterations (for the last crack propagation step).

Two main observations can be underlined. First, it can be observed in Fig. 5a that, using no

acceleration, the number of iterations required to reach the chosen tolerance ε is strongly

dependant of the crack length (i.e. the stiffness gap between the local XFEM model and the

global FEM model, as shown in Eq. (34)). The Quasi-Newton acceleration allows to nearly

get rid of such problem as the tangent stiffness of the FEM model is updated through the

SR1 procedure, in a non-intrusive way.

When focusing on a specific crack propagation step (here the final one, see Fig. 5b), the

different acceleration techniques show quite heterogeneous results. First, the number of it-

erations required to reach the given precision when no acceleration is used is clearly not

affordable compared to the other results. In the context of crack propagation, the Aitken’s

Delta Squared method proves to be less efficient than the Quasi-Newton acceleration. In

the present case, the last propagation step took 3006 iterations without any acceleration to

converge, 389 with the Aitken’s accelerator and 18 using the Quasi-Newton update.

Note that as soon as the crack nearly divides the plate into two parts, one can no longer

reasonably speak of ”global/local” situation. Nevertheless, nothing prevents the coupling

scheme to be applied to such critical situation, which allows us to distinctly analyse the dif-

ferences between the two acceleration techniques.

2.8 Patch geometry: influence on the convergence speed

In the previous example, the patch is defined on the region of interest which needs to get

worked out with a specific local model (the crack). However, we never gave details about

how is defined the patch, and what is the influence of its spatial extend until now.

In fact, there is no constrain nor generic rule about the way to define the patch extend. In

the crack propagation case, we simply select a given number of stitch layers from the global

mesh around the crack location. Then those stitches are duplicated and saved as local mesh

(see Fig. 4a and 4b). Any refinement of the freshly generated local mesh is possible, partic-

ularly at crack tip.

Nevertheless, the patch extend is not without consequence on the algorithm convergence

properties. Indeed, as said previously, the convergence rate depends on the stiffness gap

between the local and the global model. Let us consider the bending plate case with a

static crack defined by a vertical ray extending from the crack tip position (xct = 0 mm

and yct = 10 mm from the center of the plate). We applied the non-intrusive coupling algo-

rithm considering several patch thicknesses (one to ten global stitches layers), as depicted on

Fig. 6. In the present example, the global model stands for a non-cracked plate whereas the

local model stands for the cracked one. According to the Saint-Venant principle, the crack

influence will decrease when getting far from the perturbation. Thus, the more the patch

extends far from the crack, the less the stiffness gap between the global and the local model

will be important, allowing for faster convergence (this is numerically illustrated on Fig 7).

Moreover such phenomenon can be observed both with standard and accelerated algorithms.

Nevertheless the Quasi-Newton update is the only one guaranteeing a reasonable number of

iterations which is almost independent from the patch thickness.
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(a) Crack spreading: dependence between crack length and convergence speed
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(b) Final crack propagation step: residual evolution

Fig. 5: Crack growth simulation: acceleration techniques comparison

Still one should keep in mind that the more the patch extends, the more it will be compu-

tationally expensive to work out as it will involve a larger number of degrees of freedom,

particularly in the nonlinear case. Meanwhile, the local patch should be large enough in

order to fully take into account the local behaviour (XFEM enrichment for instance). Then

engineer’s skills must prevail in order to determine the best choice of parameters in such

situations.
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(a) Global mesh (One stitch thick layer) (b) Local refined mesh

(c) Global mesh (Five stitches thick layer) (d) Local refined mesh

(e) Global mesh (Ten stitches thick layer) (f) Local refined mesh

Fig. 6: Patch definition and extend: global stitches selection

3 New advances based on the non-intrusive coupling

3.1 Parallel processing and multi-patch approach

In this part, we seek to extend the non-intrusive coupling method to the multi-patch situa-

tion. We give here detailed explanations about the way multi-patching is handled in specific

situations (e.g. two patches share a common interface), and we provide a MPI based parallel

processing method to increase the computational efficiency of the algorithm.

Let us consider a multi-perforated plate subjected to a uniform tension (see Fig. 8).

