Bruno Courcelle
email: courcell@labri.fr

Irène Durand
email: idurand@labri.fr

Fly-automata, model-checking and recognizability

Keywords: Model-checking, monadic second-order logic, tree-width, cliquewidth, fixed parameter tractable algorithm, automaton on terms, fly-automaton, recognizability

The Recognizability Theorem states that if a set of finite graphs is definable by a monadic second-order (MSO) sentence, then it is recognizable with respect to the graph algebra upon which the definition of clique-width is based. Recognizability is an algebraic notion, defined in terms of congruences that can also be formulated by means of finite automata on the terms that describe the considered graphs.

This theorem entails that the verification of MSO graph properties, or equivalently, the model-checking problem for MSO logic over finite binary relational structures, is fixed-parameter tractable (FPT) for the parameter consisting of the formula that expresses the property and the clique-width (or the tree-width) of the input graph or structure. The corresponding algorithms can be implemented by means of fly-automata whose transitions are computed on the fly and not tabulated.

We review two versions of recognizability, we present fly-automata by means of examples showing that they can also compute values attached to graphs. We show that fly-automata with infinite sets of states yield a simple proof of the strong version of the Recognizability Theorem. This proof has not been published previously.

Introduction

The Recognizability Theorem states that, if a set of finite graphs is definable by a monadic second-order (MSO) sentence, then it is recognizable with respect to the graph algebra upon which the definition of clique-width is based. It states a similar result for graphs of bounded tree-width and the corresponding graph algebra [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. Recognizability is defined algebraically in terms of congruences and can also be formulated by means of finite, or even infinite, automata on the finite terms that describe the considered graphs. Together with other results (see Chapter 6 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]), this theorem entails that the verification of MSO graph properties, or equivalently, the model-checking problem for MSO logic over finite binary relational structures, is fixed-parameter tractable (FPT) for the parameter consisting of the formula that expresses the property and the cliquewidth of the input graph or structure. Tree-width can also be used instead of clique-width.

Tree-width and clique-width are graph complexity measures that serve as parameters in many FPT algorithms [START_REF] Courcelle | Linear-time solvable optimization problems on graphs of bounded clique-width[END_REF][START_REF] Downey | Parameterized complexity[END_REF][START_REF] Flum | Parametrized complexity theory[END_REF] and are based on hierachical decompositions of graphs. These decompositions can be expressed by terms written with the operation symbols of appropriate graph algebras [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. Model-checking algorithms can be based on automata taking such terms as input. However, the automata associated with MSO formulas, even if they are built for small bounds on tree-width or clique-width, are in practice much too large to be constructed [START_REF] Frick | The complexity of first-order and monadic secondorder logic revisited[END_REF][START_REF] Reinhardt | The complexity of translating logic to finite automata, in Automata, logics, and infinite games: a guide to current research[END_REF]. A typical number of states is 2 2 10 and lower-bounds match this number.

We overcome this difficulty by using fly-automata (FA) [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF]. They are automata whose states are described and not listed, and whose transitions are computed on the fly and not tabulated. When running on a term of size 1000, a deterministic FA with 2 2 10 states computes only 1000 transitions.

Fly-automata can have infinitely many states. For example, a state can record, among other things, the (unbounded) number of occurrences of a particular symbol in the input term. FA can thus check some graph properties that are not monadic second-order expressible. An example is regularity, the fact that all vertices have the same degree. Furthermore, an FA equipped with an output function that maps the set of accepting states to an effectively given domain D can compute a value, for example the number of k-colorings of the given graph G, or the minimum cardinality of one of the k color classes if G is k-colorable (this number measures how close is this graph to be (k -1)-colorable). We have computed with FA the numbers of k-colorings for k = 3, 4, 5 of some graphs (cycles, trees, Petersen graph) for which the chromatic polynomial is known, so that we could test the correctness of the automata (their correctness can anyway be proved formally).

