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Stability analysis of asynchronous sampled-data systems with discrete-time

constant input delay

Alexandre Seuret, Corentin Briat and Frédéric Gouaisbaut

Abstract— Aperiodic sampled-data systems controlled by a
delayed state-feedback controller arise naturally in networked
control systems. We propose a novel way to analyze the stability
of sampled-data systems with discrete-time constant input delay
by, first, reformulating the system into an aperiodic discrete-
time system with constant delay and by, then, considering a
mixture of a discrete-time Lyapunov-Krasovskii functional and
a looped-functional in order to account for the presence of
the delay and the sampling aperiodicity, respectively. Stability
criteria, expressed as linear matrix inequalities, are derived for
both certain and uncertain (time-varying) systems. An example
is given for illustration.

I. INTRODUCTION

Sampled-data systems are a particular class of systems

that have been extensively studied in the literature [1] as

they arise, for instance, in digital control [2] and net-

worked control systems [3], [4]. Several types of aperiodic

sampling is not as well understood as the periodic case

since the nonstationarity of the sampling process leads

to additional difficulties in the analysis problem. Several

approaches have been proposed in this regard. Discrete-

time systems approaches have been discussed in [5]–[8]

where the sampling-period-dependent exponential terms in

the stability conditions are embedded in a convex polytope,

and are therefore considered as time-varying uncertainties.

This approach leads to efficient and tractable conditions

that can be easily used to design controllers. However, the

approach is limited by the fact that only certain and time-

invariant systems can be considered. Another approach is

based on the so-called “input-delay approach” and consists of

reformulating the original sampled-data system into a time-

delay system [9]–[12]. The system can then be analyzed

using delay-techniques such as the Lyapunov-Krasovskii

theorem. The main advantage of this approach lies in the

possibility for considering uncertain, time-varying and even

nonlinear systems. One limitation is the difficulty for design-

ing controllers. Robust analysis techniques have also been

applied in a successful way using small-gain results [13],

IQCs [14]–[16] or well-posedness theory [17]. Approaches

based on impulsive systems have also been considered using

functionals [18] or clock-dependent Lyapunov functions [19].
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The latter approach has been shown to be able to both

characterize the robust stability of periodic and aperiodic

sampled-data systems in both the certain and (time-varying)

uncertain cases. Interestingly, robust stabilization conditions

for sampled-data systems can be easily formulated in a

convex form using this approach. In this regard, this frame-

work combines the efficiency of discrete-time and functional

approaches. Finally, the looped-functional-based approach

has been proposed in [20]–[22] to address the stability

analysis problem of sampled-data and impulsive systems.

This particular type of functional has the interesting property

of not being necessarily required to be positive definite.

Instead of that, we demand the fulfillment of a “looping

condition”, a certain boundary condition that can be made

structurally satisfied while constructing the functional. In this

regard, this class of functionals is therefore more general than

usual Lyapunov(-Krasovsksii) functionals as the looping-

condition turns out to be weaker than the positive definiteness

condition; see e.g. [20]–[22].

We propose to address the problem of stability analysis

of (uncertain) aperiodic sampled-data systems with discrete-

time input delay. While the delayed sampled-data systems

considered in [23], [24] are subject to a continuous-time

delay (the delay is in seconds), the systems we are interested

in here involve a discrete-time delay (the delay is a number

of samples). A solution to this problem, based on state

augmentation, has been proposed in [25]. The approach has

been shown to yield accurate results but with a quite high

computational complexity preventing then the application

of the method when the delay is large. This is the reason

why we will focus here on an alternative approach which is

not based on state augmentation. Instead, the corresponding

aperiodic discrete-time system with delay is directly consid-

ered and analyzed using an adequate blend of Lyapunov-

Krasovskii and looped-functionals. The approach is applied

to both certain and (time-varying) uncertain systems for

which stability criteria are derived and formulated as LMIs.

