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ABSTRACT–In this paper, we investigate a design approach 

aiming at simultaneously integrating the power management and 

the sizing of a small microgrid with storage. We particularly 

underline the complexity of the resulting optimization problem 

and how it can be solved using suitable optimization methods in 

compliance with relevant models of the microgrid. We 

specifically show the reduction of the computational time 

allowing the microgrid simulation over long time durations in the 

optimization process in order to take seasonal variations into 

account. 

Keywords — Smart grid, sizing, optimal dispatching, linear 

programming, dynamic programming, evolutionary algorithms, 

efficient global optimization, kriging interpolation. 

RESUME –Dans cet article, nous nous intéressons à une 

démarche de conception optimale intégrant la planification des 

flux énergétiques et le dimensionnement des éléments d’un 

micro-réseau avec stockage. Nous montrons plus 

particulièrement comment l’adéquation entre les méthodes 

d’optimisation utilisées et le modèle du micro-réseau employé 

peut permettre la réduction significative des temps de calcul et la 

détermination d’une configuration optimale du micro-réseau, 

valable sur des horizons temporels intégrant les alternances 

saisonnières. 

Mots clés — Smart grid, dimensionnement, plannification 

optimale,programmation linéaire, programmation dynamique, 

algorithmes évolutionaires, krigeage. 

1. INTRODUCTION  

With the development of decentralized power stations 
based on renewable energy sources, the distribution networks 
has strongly evolved to a more meshed model [1]. It can be 
considered as an association of various "microgrids" both 
consumer and producer that have to be run independently while 
granting the global balance between load and generation. 
Smarter operations now become possible with developments of 
energy storage technologies and evolving price policies [2]. 
Those operations would aim at reducing the electrical bill 
taking account of consumption and production forecasts as well 
as the different fares and possible constraints imposed by the 
power supplier [3].This paper deals with a microgrid devoted 
to a set of industrial buildings and factories with a typical 
subscribed power of 156 kW (Fig. 1a). It includes photovoltaic 
(PV) production and a storage unit composed of high speed 
flywheels(FW). The strategy chosen to manage the overall 
system is based on a daily off-line optimal scheduling of power 
flows for the day ahead. Then, in real time, an on-lineprocedure 

adapts the same power flows in order to correct errors between 
forecasts and actual measurements [4]. Such control strategy 
based on the on-line adaptation of off-line optimal references 
has been extensively studied in the literature (e.g. [5-7] and is 
not the subject of this work. Our study mainly focuses on the 
microgrid design investigating the coupling between the power 
management (i.e. off-line control) and the sizing of the 
microgrid components (i.e. PV production and storage). 
Consequently, finding an optimal configuration of the 
microgrid results in a two level optimization problem including 
the optimal sizing of the microgrid and the optimal power flow 
dispatching over a long period of time. In the following 
sections, we will address this issue and its complexity with 
regard to energy cost optimization and computational time. To 
face this problem, we will show how it can be solved using 
suitable optimization methods in compliance with relevant 
models of the microgrid.  

The rest of the paper is organized as follows: in the second 
section, the power flow model of the microgrid is presented. In 
section 3, several power dispatching strategies ensuring the 
minimization of the energy cost are compared. In particular, a 
fast optimization approach based on Linear Programming (LP) 
and on a linear model of the microgrid is introduced in order to 
reduce the computational time of the power flow dispatching. 
In section 3, a second optimization level is presented. It 
consists in determining the optimal sizing of the microgrid with 
regard to the energy cost computed over a complete year in 
order to take seasonal variations into account. Finally, 
conclusions are drawn in section 4. 

2. MODEL OF THE MICROGRID 

2.1. Power Flow Model of the Microgrid 

The power flow model of the microgrid is given in Fig. 1b. 
All the microgrid components are connected though a common 
DC bus. Voltages and currents are not represented and only 
active power flows are considered.In the rest of the paper the 
instantaneous values are denoted as Pi(t) while the profiles over 
the periods of simulation are written in vectors Pi. Due to the 
grid policy, three constraints have to be fulfilled at each time 
step t: 

 P1(t)  0: the power flowing through the consumption 
meter is strictly mono-directional 

 P10(t)  0: the power flowing through the production 
meter is strictly mono-directional 



 