In this article, we review recognizability, fly-automata and their applications to the verification of properties or the computation of values associated with graphs. We present results concerning graphs of bounded clique-width. Similar results for graphs of bounded tree-width reduce to them as we will explain. In an appendix that can be read as an addendum to [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF], we explain how the Recognizability Theorem can be proved by means of fly-automata, in an easier way than in Chapter 5 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF].

Graph algebras, recognizability and automata

Graphs are finite, undirected, without loops and multiple edges. The extension to directed graphs, possibly with loops and/or labels is straightforward. A graph G is identified with the relational structure V G , edg G where edg G is a binary symmetric relation representing adjacency.

Rather than giving a formal definition of monadic second-order (MSO) logic, we present the sentence (i.e., the formula without free variables) expressing 3colorability (an NP-complete property). It is ∃X, Y.Col(X, Y) where Col(X, Y) is the formula

X ∩ Y = ∅ ∧ ∀u, v.{edg(u, v) =⇒ [¬(u ∈ X ∧ v ∈ X) ∧ ¬(u ∈ Y ∧ v ∈ Y)∧ ¬(u / ∈ X ∪ Y ∧ v / ∈ X ∪ Y)]}.
This formula expresses that X, Y and V G -(X ∪Y) are the three color classes of a 3-coloring.

Definition 1 : The graph algebra G (a) We will use N + as a set of labels called port labels. A p-graph is a triple

G = V G , edg G , π G where π G is a mapping : V G → N + . If π G (x) = a,
we say that x is an a-port. The set π(G) of port labels of G is its type. By using a default label, say 1, we make every nonempty graph into a p-graph of type {1}.

(b) For each k ∈ N + , we define a finite set F k of operations on p-graphs of type included in C = {1, ..., k} that consists of :

• the binary symbol ⊕ denotes the union of two disjoint p-graphs,

• the unary symbol relab a→b denotes the relabelling that changes every port label a into b (where a, b ∈ C),

• the unary symbol add a,b , for a < b, a, b ∈ C, denotes the edgeaddition that adds an edge between every a-port and every b-port (unless there is already an edge between them; our graphs have no multiple edges),

• for each a ∈ C, the nullary symbol a denotes an isolated a-port.

(c) Every term t in T (F k) (the set of finite terms written with F k) is called a k-expression. Its value is a p-graph, val(t), that we now define. We denote by P os(t) the set of positions of t: they are the nodes of the syntactic tree of t and the occurrences of symbols. For each u ∈ P os(t), we define a p-graph val(t)/u, whose vertex set is the set of leaves of t below u. The definition of val(t)/u is, for a fixed t, by bottom-up induction on u :

• if u is an occurrence of a, then val(t)/u has vertex u as an a-port and no edge,

• if u is an occurrence of ⊕ with sons u 1 and u 2 , then val(t)/u := val(t)/u 1 ⊕val(t)/u 2 , (note that val(t)/u 1 and val(t)/u 2 are disjoint),

• if u is an occurrence of relab a→b with son u 1 , then val(t)/u := relab a→b (val(t)/u 1),

• if u is an occurrence of add a,b with son u 1 , then val(t)/u := add a,b (val(t)/u 1).
Finally, val(t) := val(t)/root t . Note that its vertex set is the set of all leaves (occurrences of nullary symbols). For an example, let

t = add 1 b,c (add 2 a,b (a 3 ⊕ 4 b 5) ⊕ 6 relab 7 b→c (add 8 a,b (a 9 ⊕ 10 b 11)))
where the superscripts 1 to 11 number the positions of t. The p-graph val(t) is (d) The clique-width of a graph G, denoted by cwd(G), is the least integer k such that G is isomorphic to val(t) for some t in T (F k). We denote by G k the set val(T (F k)) of p-graphs that are the value of a term over F k . We let F be the union of the sets F k , and G be the union of the sets G k . Every p-graph is isomorphic to a graph in G, hence, is defined by some term hence, has a well-defined clique-width.