Outline. Section III states preliminary technical results for

dealing with LMIs and looped-functionals. The main stability

results addressing both the nominal and robust stability of

sampled-data systems with delay are presented in Section

IV. An illustrative example is finally discussed in Section V.

Notations. Throughout the paper, R
n denotes the n-

dimensional Euclidean space endowed with the vector 2-

norm | · |. The space of n ×m real matrices is denoted by

R
n×m. For a matrix P , the notation P ≻ 0 means that P

is symmetric and positive definite. The sets S
n and S

n
+ are

the set of n-dimensional symmetric and symmetric positive



definite matrices, respectively.

II. PROBLEM FORMULATION

Let us consider here linear continuous-time systems of the

form
ẋ(t) = Ax(t) +Bu(t), t ≥ 0,
x(0) = x0

(1)

where x ∈ R
n and u ∈ R

m are the state of the system and

the control input, respectively. Above, the matrices A and B
may be uncertain and/or time-varying. This will be explicitly

mentioned when this is the case. The control input u obeys

the following equation

u(t) = Kx(tk−h), t ∈ [tk, tk+1), k ∈ N, (2)

where K ∈ R
m×n is the controller gain and h ∈ N is the

constant time-delay. The sequence {tk}k∈N, t0 = 0, is the

sequence of sampling instants that we assume to obey the

condition Tk := tk+1 − tk ∈ [Tmin, Tmax] for all k ∈ N

and for some 0 < Tmin ≤ Tmax < ∞. Note that this

condition implies that the sequence is increasing and admits

no accumulation point, i.e. tk → ∞ as k → ∞.

The closed-loop system obtained from the interconnection

of (1) and (2) is given by

ẋ(t) = Ax(t) +BKx(tk−h), t ∈ [tk, tk+1), k ∈ N,
x(t−θ) = ψ(θ), θ = 0, . . . , h

(3)

for some ψ(θ) ∈ R
n with ψ(0) = x0 and where

{t−h, . . . , t−1} is a sequence of negative real numbers satis-

fying t−h < . . . < t−1 < 0. Note that since only stability is

considered, then ψ(θ) and {t−h, . . . , t−1} can be arbitrarily

chosen. Alternatively, the above system can be represented

by the time-delay discrete-time system

x(tk+1) = Ad(Tk)x(tk) +Bd(Tk)x(tk−h), k ∈ N,
x(t−θ) = ψ(θ), θ = 0, . . . , h

(4)

where Ad(Tk) = eATk and Bd(Tk) =
∫ Tk

0
eAsBKds.

Remark 1: It is important to stress that the system (3)

dramatically differs from the system

ẋ(t) = Ax(t) +BKx(tk − d), t ∈ [tk, tk+1)
x(θ) = φ(θ), θ ∈ [−d, 0],

(5)

defined for some delay d > 0, that has been studied,

for instance, in [26], [27], [23]. The delay here acts in a

continuous way on the delayed term whereas in (3) the delays

acts discretely. Note also that the above system is infinite-

dimensional while (3) is finite-dimensional. Both systems

actually coincide whenever the sampling-period T and the

delay h are constant and verify d = hT .

III. PRELIMINARIES

A. A preliminary result

The following result can be seen as a particular case of

the reciprocally convex combination result derived in [28]:

Lemma 3.1 ( [29]): Let R ∈ S
n
+ and α ∈ (0, 1). Then,

we have that
[

R/α 0
∗ R/(1− α)

]

�

[

I
−I

]⊺

R

[

I
−I

]

. (6)

Proof: We present here an alternative proof to the one

in [29]. First note that we obviously have

(1/α− 1)(R−R) � 0

and, from the non-strict Schur complement [30] and the facts

that α ∈ (0, 1) and R ≻ 0, we then obtain the equivalent

condition
[

(1/α− 1)R R
R (1/(1− α)− 1)R

]

� 0

where we have used the identity (1/α−1)−1 = 1/(1−α)−1.

This concludes the proof.

Note that the above bound is computationally less complex

than the original one derived in [28] since no additional

variable is introduced here. Regarding accuracy, it has been

emphasized through several examples in [29] that the in-

equality from [28] and the one provided in Lemma 3.1 yield

equivalent results for fast-varying delays systems.