 P6(t)   0: to avoid illegal use of the storage: flywheels 
cannot discharge themselves through the production 
meter 

A particular attention is paid to the grid power Pgrid(t) 
which should comply with requirements possibly set by the 
power supplier: 
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The equations between all power flows are generated using 
the graph theory and the incidence matrix[8]. As illustrated in 
Fig. 1b, three degrees of freedom are required to manage the 
whole system knowing production and consumption: 

 P5(t)  Pst(t): the power flowing from/to the storage unit 
(defined as positive for discharge power) 

 P6(t): the power flowing from the PV arrays to the 
common DC bus 

 P9(t)  ΔPPVdenotes the possibility to decrease the PV 
production (MPPT degradation) in order to fulfill grid 
constraints, in particular when the power supplier does 
not allow (or limits) the injection of the PV production 
into the main grid (P9is normally set to zero). 

 

 

Fig.1 Studied Microgrid (a) 3D view of the factory (b) Power flow model 

2.2. Efficiencies of the microgrid components 

A first model (qualified as “fine model”) is defined taking 

account of efficiencies of power converters (typically 98 %) 

and storage losses. These losses are computed versus the state 

of charge SOC (in %) and the power Pst using a function 

Ploss(SOC) and calculating the efficiency with a fourth degree 

polynomial FS(Pst) (see (3)). Both Ploss and FS functions are 

extracted from measurements provided by the manufacturer 

(Levisys). Another coefficient KFS (in kW) is also introduced 

to estimate the self-discharge of the flywheels when they are 

not used (see (4)). Once the overall efficiency is computed, the 

true power PFSassociated with the flywheel is calculated as 

well as the SOC evolution using the maximum stored energy 

EFS (here 100 kWh), the time step Δt (typically 1 hour for the 

off-line optimization) and the control reference P5. 
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Due to the bidirectional characteristics of static converters 

and especially with flywheel efficiency, the overall system is 

intrinsically nonlinear and suitable methods have to be used to 

solve the optimal power dispatching problem. 

3. POWER FLOW OPTIMIZATION IN THE MICROGRID 

3.1. Optimal power dispatching based on the fine model 

The power dispatching strategy aims at minimizing the 
electrical bill for the day ahead. Prices of purchased and sold 
energy are assumed to be time dependent with instantaneous 
values respectively denoted as Cp(t) and Cs(t). The time 
scheduling period is one day discretized on a one hour basis 
within which the variables are considered to be constant. 
References of the power flows associated with the degrees of 
freedom over this period are computed in a vector  
Pref=[P5 P6 P9] of 72 elements (i.e. the total number of 
unknowns in the corresponding optimization problem). An 
additional constraint is considered ensuring the same storage 
level SOC = 50% at the beginning and at the end of the 
scheduling period.Once Pref is determined, all the other power 
flows are computed from the forecasted values of consumption 
and production. Then P1 andP11 are known to estimate the 
balance between purchase and sale. Thus, the energy cost 
function is calculated as follows on the time scheduling period: 
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Due the nonlinear relations in the fine microgrid model, 
only nonlinear optimization methods under constraints can be 
used for solving the power flow problem. We remind that those 
methods have to take account of possible constraints on the 
main grid in addition to the energy cost minimization. For 
solving such problem several approaches have been proposed 
in earlier works [4], [9], [10]:  
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 Classical nonlinear programming methods and 
especially the trust region algorithm (TR) [11]. 

 Stochastic optimization methods like particle swarm 
optimization (PSO) [12] or evolutionary approaches, 
especially the clearing algorithm (CL) [13] which has 
been shown to be highly effective for solving 
multimodal optimization problem because of its 
capacity of maintaining Darwinian evolution through a 
niching mechanism.  

 Dynamic Programming (DP) [14] which consists in a 
step by step minimization of the energy with regard to 
the storage state of charge (SOC) levels on the overall 

range (i.e. [0%-100%] with a given accuracy SOC. In 
particular, a self-adaptive version has been developed in 
[9] with the aim of improving the compromise in terms 
of solution accuracy and computational cost.  