In order to set up the coupling algorithm, one has to define the following items:
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Fig. 7: Convergence speed: patch thickness influence

• The united local domain ΩL = ∪6
i=1ΩL,i

• The united global fictitious domain Ω
G̃
= ∪6

i=1Ω
G̃,i

• The patches boundary Γ = ∪6
i=1Γi with Γi = ∂Ω

G̃,i = ∂ΩL,i

• The global domain internal boundary ΓG = ∂ΩG \∂Ω = ∂Ω
G̃

so that ΓG ⊂ Γ

Note that as soon as all the local models do not share any common interface (e.g. if we added

a gap between the local domains), then ΓG = Γ .

Remark: In the previous application (crack propagation), we considered ΩL = Ω
G̃

(i.e. as

the crack was represented through the XFEM method, the geometrical domain remained

unaffected). In the present situation, we allow the local patches to redefine the geometry of

the pre-existing global model, so that ΩL 6= Ω
G̃

because of holes [21]. The only required

condition is that the interfaces remain coincident (from a geometrical point of view, non-

conforming meshes are still handled using the mortar method).

In the non-intrusive coupling context, we consider the global model on Ω = ΩG ∪Ω
G̃

as a

linear elastic material, the holes being absent from the global model on Ω
G̃

. The holes will

be represented only through the local models on (ΩL,i)i∈{1..6} and elastic-plastic constitutive

law will be applied.

From now on, we need to extend the projection operator P to each interface Γi, so that Pi =

C−1
L,i CG,i. We will also keep the definition of ΛG = (KGUG −FG)|ΓG

and Λ
G̃,i = (K

G̃,iUG̃,i −F
G̃,i)

∣∣∣
Γi

.

Nevertheless, as we consider elastic-plastic (i.e. nonlinear) behaviour on the local models,

the local reaction reads ΛL,i = ζ (UL,i,FL,i,Xi) where ζ is a nonlinear function computing the

reaction forces from the displacement UL,i, the right-hand side loading FL,i and the plastic

internal variables Xi.

Thus, the multi-patch non-intrusive coupling algorithm can be established, KL being the

nonlinear local solver.
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Fig. 8: Situation overview: multi-patch problem

Algorithm 4: Multi-patch coupling – Non-intrusive fixed point solver

Data: ε ,
(

Λ 0
L,i

)
i∈{1..6}

,
(

Λ 0

G̃,i

)

i∈{1..6}

k = 0

while η > ε do
Global problem computation

KUk+1 = F +∑
6
i=1

(
−P

⊤

i Λ k
L,i +Λ k

G̃,i

)

Local problems computations

Uk+1
L,i = KL,i

(
Pi Uk+1

∣∣
Γi
,FL,i,Xi

)
∀i ∈ {1..6}

Convergence test

η = ‖Λ k+1
G +∑

6
i=1

(
P

⊤

i Λ k+1
L,i

)
‖/
√

‖FG‖2 +∑
6
i=1 ‖FL,i‖2

k = k+1
end

Result: Uk,
(

Uk
L,i

)
i∈{1..6}

As it has been done in the previous section (mono-patch case), the problem can be rewritten

in an incremental version as Uk+1 =Uk −K−1 f (Uk). Thus the difference here is that f is a

nonlinear operator as soon as the local domains involve elastic-plastic behaviour.

f (Uk) = Λ k
G +

6

∑
i=1

(
P

⊤

i Λ k
L,i

)
(50)

For the example presented here, we keep the same rectangular domain than the one from the

previous example (cracked plate) and the same elastic properties for the global model. The

tensile load applied is of magnitude fN = 140 MPa.

The local models (with holes) are assigned with an elastic-plastic behaviour which elastic
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limit is Re = 250 MPa and tangent plastic modulus is ET = 40 GPa (we assume a linear

kinematic hardening law). The local elastic behaviour is also assumed to be the same than

the global one before plasticity occurs. It can be seen on Fig. 9 that plasticity occurs at the

(a) Global elastic solution

(b) Composite solution (global elastic and local plastic models)

σe (MPa)

21.286

85.274

149.26

213.26

277.24

Fig. 9: Non-intrusive multi-patch simulation (Von Mises equivalent stress)

holes edges in the local models. Thus, there is no need to extend the plastic area outside the

local patches, which makes global elastic model hypothesis lawful. However if the plasticity

was to go out of the local domain (i.e. the global Von Mises equivalent stress exceeds the

elastic limit), then convergence of the algorithm would not be endangered at all. Still, the

computed solution would be false, but such property allows to easily check whether or not

the patch extend is well chosen.