B. Lifting of sampled-data systems trajectories

The looped-functional-based approach relies on the char-

acterization of the trajectories of system (3) in a lifted do-

main [31], [21]. We therefore view the entire state-trajectory

as a sequence of functions {x(tk + τ), τ ∈ (0, Tk]}k∈N
with

elements having a unique continuous extension to [0, Tk]
defined as

χk(τ) := x(tk + τ) with χk(0) = lim
s↓tk

x(s).

Finally, we define K as

K :=
⋃

T∈[Tmin, Tmax]

C([0, T ] → R
n).

Using this notation, the system (3) rewrites as

χ̇k(τ) = Aχk(τ)+BKχk−h(0), τ ∈ [0, Tk), k ∈ N. (7)

In what follows, we also consider the notation

χh
k(θ) = χk+θ(0) = x(tk+θ)

where θ ∈ {−h,−h+ 1, . . . , 0}. We also denote by χh
k the

vector col(χh
k(0), χ

h
k(−1), . . . , χh

k(−h)).

C. Definition and results about looped-functionals

Let us first define looped-functionals

Definition 3.2 ( [21]): Let 0 < Tmin ≤ Tmax < ∞. A

functional

f : [0, Tmax]×K× [Tmin, Tmax] → R,

is said to be a looped-functional if

1) the equality

f(0, z, T ) = f(T, z, T ) (8)

holds for all functions z ∈ K and all T ∈ [Tmin, Tmax]
and

2) it is differentiable with respect to the first variable with

the standard definition of the derivative.

The set of all such functionals is denoted by LF([Tmin,
Tmax]).



The idea for proving stability of (3) is to look now for a

positive definite quadratic form V such that the sequence

{V (χk(0), χ
h
k)}k∈N is monotonically decreasing. This is

formalized below through a functional existence result:

Theorem 3.3: Let 0 < Tmin ≤ Tmax < ∞, h ∈ N and

V : Rn × R
n(h+1) → R+ be a quadratic form verifying

µ1|ϕ2|
2 ≤ V (ϕ1, ϕ2) ≤ µ2|ϕ2|

2 (9)

for some scalars 0 < µ1 ≤ µ2 and for any (ϕ1, ϕ2) ∈
R

n × R
n(h+1) where ϕ2 =

[

ϕ⊺

1 ∗
]⊺

. Assume further that

one of the following equivalent statements hold:

1) The sequence {V (χk(0), χ
h
k)}k∈N is decreasing.

2) There exists a looped-functional V ∈
LF([Tmin, Tmax]) such that the functional Wk

defined as

Wk(τ, χk, χ
h
k) :=

τ

Tk
Λk + V (χk(τ), χ

h
k)

+V(τ, χk, Tk)
(10)

with Λk = V (χk+1(0), χ
h
k+1) − V (χk(Tk), χ

h
k) is

decreasing along the trajectories of the system (7), i.e.

the derivative

d

dτ
Wk(τ, χk, χ

h
k) :=

1

Tk
Λk +

d

dτ
V(τ, χk, Tk)

+
d

dτ
V (χk(τ), χ

h
k)

(11)

is negative definite for all τ ∈ [0, Tk], Tk ∈
[Tmin, Tmax], k ∈ N.

Then, the system (3) with delay h is asymptotically

stable for any sequence {tk}k∈N satisfying tk+1 − tk ∈
[Tmin, Tmax], k ∈ N.

Proof: The proof is similar to the one derived in [20],

[21] and is thus omitted.

IV. STABILITY ANALYSIS

A. Nominal stability analysis

This section provides a stability result for aperiodic

sampled-data systems with a constant delay h. We have the

following result:

Theorem 4.1: The sampled-data system (7) with the delay

h is asymptotically stable for all Tk := tk+1 − tk ∈
[Tmin, Tmax], k ∈ N, if there exist matrices R,Q,Z ∈ S

n
+,

P,X ∈ S
2n, S1, S2 ∈ S

n, U1, U2 ∈ R
n×n such that the

LMIs

Φ0 :=

[

I
I

]

P

[

I
I

]