These methods have been evaluated on a particular day 
whose characteristics are given in Fig. 2. The consumption 
profile is extracted from data provided by the microgrid owner 
while the production estimation is based on solar radiation 
forecasts computed with a model of PV arrays [15]. Energy 
prices result from one of the fares proposed by the French main 
power supplier [16] increased by 30%. Thus, the purchase 
costCp has night and daily values with 0.10 €/kWh from 10 
p.m. to 6 a.m. and 0.17 €/kWh otherwise. Cs is set to 0.1 €/kWh 
which corresponds to the price for such PV plants. In a 
situation with no storage device, all the production is sold 
(66.0 €) while all loads are supplied through the consumption 
meter (94.5 €). In that case, this leads to an overall cost equal 
to 28.5 € (Fig. 3) for the considered day. It should also be noted 
that no grid constraints are introduced in the investigated 
simulations. The initial configuration of the microgrid with 156 
kW subscribed power is composed of a PV generator with a 
peak power of 175 kW anda 100 kW/100 kWh flywheel 
storage. We display in Table 1 the energy cost obtained with all 
dispatching methods on the initial microgrid configuration and 
on the particular test day. The corresponding CPU time 
required for obtaining the optimal solution is also mentioned in 
this table. Results show that the solution with minimum energy 
cost (indicated in bold type in Table 1) is obtained from the 
standard DP with an accurate discretization of the SOC level 

(SOC =1%). However, the corresponding CPU time of 2 h is 
quite expensive. The self-adaptive DP developed in [9] leads to 
a better compromise in terms of accuracy/computational cost 
by converging close to the optimal solution while significantly 
reducing the CPU time. In spite of this reduction, the 
computational cost of this method remains relatively important 
if we need to assess the energy cost over a complete year in 
order to take seasonal features into account. In that case, the 
CPU time related to the 365 successive dispatching steps will 

reach 10 min  365  3 days. In the context of the microgrid 
design where a second optimization loop is added for sizing the 
microgrid components, the CPU time will become prohibitive. 
Indeed, if 1000 microgrid simulations over one year are 
required for obtaining the optimal microgrid sizing, the CPU 

time will increase to 1000 3 days  8 years!!!. Consequently, 
the use of nonlinear optimization methods with the “fine” 
microgrid model is not suitable in the context of a design 

approach integrating the microgrid sizing over long periods of 
time. 

3.2. Fast power dispatching based on a coarse linear model 

of the microgrid  

In order to speed up the computational time required for the 
power flow dispatching in the microgrid, a fast optimization 
procedure has been proposed in [10]. This procedure uses LP 
techniques [17] on a coarse linear model of the microgrid. In 
this model, converter efficiencies as well as the nonlinear 
losses in the flywheel storage are neglected. This leads to the 
following simplifications: 
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 The use of this linear model allows the formulation of the 
power flow dispatching problem into a linear form.  
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The constraint matrix A and vector B are built by 
concatenating matrices used to express each grid requirement 
or storage specified limits (see [10] for more details). Such 
problem can easily be solved using a standard LP algorithm, 
e.g. the Matlab© function linprogwith sparse matrices. 

 

Fig.2 Typical test day with forecasted consumption (a) and production (b) 

Table 1. Comparison of power flow dispatching strategies on the test day 

Power dispatching strategy Optimal cost CPU time 

TR (with 50 random initial points) 1.1 € 50 min 

CL (100 individuals, 50 000 generations) 0.7 € 4 h 

PSO (100 particles, 50°000 iterations) 7 € 2 h 

Standard DP with SOC= 10 % 3.7 € 2 min 

Standard DP with SOC= 1 % 0.1 € 2 h 

Self-adaptive DP 0.2 € 10 min 
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However, one drawback of this approach resides in the fact 
that the optimal solution found with the LP does not obviously 
comply with the requirements of the fine microgrid model. 
Fig. 3illustrates a case for which the solution Pref

*
 obtained 

with LP is simulated with fine model equations. It should be 
noted that a deep discharge occurs at around 22 p.m. The SOC 

goes down to 25 % with the fine model while it remains to 
0 % and fulfills the constraints with the coarse linear model. 
Taking account of the flywheel losses also leads to slow down 
the storage charge and to speed up the storage discharge. 

 

Fig.3 Example of SOC constraint violation with the fine model using the LP 
optimal solution. 