Also recall that the global prolonged solution on Ω
G̃

has no physical meaning and depends

only on the algorithm initialisation. The greater stress which can be observed on that area is

simply the result of the equilibrium between ΩG and Ω
G̃

with prescribed additional forces

on Γ .

Last but not least, at iteration i, each local model is independent from the others as it re-

quires only prescribed displacement from the global model. That means we can use parallel

processing when computing the local solutions. In our example we considered six local

patches, each one being processed by a different thread. One thread was dedicated to the

global linear model computing, one to the coupling operations (mainly computing the pro-
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jections at the interface) and six to the local models. One of the algorithm most attractive

properties here is the fact that only interface displacements and reactions are sent from one

thread to the others through MPI (Message Passing Interface) communications. The conse-

quence is the possibility to directly use it within commercial software.

Again, we compare here the Quasi-Newton and Aitken’s Delta Squared acceleration meth-
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Fig. 10: Multi-patch problem: residual evolution

ods (see Fig. 10). When using the standard method (without any acceleration), the algorithm

takes a few iterations to reach the fixed tolerance (ε = 10−10). Still, when dealing with non-

linear local models, reducing the number of iterations required at the lowest possible value

is wholesome. Both Quasi-Newton and Aitken’s Delta Squared accelerations allow to divide

by two the required number of iterations with comparable efficiency.

Let us recall that the Aitken formula is much easier to compute than the non-intrusive Sy-

metric Rank One formula. In such a low stiffness gap case, the Aitken’s Delta Squared

acceleration will provide quite similar convergence speed but will imply less computational

overhead than the Quasi-Newton acceleration. Plasticity is thus a typical example for which

Aitken’s acceleration could be preferred to Quasi-Newton.

Remark: One can notice that, in the present example, some patches share a common in-

terface: such choice is not trivial. Indeed, the algorithm is designed so that data exchange

never occurs between local models, but only between the global model and each local ones.

When using non-confirming meshes at the interface the global displacement is transferred

to the local mesh using a mortar projection. Thus, the global mesh (which is supposed to

be coarser than the local mesh) acts as a low-pass filter on the displacement field. It can be

seen from Fig. 9b that the global mesh is coarser than the local ones: filtering does occur at

the common boundary shared by ΩL,1, ΩL,2, ΩL,3 and ΩL,4, which would not be the case

if we used a single patch on ΩL,1 ∪ΩL,2 ∪ΩL,3 ∪ΩL,4 instead of four. If the global mesh

is too coarse or if the strain is too sharp near the interface, then the solution may not be
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mechanically relevant.

3.2 Local geometric changes, local loading and boundary conditions

In that section, we propose another new advance based upon the non-intrusive coupling

method which allows us to extend the method to a more generic application framework.

Indeed, in the previous examples, we always considered that the patches were included in

the global domain (i.e. ΩL ∈ Ω ), and that the loading (both Neumann and Dirichlet con-

ditions) was applied to the global domain ΩG. In fact, nothing prevent us to consider any

arbitrary local patches. In the present example (see Fig. 11), we consider a global model

whose boundary conditions are badly represented. Then, two patches are set up in order

to locally redefine both the geometrical domain Ω and the boundary conditions: the first

patch (on the left) redefines the global Dirichlet condition, whereas the second patch (on the

right) redefines the global Neumann condition. The most important property of such cou-

pling is the fact that the local model on ΩL literally substitutes the global model on Ω
G̃

, i.e.

the boundary conditions applied on the global domain will have absolutely no effect on the

composite solution when converged. Thus, the local patches are allowed to partially lay out-

side the global domain, and the boundary conditions applied to it will overcome the global

ones. As for previous examples, we consider the same rectangular domain and the same

Fig. 11: Situation overview: local loading and boundary conditions

elastic properties for the global model. The global tensile loading is of magnitude 80 MPa.
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The local models are assigned with the same plastic behaviour than from the previous ex-

ample (the multi-perforated plate). The local Dirichlet condition is applied through a zero

displacement condition at holes edges contained in ΩL,1, and the local Neumann condition

is applied with a uniform pressure on the right half-edge of the hole in ΩL,2. The force ap-

plied to the local model have the same resultant than the one applied to the global one. This

condition is not mandatory at all, but as the local model is here to redefine the rough global

boundary conditions, such choice is wholesome.

Moreover, it can be seen from Fig. 12 there is no restriction on the choice of elements (e.g.