≻ 0,

Φ1(θ) :=

[

F0(θ) + θF1 θM⊺

0 Z
⋆ −Z

]

≺ 0,

Φ2(θ) :=

[

F0(θ) + θF2 θM⊺

0 Z
⋆ −Z

]

≺ 0

(12)

hold for all θ ∈ {Tmin, Tmax} where

F0(θ) = F00 + θ Sym

[[

M1

M3

]⊺

P

[

M0

0

]]

+F01 − F02,
F00 = M⊺

∆S1M∆ + Sym[(M⊺

∆U1 −M⊺

δ U2)MT ]
−M⊺

δ S2Mδ

F01 = M⊺

2 Φ0M2 −M⊺

TPMT +M⊺

3QM3

−M⊺

4QM4 + h2M⊺

δ RMδ −M⊺

hRMh,
F02 = (M12 +M13)

⊺Z(M12 +M13),
F1 = Sym[M⊺

0 (S1M∆ + U1MT )]−M⊺

TXMT ,
F2 = Sym[M⊺

0 (S2Mδ + U2MT )] +M⊺

TXMT

with M12 =M1 −M2, M13 =M1 −M3 and

M0 =
[

A 0 0 BK
]

, M1 =
[

I 0 0 0
]

,

M2 =
[

0 I 0 0
]

, M3 =
[

0 0 I 0
]

,

M4 =
[

0 0 0 I
]

, M∆ =
[

I −I 0 0
]

,

Mδ =
[

0 I −I 0
]

, Mh =
[

0 0 I −I
]

,

MT =
[

M⊺

2 M⊺

3

]⊺

.

Proof: See Appendix A.

As already mentioned in [20], [21], looped-functionals do

not need to be positive definite for all τ ∈ [0, Tk], but

need instead to satisfy the looping condition (8). In this

regard, the class of looped-functionals is larger than the

class of Lyapunov functionals considered, for instance, in

[18], [12], [10], since the looping-condition is a weaker

condition than the condition of positive definiteness. Note

also that looped-functionals can incorporate information that

is usually not considered in Lyapunov functionals. Notably,

the term χk(Tk) is never involved in any of the Lyapunov

functionals considered in the literature.

The novelty with respect to previous works is twofold.

Firstly, the obtained conditions do not involve any additional

decision variables; introduced for instance in the process

of deriving the stability conditions from the derivative of

the functional. This has been made possible via the use

of the bound stated in Lemma 3.1. Secondly, the proposed

method allows for the merging of a discrete-time stability

criterion (although stated in continuous-time through the use

of looped-functionals) to account for aperiodic sampling,

together with a discrete-time Lyapunov-Krasovskii functional

for dealing with the delay, in a simultaneous way. Until

now, this combination of functionals has never been proposed

anywhere else in the literature.

B. Robust stability analysis

One of the main advantages of the proposed method based

on looped-functionals relies on the possibility for extending

the stability conditions to uncertain systems. To this aim,

let us consider now that the matrices of the system (3) are

uncertain, possibly time-varying, and satisfy:

[

A(t) B(t)
]

=

N
∑

i=1

λi(t)
[

Ai Bi

]

(13)

where N is a positive integer and the matrices Ai and Bi,

i = 1, . . . , N , are known and of appropriate dimension. The



time-varying parameters λi(t), i = 1, . . . , N , evolve within

the N -unit simplex, that is we have

N
∑

i=1

λi(t) = 1, λi(t) ≥ 0, i = 1, . . . , N, t ≥ 0.