(e) An F-congruence is an equivalence relation ≈ on p-graphs such that :

• two isomorphic p-graphs are equivalent, and

• if G ≈ G ′ and H ≈ H ′ , then π(G) = π(G ′), add a,b (G) ≈ add a,b (G ′), relab a→b (G) ≈ relab a→b (G ′) and G ⊕ H ≈ G ′ ⊕ H ′ .
(f) A set of graphs L is recognizable if it is a (possibly infinite) union of classes of an F -congruence that has finitely many classes of each finite type C ⊆ N + .

Definition 2: Fly-automata. (a) Let H be a finite or countable, effectively given, signature with arity mapping denoted by ρ. A fly-automaton over H (in short, an FA over H)1 is a 4-tuple A = H, Q A , δ A , Acc A such that Q A is the finite or countable, effectively given set of states, Acc A is the set of accepting states, a decidable subset of Q A , and δ A is a computable function that defines the transition rules: for each tuple (f, q 1 , . . . , q m) such that q 1 , . . . ,

q m ∈ Q A , f ∈ H, ρ(f) = m ≥ 0, δ A (f, q 1 , . . . , q m)
is a finite set of states. We write f [q 1 , . . . , q m] → q (and f → q if f is nullary) to mean that q ∈ δ A (f, q 1 , . . . , q m). We say that A is finite if F and Q A are finite. Even in this case, it is interesting to have these sets specified rather than listed because this allows to implement finite automata with huge sets of states [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF][START_REF] Courcelle | Model-checking by infinite fly-automata[END_REF].

(b) A run of A on a term t ∈ T (H) is a mapping r : P os(t) → Q A such that: if u ∈ P os(t) is an occurrence of f with sequence of sons u 1 , ..., u m , then r(u) ∈ δ A (f, r(u 1), ..., r(u m)).

A run r is accepting if r(root t) ∈ Acc A . A term t is accepted (or recognized) by A if it has an accepting run. We denote by L(A) the set of terms accepted by A. A deterministic FA A (by "deterministic" we mean "deterministic and complete") has a unique run on each term t and q A (t) is the state reached at the root of t. The mapping q A is computable and the membership in L(A) of a term t ∈ T (H) is decidable.

(c) Every FA A that is not deterministic can be determinized by an easy extension of the usual construction, see [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF]; it is important that the sets δ A (f, q 1 , . . . , q m) be finite.

(d) A deterministic FA over H with output function is a 4-tuple A = H, Q A , δ A , Out A that is a deterministic FA where Acc A is replaced by a total and computable output function

Out A : Q A → D such that D is an effectively given domain. The function computed by A is Comp(A) : T (H) → D such that Comp(A)(t) := Out A (q A (t)).
Example 1 : The number of accepting runs of an automaton. Let A = H, Q A , δ A , Acc A be a nondeterminisic FA. We construct a deterministic FA B that computes the number of accepting runs of A on any term in T (H). The set of states is the set of finite subsets of Q A × N + . The transitions are defined so that B reaches state α at the root of t ∈ T (H) if and only if α is the finite set of pairs (q, n) ∈ Q A × N + such that n is the number of runs of A that reach state q at the root. This number is finite and α can be seen as a partial function : Q A → N + having a finite domain. For a symbol f of arity 2, B has the transition : f [α, β] → γ where γ is the set of pairs (q, n) such that q ∈ Q A and n is the sum of the integers n p × n r such that (p, n p) ∈ α and (r, n r) ∈ β. The transitions for other symbols are defined similarly. The function Out A maps a state α to the sum of the integers n such that (q, n) ∈ α ∩ (Acc A × N +).

Example 2 : A fly-automaton that checks 3-colorability.