In the same way, the cost function returned by the coarse 
model is not correct. Therefore, the control references (Pref_LP) 
relative to the degrees of freedom obtained with the LP in 
association with the coarse model should be adapted in order to 
comply with the fine microgrid model. This can be performed 
using a step by step correction which aims at minimizing the 
cost while aligning the SOCcomputed from the fine model with 
the one resulting from the LP optimization (denoted as SOCLP). 
At each time step t, the correction procedure is formulated as 
follows to find the instantaneous optimal references Pi

*
(t): 
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where the c
t
nl constraint vector includes all the constraints 

mentioned in section 2.1. in addition to SOC and power limits.  

This local minimization problem is solved using the TR 
method with a starting point equal to Pref_LP(t). The 
convergence is ensured in all cases in a very short CPU time 
due to its small dimensionality (only three decision variables 
have to be determined, the P5 decision variable being directly 
coupled with the SOC trajectory). Typically, the CPU time 
related to this correction procedure is less than one second over 
a day of simulation. The LP algorithm coupled with the coarse 
linear microgrid model in association with the previous 
correction procedure using the fine microgrid model is denoted 
as LPC in the following parts. This original dispatching 
approach allows the reduction of the CPU time to 2 s compared 
with 10 min required by the self-adaptive DP to find the 
optimal power flow references.  

We finally illustrate in Fig. 4the optimal SOC and the P1 
flowprofiles obtained with the self-adaptive DP and LPC on the 
particular day of Fig 2. As can be seen in Fig. 4a, both 
algorithms try to minimize the cost by lowering as much as 
possible the power flowing though the consumption meter 
when the energy prices remain high. The SOC profiles found 
by both algorithms have similar overall shapes. At the 
beginning of the day, the flywheel feeds the load in order to 
reduce the energy consumption issued from the grid. During 
the day, the PV production is mostly exploited to feed the load 
and charge the storage. The surplus is sold to generate 

additional benefit and no production is wasted (P9(t)  0 t) as 
the injected power flowing through the main grid is not limited 
here. When solar radiation falls down at 8 p.m., the storage is 
strongly discharged until the price becomes lower at 10 p.m. 
The storage SOC returns to its initial state of 50 % at the end of 
the day so as to fulfil the requirements. As previously 
underlined, both solutions obtained with the self-adaptive DP 
and LPC are quite similar with respect to the overall cost. 
However, as shown in Fig. 4c-d, the values of decision 
variables appear to be different. This can be explained by the 
non-uniqueness of the dispatching problem solutions. Indeed, 
this problem could be considered as an optimal energy balance 
between purchase, sale, storage charge or discharge. At a given 
time step and over a period of several hours, different power 
profiles can led to the same result with regard to the storage 
energy variations. 

4. OPTIMAL DESIGN OF THE MICROGRID COMPONENTS 

Due to the significant reduction of the computational cost 
of the power flow dispatching, the microgrid can be now 
rapidly simulated over long periods of time (typically one 
year). This allows us to study a global design approach 
integrating two optimization levels: power management and 
sizing with regard to the microgrid environment (load profiles, 
solar irradiation cycles). This approach is illustrated in Fig. 5. 
In particular, we investigate the analysis and the optimization 
of the microgrid with regard to several design variables: 

 

 

Fig.4 Results obtained with LPC and self-adaptive DP on the particular test 

day of Fig. 2. - a) P1 - b) SOC - c) P5 d) P6. 
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Fig.5 Design approach of the microgrid integrating two optimization levels : 
sizing and power management  

 variables related to the power management of the 
microgrid such as the scheduling periodTschedule or the 
initial SOC0 level which has to be the same at the 
beginning and at the end of the scheduling period.  

 variables related to the microgrid sizing such as the 
maximum power PPV_max of the PV generator, the 
maximum stored energy EFW in the flywheels and also 
the subscribed power Ps  to the main supplier.  