We then have the following result:

Corollary 4.2: The uncertain sampled-data system (7)-

(13) with delay h ∈ N is asymptotically stable for all Tk :=
tk+1 − tk ∈ [Tmin, Tmax], k ∈ N if there exist matrices

R,Q,Z ∈ S
n
+, P,X ∈ S

2n, S1, S2 ∈ S
n, U1, U2 ∈ R

n×n

such that the LMIs
[

I
I

]

P

[

I
I

]

≻ 0,

[

F i
0(θ) + θF i

1 θM i
0

⊺

Z
⋆ −Z

]

≺ 0,

[

F i
0(θ) + θF i

2 θM i
0

⊺

Z
⋆ −Z

]

≺ 0

(14)

hold for all θ ∈ {Tmin, Tmax} with

F i
0(θ) = F00 + θ Sym

[[

M1

M3

]⊺

P

[

M i
0

0

]]

+F01 − F02,

F i
1 = Sym[M i

0

⊺

(S1M∆ + U1MT )]−M⊺

TXMT ,

F i
2 = Sym[M i

0

⊺

(S2Mδ + U2MT )] +M⊺

TXMT ,

where M i
0 =

[

Ai 0 0 BiK
]

and all the others M ’s

matrices are defined in Theorem 4.1.

Proof: The proof follows from the fact that the LMI

conditions of Theorem 4.1 are affine in the matrix M0.

Noting finally that

M0(t) =
[

A(t) 0 0 B(t)K
]

=

N
∑

i=1

λi(t)
[

Ai 0 0 BiK
]

then the result follows from a simple convexity argument.

V. EXAMPLE

Let us consider the sampled-data system (3) with matrices

[32]:

A0 =

[

0 1
0 −0.1

]

, B0 =

[

0
−0.1

]

and K =
[

3.75, 11.5
]

.

(15)

In the case of constant sampling-period T , we can determine,

for any delay value h, the maximal sampling-period that still

preserves the stability of the system (3)-(15) by checking at

the location of the eigenvalues of the matrix governing the

corresponding discrete-time system. These values are upper-

bounds to the maximal admissible Tmax in the aperiodic-case

since stability regions of aperiodic sampled-data systems are

included in those of periodic sampled-data systems. We then

use Theorem 4.1 to analyze the system (3)-(15) in both the

periodic and aperiodic sampling cases. The results are shown

in Table I and Table II, respectively.

We can see that, in the periodic case, i.e. Table I, the

conditions stated in Theorem 4.1 are almost nonconserva-

tive when the delay h is small, but that this conservatism

increases as the delay h increases. Note, however, that the

proposed approach yields results that are competitive with

previously obtained ones.

On the other hand, we can see, from Table II, that the

method proposed in [25] is able to yield more accurate results

than the proposed one in the aperiodic sampling case. This

stems from the fact that a tighter bound than the one stated

in Lemma 3.1 is used in [25] in order to derive stability

criteria. Note, however, that the computational complexity of

the current approach scales much better than the approach

considered in [25]. The complexity of the conditions derived

in this latter reference indeed increases exponentially with

the delay h, making the method quite impractical for large

values of the delay. In this regard, the proposed approach

shows a good tradeoff between accuracy and complexity.

TABLE I

MAXIMAL STABILITY-PRESERVING PERIODIC SAMPLING PERIOD

T̄ = Tmax = Tmin FOR THE SAMPLED-DATA SYSTEM (3)-(15) FOR

DIFFERENT VALUES OF THE DELAY h.

h 0 1 2 5 10

Theoretical bounds 1.729 0.763 0.463 0.216 0.112

[27] (with τ = hT ) 1.278 0.499 0.333 0.166 0.090
[33] (with τ = hT ) 1.638 0.573 0.371 0.179 0.096
[23] (with τ = hT ) 1.721 0.701 0.431 0.197 0.103

[25] 1.729 0.763 0.463 -∗1 -∗1

Theorem 4.1 1.728 0.761 0.448 0.199 0.103

TABLE II

MAXIMAL STABILITY-PRESERVING Tmax (WITH Tmin = 10
−2) FOR

THE APERIODIC SAMPLED-DATA SYSTEM (3)-(15) FOR DIFFERENT

VALUES OF THE DELAY h.

h 0 1 2 5 10

[25] 1.729 0.763 0.463 -∗1 -∗1

Theorem 4.1 1.708 0.618 0.377 0.176 0.094

VI. CONCLUSION

A novel way for analyzing stability of periodic and

aperiodic uncertain sampled-data systems with discrete-time

delays has been presented. Instead of using a discrete-

time criterion that would prevent the generalization of the

approach to uncertain systems with time-varying uncertain-

ties, an alternative approach based on looped-functionals

and Lyapunov-Krasovskii functionals has been preferred.