(a) Global solution (Von Mises equivalent stress)

σe (MPa)

0.3962

98.653

196.91

295.17

393.42

(b) Composite solution (Von Mises equivalent stress)

Fig. 12: Non-intrusive local loading and boundary conditions

P1 / Q1), as we used a mortar gluing at the interface.

In that example, we deliberately forced the local domain ΩL,1 to be stiffer than the global

domain Ω
G̃,1 by embedding the three holes (see Fig. 11). The consequence of such a choice

is the non-convergence of the algorithm when the initial fixed point algorithm is used alone

(see Fig. 13).

Still, it is possible to enforce the stability of the algorithm using relaxation with a constant

parameter ω [21]. We used here ω = 0.115 which has been found empirically to be the

optimal relaxation parameter, but ω can also be optimised during the first iterations thanks

to a power-type method [21]. Still, it may be noted that Aitken’s dynamic relaxation pro-

vides a faster convergence. Nevertheless, it can be seen again that the Quasi-Newton SR1

update remains the best option when the local patches strongly affect the global mechanical

behaviour.
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Fig. 13: Local loading problem: residual evolution

Such non-intrusive geometric changes may remind the reader of the fictitious domain meth-

ods. Actually, one could use fictitious domain principle to take into account local geometric

changes in an even less intrusive way, i.e. allowing non-coincident interfaces [44, 4]. Indeed,

in the present paper, we stand to coincident interfaces, and consider only the mortar method

in order to compute the interface projection.

3.3 Local contact problem

The last example of non-intrusive coupling we give here is a three-dimensional contact

problem. Such nonlinear behaviour is commonly considered in structural analysis, mostly

when dealing with assemblies (e.g. bolted structures). Then, to dissociate the local contact

area from the global structure when computing such problems is of great interest for many

engineers.

In the present example (see Fig. 14) we consider an elastic body (200× 80× 20 mm, E =
40 MPa, ν = 0.45) as the global model. Then we want to investigate a contact condition

with a rigid spindle (E = 200 GPa, ν = 0.3, with radius r = 10 mm) at the center of the

body (the local model is constituted with the rigid spindle and a part of the elastic body).

Tensile loading is applied to the boundary of the plate with magnitude fN = 1 MPa, the

spindle ends being assigned with zero displacement. Actually, if one had to deal with bolted

structures, a local patch could be considered for each bolt (i.e. each contact area). Indeed,

solving a multi-contact problem in a monolithic way is not an easy task as convergence

properties of the nonlinear solvers are worsened by the increase of contact surfaces number.

Then, using non-intrusive coupling allows to dissociate each local contact problem, and is

expected to lead to an easier convergence of the nonlinear solvers. Here, Fig. 16 shows the

greater efficiency of the Quasi-Newton update against the Aitken’s acceleration. Note that,

in that case, we could not use the coupling algorithm in its standard formulation as it led
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Fig. 14: Situation overview: local contact problem

(a) Global solution (b) Local solution

(c) Composite solution
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Fig. 15: Non-intrusive local contact simulation

to very quick divergence, preventing the local nonlinear solver to convergence after the first

two global/local iterations.

3.4 Nonlinear local patches: caution

Special attention should be given to local nonlinear problems. Indeed, the local Dirichlet

problem is computed using global displacement as boundary condition, which is by defini-

tion far from the final solution during the firsts global/local iterations. In some cases, such
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Fig. 16: Local contact problem: residual evolution

imposed displacement appears to be too severe, preventing the local nonlinear solver to con-

verge, or at least worsening the convergence properties. Such situation mostly occurs when

the local patch redefine the geometry or the structure loading, e.g. we embed the holes in Fig.

11 or add a contact condition in Fig. 14. Then, a possible workaround is to use a local linear

model for the firsts global/local iterations (i.e. compute a predicted initial solution), before

switching to the desired nonlinear model. For instance, when dealing with local plasticity,

using a linear elastic law during the firsts global/local iterations allows to approximate the

actual solution at lower cost. Then, when switching to elasto-plastic law, a few more (that

will depend on the situation considered) global/local iterations will be required in order to

achieve the convergence. In the same way, when dealing with the local contact problem, one

can replace the contact condition by a mesh gluing during the first global/local iterations.

In a general manner, U0 = K−1F is a ”bad” starting point from which convergence of the

global/local iterative algorithm is not guaranteed when dealing with local nonlinear models.