In order to construct an FA that accepts the terms t ∈ T (F) such that the graph val(t) is 3-colorable, we first construct an FA A for the property Col(X, Y), taking two sets of vertices X and Y as arguments. For this purpose, we transform the signature F into F (2) by replacing each nullary symbol a by the four nullary symbols (a, ij), i, j ∈ {0, 1}. A term t ∈ T (F (2)) defines two things: first, the graph val(t ′) where t ′ is obtained from t by removing the Booleans i, j from the nullary symbols and, second, the pair (X, Y) such that X is the set of vertices u (leaves of t) that are occurrences of (a, 1j) for some a and j, and Y is the set of those that are occurrences of (a, i1) for some a and i. The set of terms t ∈ T (F (2)) such that Col(X, Y) holds in val(t ′) is defined by a deterministic FA A than we now specify. The coloring defined by X, Y assigns colors 1,2,3 to the vertices respectively in X, Y and V G -(X ∪ Y). Its type is the set of pairs (a, i) such that val(t ′) has an a-port of color i.

We now describe the meaning of the states of A. If u ∈ P os(t) then V u is the set of vertices of val(t ′)/u, i.e., of leaves below u. At position u of t, the automaton A reaches the state Error if and only if X ∩ Y ∩ V u = ∅ or val(t ′)/u has an edge between two vertices, either both in X ∩ V u , or both in Y ∩ V u , or both in V u -(X ∪Y), hence of same color, respectively 1,2 or 3; otherwise, X ∩V u and Y ∩ V u define a 3-coloring of val(t ′)/u and A reaches state α ⊆ C × {1, 2, 3} where α is the type of this coloring. All states except Error are accepting. Here are the transitions of A : (a, 00) → {(a, 3)}, (a, 10) → {(a, 1)}, (a, 01) → {(a, 2)}, (a, 11) → Error.

For α, β ⊆ C × {1, 2, 3}, A has transitions : This FA checks Col(X, Y). To check, ∃X, Y.Col(X, Y), we build a nondeterministic FA B by deleting the state Error and the rules containing Error, and by replacing the first three rules of A by a → {(a, 3)}, a → {(a, 1)}, a → {(a, 2)}. All states are accepting but on some terms, no run of B can reach the root, and these terms are rejected. Furthermore, the construction of Example 1 shows how to make B into a deterministic FA that computes the number of accepting runs of B on a term t, hence of 3-colorings of the graph val(t) because its colorings are in bijection with the accepting runs of B on t.

⊕[α, β] → α ∪ β, add a,b [α] → Error, if (a, i) and (b, i) belong to α for some i = 1, 2, 3, add a,b [α] → α, otherwise, relab a→b [α] → β,

Example 3: Minimal use of one color.

Continuing Example 2, we want to compute the minimal cardinality of a set X such that Col(X, Y) holds for some set Y . This cardinality is ∞ if the considered graph is not 3-colorable. It is 0 if it is 2-colorable. We build from A a deterministic FA A ′ over F (2) whose states are Error and the pairs (α, m) ∈ P(C × {1, 2, 3}) × N. (P(X) denotes the powerset of a set X.) The meanings of these states are as for A except that m in (α, m) is the cardinality of X ∩ V u . Some rules of A ′ are: (a, 00) → ({(a, 3)}, 0), (a, 10) → ({(a, 1)}, 1), (a, 01) → ({(a, 2)}, 0) and ⊕[(α, m), (β, p)] → (α ∪ β, m + p).

We make A ′ nondeterministic as in Example 2 and we now detail the deterministic FA C with output function intended to compute the minimal cardinality of X such that Col(X, Y) holds for some set Y .

Its states are finite sets of pairs (α, m) ∈ P(C × {1, 2, 3}) × N. At the root of a term t ∈ T (F), the FA C reaches a set σ ⊆ P(C × {1, 2, 3}) × N such that :

for each α ∈ P(C × {1, 2, 3}) and m ∈ N, the pair (α, m) is in σ if and only if: α is the type of a 3-coloring defined by a pair (X, Y), and m is the minimal cardinality of a set X in such a pair. Note that m is uniquely defined from α. A state can be defined as a partial function : P(C × {1, 2, 3}) → N.