The novelty of the method is twofold. First, the stability

conditions are free of slack variables, hence numerically

less complex than those of the literature, while still being

competitive with them in terms of conservatism, at least, for

the considered example. Second, the obtained stability condi-

tions are derived from the combination of looped-functionals

1The entry “-∗” in the tables means that the conditions were not checked
due to an unreasonable computational complexity.



and Lyapunov-Krasovskii functionals, an approach that has

never been explored before.

Future works will be devoted to the extension to the time-

varying delay case and on the use of tighter inequalities in

order to reduce the overall conservatism of the approach.

APPENDIX

A. Proof of Theorem 4.1

Let us consider the Lyapunov function for the discrete-

time system (4) given by

V (χk(τ), χ
h
k) =

[

χk(τ)
χk(0)

]⊺

P

[

χk(τ)
χk(0)

]

+
k−1
∑

i=k−h

χ⊺

i (0)Qχi(0)

+h

−1
∑

i=−h

k−1
∑

j=k+i

δ⊺i (0)Rδi(0)

where δi(0) = χi+1(0) − χi(0). Let us also define the

functional V as

TkV(τ, χk, Tk) = τ(Tk − τ)

[

χk(Tk)
χk(0)

]⊺

X

[

χk(Tk)
χk(0)

]

+τ(χk(τ)− χk(Tk))
⊺S1(χk(τ)− χk(Tk))

+(Tk − τ)(χk(τ)− χk(0))
⊺S2(χk(τ)− χk(0))

+2τ(χk(τ)− χk(Tk))
⊺U1

[

χk(Tk)
χk(0)

]

+2(Tk − τ)(χk(τ)− χk(0))
⊺U2

[

χk(Tk)
χk(0)

]

+T 2
k

∫ τ

0

χ̇k(s)
⊺Zχ̇k(s)ds

−Tkτ

∫ Tk

0

χ̇k(s)
⊺Zχ̇k(s)ds

(16)

where Z ∈ S
n
+, S1, S2 ∈ S

n, X ∈ S
2n and U1, U2 ∈ R

n×2n.

Note that this functional verifies the equality

V(0, χk, Tk) = V(Tk, χk, Tk) = 0

for all Tk ∈ [Tmin, Tmax]. Following Theorem 3.3, we

consider

Ẇk(τ, χk, χ
h
k) =

1

Tk

(

Λk + TkV̇ (χk(τ), χ
h
k)

+TkV̇(τ, χk, Tk)
)

where Λk is defined in Theorem 3.3. The asymptotic stability

of the system (7) is established if we can prove 1) the positive

definiteness of V (χk(0), χ
h
k) and 2) the negative definiteness

of Ẇk. Note first that V (χk(0), χ
h
k) is positive definite if

Φ0, Q and R are also positive definite. This proves the first

condition. Let us now focus on the second one and, to this

aim, we define the augmented vector

ξk(τ) :=









χk(τ)
χk(Tk)
χk(0)
χk−h(0)









.

We then have

Λk =

[

χk+1(0)
χk+1(0)

]⊺

P

[

χk+1(0)
χk+1(0)

]

+ χ⊺

k(0)Qχk(0)

−

[

χk(Tk)
χk(0)

]⊺

P

[

χk(Tk)
χk(0)

]

− χ⊺

k−h(0)Qχk−h(0)

+h

k
∑

i=k−h+1

δ⊺i (0)Rδi(0).