Thus, computing a ”good” starting point U0 is essential. Note that in the above examples,

we used such linear initialisation only for the contact problem, while we did not need it for

all the others examples.

Of course, computing such predicted solution U0 is not always an easy task, and one cannot

hope such trick to be efficient for every encountered problem. Another workaround would be

to apply the global loading F in an incremental manner and apply the global/local iterative

algorithm for each load increment, though it would result in larger computation time.

4 A novel domain decomposition method based on non-intrusive coupling

In this section, an attempt is made to extend the concept of non-intrusive coupling to nonlin-

ear domain decomposition (DD). In fact, domain decomposition methods and global/local

methods share several similarities: they are both based upon multi-domain equilibrium prob-

lem, and both allow to connect non-conforming models.

Historically, domain decomposition relied on overlapping partition of the domain, such as

Schwarz methods [60, 32]. Non overlapping approaches were preferred for implementation
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issues, but also because they better correspond to mechanical assemblies. The principle of

dual domain decomposition (like Finite Element Tearing and Interconnecting, FETI [28]) is

to enforce interface reaction equilibrium, while seeking to reach displacement equality. On

the contrary, primal domain decomposition enforces displacement equality at the interface,

while converging toward reaction equilibrium throughout the iterative process. Mixed ap-

proaches (like Large Time Increment Method LATIN [56] or FETI-2LM [79]) gather both

primal and dual principle by enforcing a linear combination of displacement and effort at the

interface (i.e. Fourier-Robin condition). A hybrid method has also been developped which

unifies primal and dual approaches [38]. It allows the use of a primal method on a set of

degrees of freedom and a dual method on the remainder, which may be relevant for multi-

physic problems.

Initial methods [56, 28] suffered from several drawbacks among which bad scalability. Many

improvements have therefore been made to allow for analysing efficiently large number of

sub-domains. First, the primal approach, referred to as Balancing Domain Decomposition,

BDD [62], introduced a kind of coarse problem associated to the use of a dual precondi-

tionner. A coarse problem based on the rigid body modes of floating subdomains is also

introduced in FETI [29]. In a similar way, a macro problem is used in the mixed LATIN

method [59] to ensure the equilibrium of resultant moments and forces at interfaces. These

coarse problems provide better scalability properties to the domain decomposition methods.

Special treatments of subdomain corners, FETI-DP [30] and BDDC [26, 63] was shown

to improve even further the convergence and scalability properties over standard FETI and

BDD methods. Finally, in the case of time dependant problems, a space-time macro problem

can also been used to make space-time decomposition methods scalable [72].

nonlinear problems can also be solved by domain decomposition methods. Most often, the

DD solver is used to solve the linear predictions arising from a Newton-type algorithm. They

are known as Newton-Krylov-Shur methods (NKS). However, in the case of localised non-

linearities, this algorithm is not the most effective. nonlinear domain decomposition methods

with nonlinear localisation problems have been proposed [23, 75, 6, 5]. It was shown that

such approaches were more efficient in this case, since they focus the computational efforts

on the local nonlinearities which reduces the number of global iterations. This is also the ba-

sic idea of the LATIN method [56, 57, 72]. However, the main drawback of these methods

is that they have a high degree of intrusiveness. So far, they have been implemented only

in research codes adapted for academic test cases, but still engineers face difficulties to use

it on representative applications. Conversely, industrial partners would favour developments

within commercial (certified) software.

In the following, we propose to use the non-intrusive coupling as a scalable nonlinear do-

main decomposition method. The idea is to consider a mesh partition of the global structure,

and use each part as a local model, the global model being thus completely covered by local

patches. Then, the global/local non-intrusive coupling algorithm is used in the same way is

has been done in the previous example (see Fig. 17 and 18):

• a global linear (e.g. linear elasticity) computation is completed on the full structure, with

additional reactions forces at the interface

• local nonlinear (e.g. plasticity) computation is completed on each sub-domain, with pre-

scribed displacement on the interface.

Compared to classical domain decomposition methods, such method requires to compute a

linear problem on the full structure at each iteration in addition to the local nonlinear compu-

tation. Nevertheless, such overhead can be neglected beside the nonlinear computation cost.

Moreover, such linear computation could also be achieve using a domain-decomposition
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Fig. 17: Non-intrusive domain decomposition

based solver (e.g. using the same mesh partition), possibly with model reduction.