The case σ = ∅ corresponds to a graph that is not 3-colorable, hence, ∅ plays the role of an Error state.

The transitions of C are as follows: The output function associates with σ the minimal m such that (α, m) ∈ σ for some α. If σ = ∅ the output value is ∞ because the graph val(t) is not 3-colorable.

a → {({(a , 3)}, 0), ({(a, 1)}, 1), ({(a, 2)
}, 0)}, ⊕[σ, σ ′] → σ" where (γ, m) ∈ σ" if and only if m is the minimum number n + n ′ such that (α, n) ∈ σ, (β, n ′) ∈ σ ′ and α ∪ β = γ,
Remark : To compute the desired value, we could also use the determinized automaton of A ′ with an appropriate output function. Its states encode, for each α, the set of cardinalities |X| such that α is the type of a 3-coloring defined by a pair (X, Y), instead of just the minimal cardinality of such a set. This way, the computation would take more space and more time.

The constructions of these three examples are particular cases of systematic and more complex constructions presented in [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF][START_REF] Courcelle | Model-checking by infinite fly-automata[END_REF].

Two recognizability theorems

Two theorems relate MSO logic and recognizability.

Recognizability Theorem : The set of graphs that satisfy an MSO sentence ϕ is F -recognizable.

Weak Recognizability Theorem : For every MSO sentence ϕ, for every k, the set of graphs in G k that satisfy ϕ is F k -recognizable.

About proofs:

The Recognizability Theorem is Theorem 5.68 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. Its proof shows that the equivalence relation defined by the fact that two p-graphs have the same type and satisfy the same MSO sentences of quantifier-height at most that of ϕ satisfies the conditions of Definition 1(f). The Weak Recognizability Theorem follows from the former one. It can also be proved directely by constructing, for each ϕ and k, a finite automaton A(ϕ, k) (Theorem 6.35 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]). One can also construct for each ϕ a single FA A(ϕ) over F that can be seen as the union of the automata A(ϕ, k) ([START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF]). This construction has been implemented (see below). The proof of the strong theorem in Chapter 5 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF] does not provide any usable automaton. As explained in Section 6.4.6 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], the Recognizability Theorem is not a corollary of its weak form. However, a careful analysis of A(ϕ) yields a simple proof of the Recognizability Theorem as we show in the Appendix.

Other uses of fly-automata

Counting and optimizing automata

Let P (X 1 , ..., X s) be an MSO property of vertex sets X 1 , ..., X s . We denote (X 1 , ..., X s) by X and t |= P (X) means that X satisfies P in the graph val(t) defined by a term t. We are interested, not only to check the validity of ∃X.P (X), but also to compute from a term t the following values: #X.P (X), defined as the number of assignments X such that t |= P (X), SpX.P (X), the spectrum of P (X), defined as the set of tuples of the form (|X 1 |, . . . , |X s |) such that t |= P (X), MSpX.P (X), the multispectrum of P (X), defined as the multiset of tuples (|X 1 |, . . . , |X s |) such that t |= P (X), the number min{|Y | | ∃X.P (Y, X)}.

These computations can be done by FA [START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF][START_REF] Courcelle | Model-checking by infinite fly-automata[END_REF]. We obtain in this way fixedparameter tractable (FPT) or XP algorithms (see [START_REF] Downey | Parameterized complexity[END_REF][START_REF] Flum | Parametrized complexity theory[END_REF] for the theory of fixedparameter tractability). A particular case of the construction for #X.P (X) is based on Example 1. (In general, the number #X.P (X) may be larger than the number of accepting runs of the nondeterministic automaton that checks ∃X.P (X)).

Beyond MS logic

The property that the considered graph is the union of two disjoint regular graphs with possibly some edges between these two subgraphs is not MSO expressible but can be checked by an FA. An FA can also compute the minimal number of edges between X and V G -X such that G[X] and G[V G -X] are connected, when such a set X exists.