Since χk+1(0) = χk(Tk), the previous expression can easily

be reformulated in terms of the augmented vector ξk(τ).
Applying then Jensen’s inequality to the summation term

yields

Λk ≤ ξ⊺k (τ)

(

M⊺

2 Φ0M2 −

[

M2

M3

]⊺

P

[

M2

M3

]

+M⊺

3QM3 −M⊺

4QM4

+ h2M⊺

δ RMδ −M⊺

hRMh

)

ξk(τ)

= ξ⊺k (τ)F01ξk(τ).
(17)

Note that we also have

V̇ (χk(τ), χ
h
k) = 2

[

χk(τ)
χk(0)

]⊺

P

[

χ̇k(τ)
0

]

= 2ξ⊺k (τ)

[

M1

M3

]⊺

P

[

M0

0

]

ξk(τ),

(18)

and, finally,

TkV̇(τ, χk, Tk) = (Tk − 2τ)

[

χk(Tk)
χk(0)

]⊺

X

[

χk(Tk)
χk(0)

]

+(χk(τ)− χk(Tk))
⊺S1(χk(τ)− χk(Tk))

−(χk(τ)− χk(0))
⊺S2(χk(τ)− χk(0))

+2τ χ̇⊺

k(τ)S1(χk(τ)− χk(Tk))
+2(Tk − τ)χ̇⊺

k(τ)S2(χk(τ)− χk(0))

+2(χk(τ)− χk(Tk))
⊺U1

[

χk(Tk)
χk(0)

]

−2(χk(τ)− χk(0))
⊺U2

[

χk(Tk)
χk(0)

]

+2χ̇⊺

k(τ) (τU1 + (Tk − τ)U2)

[

χk(Tk)
χk(0)

]

+T 2
k χ̇k(τ)

⊺Zχ̇k(τ)− Tk

∫ Tk

0

χ̇k(s)
⊺Zχ̇k(s)ds.

(19)

The previous expression can be rewritten as

TkV̇(χk, τ) = ξ⊺k (τ) [F00 + τF1 + (Tk − τ)F2

+T 2
kM

⊺

0 ZM0

]

ξk(τ)

−Tk

∫ Tk

0

χ̇k(s)
⊺Zχ̇k(s)ds

(20)

where the matrices F00, F1, F2 are defined in Theorem

4.1. Splitting then the integral into two parts and applying

Jensen’s inequality yields

TkV̇(χk, τ) ≤ ξ⊺k (τ)
[

F00 + τF1 + (Tk − τ)F2

+T 2
kM

⊺

0 ZM0

−

[

−M12

M13

⊺] [ Tk

Tk−τ
Z 0

0
Tk

τ
Z

] [

−M12

M13

]]

ξk(τ).

(21)



where the matrices F00, F1, F2 are defined in Theorem 4.1.

By applying then Lemma 3.1 with α = 1 − τ/Tk, we then

obtain

M̄⊺

[

Tk

Tk−τ
Z 0

0 Tk

τ
Z

]

M̄ � M̄⊺

[

I
−I

]

Z

[

I
−I

]⊺

M̄ = F02

where M̄ =
[

−M⊺

12 M⊺

13

]⊺

. Using the above bound in (21)

yields

TkV̇(χk, τ) ≤ ξ⊺k (τ) [F00 − F02 + τF1 + (Tk − τ)F2

+ T 2
kM

⊺

0 ZM0

]

ξk(τ).
(22)

By finally combining (17), (18) and (22) together, we obtain

that

Ẇk ≤
1

Tk
ξk(τ)

⊺ [F0(Tk) + τF1 + (Tk − τ)F2

+T 2
kM

⊺

0 ZM0)
]

ξk(τ).
(23)

A Schur complement yields that the (3) is asymptotically

stable if the LMI
[

F0(Tk) + τF1 + (Tk − τ)F2 TkM
⊺

0 Z
∗ −Z

]

≺ 0 (24)

is negative definite for all τ ∈ [0, Tk] and all Tk ∈
[Tmin, Tmax]. Since the above LMI is affine in τ (hence

convex), to check its negative definiteness over the entire

interval [0, Tk], it is necessary and sufficient to check it

at the vertices of the set, that is only over the finite set

τ ∈ {0, Tk}, which yields the two conditions Φ1(Tk) ≺ 0
and Φ2(Tk) ≺ 0. The end of the proof is obtained by noting

that the LMIs Φ1(Tk) ≺ 0 and Φ2(Tk) ≺ 0 are also affine in

Tk and the same procedure applies with the set [Tmin, Tmax],
finally yielding the conditions (14). The proof is complete.
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