In addition to its non-intrusive character which makes it easy to use (even in a sequential

and black box software), such a method have the following advantages:

• The global linear problem plays the role of a physically relevant macro (or coarse) prob-

lem that was used in FETI-DP [30], BDD-C [26], and the multiscale LATIN method

[59]. As it will be shown in the examples below, such a coarse problem provide good

scalability properties.

• The independant local problems embed the nonlinearities like the nonlinear localisation

solvers do [23, 75]. This makes the algorithm efficient even in the case of localised

nonlinearities.

• When domain decomposition is used as a parallel solver, interfaces are most of time

mesh-conforming. Nevertheless, nothing prevent the use of non-conforming interfaces

[2, 71, 45, 17] especially when one is dealing with heterogeneous models. As shown

before, the above presented non-intrusive domain coupling solver is also ready for in-

compatible meshes at interface.

• The method can be seen as a dual domain decomposition based upon an asymmetric

Neumann-Dirichlet algorithm. Due to that Neumann-Dirichlet formulation, one is not

constrained by floating substructures.

As a purpose of illustration, we consider here the example of a planetary gear carrier (di-

ameter d = 155 mm). A torque is applied to the central axe (C = 50 kNm), and a zero

displacement condition is applied to the gear carrier sideboards (see Fig. 19). The mesh

(about 70,000 degrees of freedom) has been divided into twelve parts (see Fig. 20). We then

applied the non-intrusive coupling algorithm, i.e. solving alternately a linear elastic problem

on the full mesh, and an elastic-plastic problem on each of the twelve sub-domains. In that

case, the local meshes are just a part of the global mesh, so that no mortar method is needed

here (still we could easily handle a non-conforming situation). Fig. 21 shows the Von Mises

equivalent stress when converged. As usually, the same acceleration techniques can be ap-

plied in the present case, allowing for substantial iteration saving when using the iterative

algorithm (with relative tolerance ε = 10−10, see Fig. 22). As expected, both Quasi-Newton

and Aitken updates provide a significant acceleration of the algorithm with quite similar



Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition 29

COUPLING ENGINE

= CPU

= MPI

Fig. 18: Non-intrusive MPI communication

Fig. 19: Situation overview: planetary gear carrier

efficiency (the Quasi-Newton acceleration still proves to be the better method in terms of

iteration number reduction).

Let us now study the effect of the number of sub-domains. We thus did the same com-

putation considering several sub-domains numbers, from two to sixty. The most important
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Fig. 20: Planetary gear carrier: mesh partition (twelve sub-domains)
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Fig. 21: Planetary gear carrier: Von Mises equivalent stress

result about the application of the non-intrusive coupling to domain decomposition is illus-

trated by Fig. 23. Indeed as one can see, when using acceleration techniques, the number

of iterations required to reach a fixed tolerance nearly does not depend on the number of

sub-domains considered.

Actually, in standard methods, each sub-domain shares data only with its neighbours, which

makes the algorithm not directly scalable. Using non-intrusive coupling algorithm, each sub-

domain shares data with the global model only, allowing for instantaneous propagation of

the information (stress residual). The consequence is the scalability of the method.

5 Conclusion

We proposed in this paper a detailed review of the non-intrusive coupling algorithm. Such al-

gorithm allows for taking into account localised details into an existing finite element model,
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Fig. 22: Domain decomposition: residual evolution (twelve sub-domains)
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Fig. 23: Domain decomposition: scalability

without actually modifying its corresponding numerical operator. We also investigated two

existing improvements (Quasi-Newton update and Aitken dynamic relaxation), allowing for

better efficiency of the algorithm, while focusing on the relative benefits of both processes:

we showed the Quasi-Newton acceleration to be more efficient than the Aitken dynamic re-

laxation in all situations, while requiring slightly more computational overhead.

We also extended the coupling method and algorithm to various situations and advanced ap-

plications we consider useful in both research and engineering context: crack propagation,

multi-patching, boundary condition modification, geometric changes and contact. Addition-

ally to those extensions, we setted up a flexible and efficient implementation of the coupling,
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based upon the Message Passing Library (MPI) granting a universal way to use non-intrusive

coupling in a given software environment.

We finally proposed a novel domain decomposition method based upon the the non-intrusive

coupling algorithm, intended to large scale nonlinear analysis, and showed its scalability.