4.1. Sensitivity analysis of the design variables  

In this section, we first analyze the sensitivity of the design 
variables on the microgrid energy cost. For the 5 design 
variables previously mentioned, we arbitrarily define the 
following bounds:  

0 kWh < EFW  < 1500 kWh 

0 kW < PPV_max < 500 kW 

 100 kW < Ps < 250 kW (12) 

1 day < Tschedule < 120 days 

0 % < SOC0 < 100 % 

Several configurations of the microgrid are investigated by 
considering one year of simulations (i.e. 365 successive 
scheduling periods if Tschedule = 1 day).It should be noted that 
the computational time of the power flow scheduling strongly 
increases when the scheduling period increases (because of the 
increase of the number of decision variables in the LP 
problem). Additional cost penalties are introduced in the cost 
function when the power extracted from the grid is higher than 
the subscribed power (i.e. Covershoot = 14 € per hour). A 
sensitivity analysis is performed using a full factorial 
experiment [18]. The weight coefficients of the main effects 
(ai) of the variables and their interactions (bi) are studied as for 
the following example with a two parameter function 
y = f(x1,x2) modeled as follows: 

 2112211 .  ˆ xxbxaxayy   (13) 

In (13), ŷ is the average value of the function with the 
different pointsyi given by the design of experiments when the 

values are at their higher (+1) or lower (1) bounds. The 
weight ai and bi are then computed using the columns of the 
Table 2 and N the number of experiments (i.e. 4 in a problem 
with two parameters): 
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Table2. Full factorial design of experiments  

a1=x1 a2=x2 b1=x2 x1 Y 

+1 +1 +1 y1 

+1 -1 -1 y2 

-1 +1 -1 y3 

-1 -1 +1 y4 

For five design variables as for the studied case, the 
absolute values of the coefficients are plotted in Fig 6. The 
corresponding parameters (effect/interactions) are underlined. 
The coefficients referring to the values of EFW andPPV_max 
appear to be the most influent. In a first approximation, only 
those variables are considered when studying different sizing 
cases. 

4.2. Optimization of the microgrid with regard to the most 

influent sizing variables 

We finally investigate the optimization of the microgrid with 
regard to the 2 most influent variables, i.e. EFW andPPV_max. The 
scheduling period is set to 1 day and the initial SOC storage to 
50% in all cases. Even if the CPU time devoted to the power 
flow dispatching has been strongly reduced with the LPc 

strategy, it approximately requires 2 s  365  15 min for 
simulating a microgrid configuration on a complete year. This 
computational cost can be still view as expensive in the context 
of the second optimization level devoted to the microgrid 
sizing. In such case, the use of optimization methods based on 
the cost function interpolation is recommended in order to 
reduce the number of energy cost function calls. Among those 
methods, the Efficient Global Optimization algorithm (EGO) 
[19] is considered as one of the most effective. This algorithm 
estimates the cost function in unexplored points by 
interpolating it with the kriging method [20]. Starting from 
randomly chosen initial test points, the EGO investigates the 
search space by iteratively maximizing the Expecting 
Improvement (EI). This criterion expresses a compromise 
between the unexplored regions of the search space and the 
areas where the cost function appears to be the most interesting 
(i.e. with the lowest values). The maximization of this criterion 
during iterations ensures a good balance beetwen exploration 
and exploitation. The algorithm stops when a stoping criteria is 
met (e.g. fixed number of iterations, no improvement on the 
objective function or minimum prescribed value of the EI).All 
characteritics of the EGO are summurized in Fig. 7. 

 

Fig.6. Sensitivity analysis of the design variables (a) factor effects (b) 
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Fig.7. Principle of the EGO algorithm (a) synoptic (b) illustration of the EI 

improvement during iterations on a simple one dimensional function 

The EGO is used for optimizing the microgrid with respect 
to the EFW and PPV_maxdesign variables. Optimizations are 
performed under two different scenarios of energy price 
policies. In the first scenario, the electricity is sold at a high 
price (Cs = 10 c€/kWh) and Cp is moderate equals to 
10 c€/kWh from 10 p.m. to 6 a.m. and 18 c€/kWh otherwise. In 
the second scenario, the purchasedcost is increased 
(Cp = 16 c€/kWh from 10 p.m. to 6 a.m. and 26 c€/kWh 
otherwise) and selling the PV production is not subsidized. The 
cost of the annual subscribed power is set to 35.3 €/kW.In 
addition to those operational costs computed over 365 
successive days with different data related to forecast 
consumption and solar irradiations, we also consider the 
investment costs of PV generators and flywheels over 20 years 
of life which are respectively of 2000 €/kW and 1500 €/kWh. 
The microgrid Total Cost of Ownership (TCO) is then defined 
as the sum of the annual operational energy cost with the 
corresponding investment costs. This criterion is used as 
objective function in the EGO algorithm. The search space of 
the design variablesis characterized by the following bounds: 

 kW  5000 max_  PVP  (15) 

 kWh  5000  FWE  (16) 