Edge set quantifications and tree-width. The incidence graph Inc(G) of a graph G (that can have multiple edges) is a bipartite graph whose vertex set is V G ∪ E G where E G is the set of edges of G, and Inc(G) has an edge between x ∈ V G and e ∈ E G if and only if x is an end of e. An MSO sentence evaluated in Inc(G) is thus able to use quantifications on edges and sets of edges. The graph properties expressed by such sentences are said to be MSO 2 expressible. That G is Hamiltonian can be expressed by "there exists a set of edges that forms a Hamiltonian cycle", hence is MSO 2 expressible, whereas this property is not MSO expressible. If G has tree-width k, then Inc(G) has clique-width at most 3.2 k (see [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Proposition 2.114) and even at most k + 3 by a recent unpublished result due to T. Bouvier (LaBRI). Furthermore, a term defining Inc(G) that witnesses the latter upperbound can be obtained in linear time from a tree-decomposition of G of width k. It follows that FA can be used to verify MSO 2 expressible properties of graphs of bounded tree-width. Counting and optimizing functions based on such properties can also be computed by FA. Another approach is in [START_REF] Courcelle | On the model-checking of monadic second-order formulas with edge set quantifications[END_REF].

The two recognizability theorems have versions for MSO 2 expressible properties of graphs of bounded tree-width (see [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Theorems 5.68 and 5.69).

Experimental results and open problems

These constructions have been implemented and tested2 [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF][START_REF] Courcelle | Model-checking by infinite fly-automata[END_REF]. We have computed the number of optimal colorings of some graphs of clique-width at most 8 for which the chromatic polynomial is known, which allowed us to verify the correctness of the automaton. We could verify in, respectively, 35 and 105 minutes that the 20×20 and the 6×60 grids are 3-colorable. In 29 minutes, we could verify that the McGee graph (24 vertices) given by a term over F 8 is acyclically 3-colorable.

A different model-checking method based on games is presented in [START_REF] Kneis | Courcelle's theorem -A gametheoretic approach[END_REF]. It gives a proof of the Weak Recognizability Theorem for graphs of bounded treewidth and has also been implemented and tested.

The parsing problem for graphs of clique-width at most k is NP-complete (with k in the input) [START_REF] Fellows | Clique-Width is NP-Complete[END_REF]. Good heuristics remain to be developped.

 3 a -5 b -11 c -9 a where the subscripts a, b, c indicate the port labels. (For clarity, port labels are letters in examples). If u = 2 and w = 8, then t/u = t/w = add a,b (a ⊕ b), however, val(t)/u is the p-graph 3 a -5 b and val(t)/w is 9 a -11 b , isomorphic to val(t)/u.

 obtained by replacing a by b in each pair of α. Its other transitions are ⊕[α, β] → Error if α or β is Error, add a,b [Error] → Error and relab a→b [Error] → Error.

 add a,b [σ] = σ ′ where σ ′ is obtained from σ by removing the pairs (α, m) such that α contains (a, i) and (b, i) for some i = 1, 2, 3, relab a→b [σ] = σ ′ where σ ′ is obtained by replacing every pair (a, i) occurring in the first component of any (α, m) ∈ σ by (b, i).

A fly-automaton is an automaton on finite terms whose components are finite or countably infinite and effectively given, and that has finitely many runs on each term.

AUTOGRAPH is written in Steele Bank Common Lisp and computations have been done on a Mac Book Pro (Mac OS X 10.9.4 with processor Intel Core 2 Duo, 2.53 GHz and memory of 4 GB, 1067 MHz DDR3).

Appendix

We explain to the reader familiar with [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF] how the Recognizability Theorem can be proved from the construction, for every MSO sentence ϕ, of an FA A(ϕ) over F that recognizes the terms whose value is a finite model of ϕ. This a new proof of this theorem. We first review definitions and notation.