Such novel method has several advantages:

• the possibility to use sequential commercial software thanks to the non-intrusiveness

property of the algorithm,

• the use of a global model provides scalability of the algorithm and releases one from

taking care of floating sub-structures, moreover such global model is kept unmodified

whatever happens to the sub-structures and the interfaces,

• non-conforming meshes at the interface between two sub-structures are easily handled,

allowing for an easy and flexible design of the model,

• the algorithm provides a straightforward localisation of the nonlinearities, and thus al-

lows to reduce the overall number of iterations.

As a short term perspective, such domain decomposition method is expected to be highly

optimised in order to make it usable on very large models (millions of degrees of freedom).

Moreover, the non-intrusive coupling procedure remains under constant investigation in or-

der to improve its integration into common nonlinear Newton-Krylov-Schur (NKS) solvers.
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A Non-intrusive coupling program

Jointly to this paper, the complete code used to run example from §3.2 is also provided. It

can be downloaded from [1].

The overall code is organised as follow:

• the global model is computed by Code Aster using structure.comm, global.py and opti-

misation.py files,

• the local model is computed by Code Aster using patch.comm, global.py and optimisa-

tion.py

• the interface coupling is achieved by a Python script using coupling engine.py and cou-

pleur.py files,

• the finite element meshes have been saved into the mesh.med file,

• the Code Aster global and local programs configuration files are global.export and lo-

cal.export respectively (such files have to be adapted to the version of Code Aster used,

the one used here is STA11.4).

Each program (global, local and coupling engine) have to be launched separately (see file

run.sh) with the mpirun command as we use MPI communications between them for the

interface data exchange (see Fig 24). In fact, the MPI communication is based upon a

client–server model, so that there is no need for a parallel version of Code Aster. Paral-

lelism is thus ensured by the simultaneous run of several sequential instances.
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6. Barrière L, Marguet S, Castanié B, Cresta P, Passieux JC (2013) An adaptive model

reduction strategy for post-buckling analysis of stiffened structures. Thin-Walled Struc-

tures 73:81–93

http://www.institut-clement-ader.org/icare/
http://www.institut-clement-ader.org/icare/


34 M. Duval, J.C. Passieux, M. Salaün and S. Guinard

7. Becker R, Hansbo P, Stenberg R (2003) A finite element method for domain decompo-

sition with non-matching grids. ESAIM: Mathematical Modelling and Numerical Anal-

ysis 37(02):209–225

8. Belgacem FB (1999) The mortar finite element method with Lagrange multipliers. Nu-

merische Mathematik 84(2):173–197

9. Ben Dhia H, Jamond O (2010) On the use of XFEM within the Arlequin framework

for the simulation of crack propagation. Computer Methods in Applied Mechanics and

Engineering 199(21):1403–1414

10. Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design

tool. International Journal for Numerical Methods in Engineering 62(11):1442–1462

11. Ben Dhia H, Elkhodja N, Roux FX (2008) Multimodeling of multi-alterated structures

in the Arlequin framework: Solution with a Domain-Decomposition solver. European

Journal of Computational Mechanics 17(5–7):969–980

12. Bernardi C, Maday Y, Patera AT (1994) A new nonconforming approach to domain

decomposition: the Mortar element method. Nonlinear partial differential equations and
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74. Passieux JC, Réthoré J, Gravouil A, Baietto MC (2013) Local/global non-intrusive

crack propagation simulation using a multigrid XFEM solver. Computational Mechan-

ics 52(6):1381–1393

75. Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual domain decomposition method

: application to structural problems with damage. International Journal for Multiscale

Computational Engineering 6(3):251–262

76. Picasso M, Rappaz J, Rezzonico V (2008) Multiscale algorithm with patches of finite

elements. Communications in Numerical Methods in Engineering 24(6):477–491

77. Pironneau OP, Lozinski A (2011) Numerical Zoom for localized Multiscales. Numerical

Methods for Partial Differential Equations 27:197–207

78. Rannou J, Gravouil A, Baı̈etto-Dubourg MC (2009) A local multigrid XFEM strategy

for 3D crack propagation. International Journal for Numerical Methods in Engineering

77(4):581–600

79. Roux FX (2009) A FETI-2lm method for non-matching grids. In: Domain Decomposi-

tion Methods in Science and Engineering XVIII, no. 70 in Lecture Notes in Computa-

tional Science and Engineering, Springer Berlin Heidelberg, pp 121–128
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