The EGO uses 10 randomly chosen starting points with a Latin 
Hypercube Sampling (LHS). EI is maximised using 
alternatively a TR method with several starting points 
(typically 300 points) or by regularly sampling the search space 

with given steps (typically 25 kW 25 kWh). Results obtained 
under the two investigated scenarios are given in Table 3. In 
this table, we compare the optimal solution obtained from the 
EGO with an initial configuration of the microgrid 
corresponding to a situation without storage and PV production 
for which all the consumed energy is purchased from the main 
grid.Table 2 shows that EGO converges in the first scenarioto 
an optimal point with no storage and with a maximum number 
of PV panels in order to generate a maximum of profit.In the 
second scenario with higher energy costs and no remuneration 
of the PV production, adding a storage device becomes 
interesting with an optimum value at 44 kWh. In the same time 
the PV capacity is moderate at 282 kW and the self- 
consumption as well as the storage management allow 
decreasing the annual electric bill by 13 %.We illustrate in 
Fig. 8 the convergence of the EGO under the second scenario. 
It can be seen that the algorithm quickly converges to the 
optimal solution in a small number of iterations. The total 
number of cost function calls is only of 40 leading to a global 
CPU time close to 10 h. 

5. CONCLUSIONS 

In this paper, a global and integrated design approach for 
the power management and sizing of a microgrid with storage 
has been presented. The studied microgrid is composed of 
commercial buildings and factories with a typical subscribed 
power of 156 kW and includes PV production and flywheel 
storage. In a first part of the paper, several power flow 
dispatching strategies based on nonlinear optimization 
techniques (in particular classical nonlinear programming 
methods, stochastic algorithms and dynamic programming) and 
applied to a nonlinear model of the microgrid have been 
analyzed and compared with regard to their performance in 
terms of energy cost minimization and computational time. 
 

Table 3. Results obtained with the EGO algorithm under the two studied 
scenarios: design variables and corresponding annual costs. 

 First scenario Second scenario 

PV panel size (PPV_max) 500 kW 282 kW 

Flywheel storage size (EFW) 0 kWh 44 kWh 

TCO - initial configuration (k€) 97 149.3 

TCO - optimal EGO solution (k€) 90 130 

PV cost (k€) 50 28.1 

FW cost (k€) 0 3.3 

Purchased energy (k€) 64.1 98.6 

Sold energy (k€) 24.2 0 
 

 

Fig.8. Illustration of the EGO convergence with the second scenario 
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All of those methods can be used for predicting the day ahead 
the optimal references of the power flows related to the 
microgrid power management (especially the storage 
management and the exploitation of the photovoltaic 
production) but are too expensive in the case of the microgrid 
simulation over a long period of time (typically on year). Such 
simulations are required in the context on a second 
optimization step related to the microgrid component sizing 
taking seasonal variations into account. To face this problem an 
original fast power flow dispatching approach has been 
presented. This approach relies on the use of LP techniques in 
association with a coarse linear model of the microgrid in order 
to speed up the computational time. Then, a correction 
procedure is applied for aligning the results of the coarse model 
with that on the finer nonlinear model. This approach has 
shown to be highly effective leading to a significant reduction 
of the computational time of the power flow scheduling. In a 
second part of the paper, a second optimization level has been 
introduced aiming at finding the optimal microgrid 
configuration with regard to different design variables (power 
management variables and sizing variables). Finally the 
microgrid sizing has been investigated by optimizing the most 
influent design variables issued from a sensitivity analysis. For 
solving this particular problem where the objective function is 

still quite expensive (15 min) the EGO has been used in find 
the optimal microgrid configuration with a small number of 
objective function calls. We have voluntary restricted the study 
to the most important sizing variables (i.e. the PV generator 
and storage sizes) for simplifying the problem and for better 
illustrating the approach based on the use of the EGO. 
However, without loss of generality, this global integrated 
design approach could be applied with regard to additional 
parameters mentioned in the paper (e.g. subscribed power or 
scheduling period) and other scenarios of energy price policies. 
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