MSO formulas are written with set variables X 1 , ..., X n , ... (without firstorder variables), the atomic formulas X i ⊆ X j , Sgl(X i) (meaning that X i is singleton), edg(X i , X j) (meaning that X i and X j are singletons consisting of adjacent vertices), negation, conjunction and existential quantifications of the form ∃X n .ψ where ψ has its free variables among X 1 , ..., X n .

Generalizing the definition of Example 2, we transform F into F (m) (for m > 0) by replacing each nullary symbol a by the nullary symbols (a, w) for all w ∈ {0, 1} m . Hence, a term t ∈ T (F (m)) defines the p-graph val(t ′) where t ′ is obtained from t by removing the sequences w from the nullary symbols and the m-tuple (V 1 , ..., V m) such that V i is the set of vertices u (leaves of t) that are occurrences of (a, w) for some a and w with 1 at its i-th position. We denote val(t ′) by val(t) and (V 1 , ..., V m) by ν(t).

If ϕ is an MSO formula with free variables among X 1 , ..., X m , we let L(ϕ, X 1 , ..., X m) be the set of terms t ∈ T (F (m)) such that (val(t), ν(t)) |= ϕ.

Theorem [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF] : Let ϕ be an MSO formula with free variables among X 1 , ..., X m . One can construct a fly-automaton A(ϕ, X 1 , ..., X m) over F (m) that recognizes the set L(ϕ, X 1 , ..., X m).

We revisit this construction to prove the Recognizability Theorem. For a finite set B and an integer i ≥ 0, we define the finite set L i (B) as follows:

In order to have a unique notation for the elements of these sets, we write an element of P(L i (B)) as {w 1 , ..., w p } with the condition that w 1 < w 2 < ... < w p for some lexicographic order < on the words denoting the elements of the sets L n (B).

The proof of the previous theorem yields the following more precise statement.

Proposition : Let ϕ be an MSO formula with free variables among X 1 , ..., X m . One can construct a finite set B disjoint from N + , an integer i and a deterministic fly-automaton A(ϕ, X 1 , ..., X m) over F (m) that recognizes the set L(ϕ, X 1 , ..., X m) and satisfies the following two properties, for all t, t ′ ∈ T (F (m)):

Proof : The is by induction on the structure of ϕ. We assume that the reader has access to [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF], so we will not detail the automata.

If ϕ is X i ⊆ X j or Sgl(X i), then the states of A(ϕ, X 1 , ..., X m) do not use port labels, hence q A(ϕ,X1,...,Xm) (t) ∈ L 0 (B) for some finite set B. Properties (i) and (ii) hold.

If ϕ is edg(X i , X j), then the states of A(ϕ, X 1 , ..., X m) are Error, Ok, (a, 1), (a, 2), (a, b) for a, b ∈ N + , hence belong to B ∪ N + × (N + ∪ B) where B = {Error, Ok, 1, 2}. (To be precise the states (a, 1), (a, 2) and (a, b) are written respectively a(1), a(2) and ab in [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF].) The port labels occurring in the state q A(edg(Xi,Xj),X1,...,Xm) (t) are in π(val(t)): this is clear from the meanings of the states described in Table 3 of [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF]. So we have q A(ϕ,X1,...,Xm) (t) ∈ L 1 (B ∪ π(val(t))). The validity of (ii) is also clear from the same table.

If ϕ is ¬ψ and since we construct deterministic (and complete) automata, A(ϕ, X 1 , ..., X m) and A(ψ, X 1 , ..., X m) differ only in their accepting states. Hence A(ϕ, X 1 , ..., X m) satisfies Properties (i) and (ii) since A(ψ, X 1 , ..., X m) does.

If ϕ is θ ∧ ψ, then A(ϕ, X 1 , ..., X m) is the product automaton of A(θ, X 1 , ..., X m) and A(ψ, X 1 , ..., X m) (in particular Q A(ϕ,X1,...,Xm) = Q A(θ,X1,...,Xm) × Q A(ψ,X1,...,Xm)). If (B, i) and (B ′ , j) are associated by induction with θ and ψ, then we can take the pair (B ∪ B ′ , 1 + max(i, j)) for ϕ, which gives Property (i). Property (ii) is easy to check.

If ϕ is ∃X m .ψ where ψ has its free variables among X 1 , ..., X m , then A(ϕ, X 1 , ..., X m-1) is obtained from A(ψ, X 1 , ..., X m) as follows:

(1) one builds an FA B by replacing in A(ψ, X 1 , ..., X m) all transitions (a, w0) → p and (a, w1) → q by (a, w) → p and (a, w) → q so that B is not deterministic;

(2) A(ϕ, X 1 , ..., X m-1) is defined as the determinized automaton of B.

If q A(ψ,X1,...,Xm) (t) ∈ L i (B ∪π(val(t))), then q A(ϕ,X1,...,Xm-1) (t) ∈ P(L i (B ∪ π(val(t)))) ⊆ L i+1 (B ∪ π(val(t))), which proves (i). Property (ii) is easy to check.

It may be necessary to construct A(ϕ, X 1 , ..., X m) from A(ϕ, X 1 , ..., X n) where m > n. A typical example is for θ = ϕ ∧ ψ in a case where we have already constructed A(ϕ, X 1 , X 2) and A(ψ, X 1 , X 2 , X 3); we must take the product of A(ϕ, X 1 , X 2 , X 3) and A(ψ, X 1 , X 2 , X 3). This situation is handled by Lemma 13 and Definition 17(h) of [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF]: the automaton A(ϕ, X 1 , ..., X m) has the same states as A(ϕ, X 1 , ..., X n) and Properties (i) and (ii) are inherited from A(ϕ, X 1 , ..., X n).

Proof of the Recognizability Theorem: Let ϕ be an MSO sentence and A(ϕ), B and i be constructed by the previous proposition.

Let G be a p-graph t be any term in T (F) that defines it. Then, by Property (ii), the state q A(ϕ) (t) depends only on G (it is the same for every term t that defines G), hence can be written q(G).

We define an equivalence relation by :

Two isomorphic graphs are equivalent by Property (ii) and two equivalent graphs have the same type. We prove that ≈ is a congruence.

Let

The proof is similar for all unary operations.

Since L i (B ∪ C) is finite for C finite, the congruence ≈ has finitely many classes of each finite type C ⊆ N + .

A p-graph G satisfies ϕ if and only if q(G) is an accepting state of A(ϕ). Hence the set of finite models of ϕ is a union of classes of ≈, hence is recognizable.

In [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF], we have constructed FA for other basic properties than X i ⊆ X j , Sgl(X i) and edg(X i , X j), and in particular, for Card p (X 1) (X 1 has p elements), P artition(X 1 , ..., X m) (X 1 , ..., X m is a partition of the vertex set), P ath(X 1 , X 2) (X 1 consists of two vertices linked by a path having its vertices in X 2), connectedness and existence of cycles. These FA satisfy Properties (i) and (ii) : the proofs are the same as for X i ⊆ X j , Sgl(X i) and edg(X i , X j). However, the minimal syntax for MSO formula that we use is enough to prove the Recognizability Theorem.

The construction of FA for the properties Card p,q (X 1) (X 1 has p modulo q elements) yields the proof of the Recognizability Theorem for counting monadic second-order logic. See [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF] for details.

In [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF], we have also constructed "smaller" FA that work correctly on terms in T (F) satisfying the special condition to be irredundant (no edge is created between two vertices x and y if there exists already one). For an automaton on irredundant terms, the state reached at some node u of a term t does not depend only on the graph val(t)/u but also, implicitly, on the context of u in t. These automata are useful for model-checking because they are smaller than the equivalent general ones and terms can be preprocessed appropriately, but they may not satisfy Property (ii). Hence, they cannot be used in the above proof of the Recognizability Theorem.