
HAL Id: hal-01065145
https://hal.science/hal-01065145

Submitted on 18 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid control of a three-agent network cluster
Carolina Albea-Sanchez, Alexandre Seuret, Luca Zaccarian

To cite this version:
Carolina Albea-Sanchez, Alexandre Seuret, Luca Zaccarian. Hybrid control of a three-agent network
cluster. 53th IEEE Conference on Decision and Control (CDC 2014), Dec 2014, Los Angeles, CA,
United States. pp.6. �hal-01065145�

https://hal.science/hal-01065145
https://hal.archives-ouvertes.fr


Hybrid control of a three-agent network cluster

Carolina Albea, Alexandre Seuret and Luca Zaccarian

Abstract—We consider the management problem
for a cluster of three identical servers treating an
external request. We assume that each agent has a
constant computational speed and we build a deter-
ministic hybrid dynamical model of the overall sys-
tem. Then, inspired by consensus theory, we propose
a centralized control law distributing the computa-
tional load among the agents and deciding when to
turn on or off each agent, for energy efficiency, while
ensuring that the queues of each agent asymptotically
converge to a desirable level. We prove the properties
of the proposed law and highlight some interesting
peculiarities in terms of non-uniform convergence.

I. Introduction

Distribution of computational load across available
resources is referred to as the “load balancing prob-
lem” in the literature. This problem refers to classical
problems of distributing information over a server net-
work as a common parallel computer architecture [1]
or balancing energy delivery network architecture for
the decentralized hierarchical integration of microgrids
[2], for instance. Various taxonomies of load balancing
algorithms exist. Assignment may be either deterministic
and gradient methods, stochastic, or optimization based.
A comparison of several deterministic methods is pro-
vided by Willebeek-LeMair and Reeves [3]. Approaches
to modeling and static load balancing are given in [4],
[5].
In addition, to distribute computational load, one

may look at another control loop consisting in activity
management of the agent. There are few studies related
with this problem, which handles an on-off switch of
the network components. Some algorithms have been
already been proposed to address this problem from
the computer science point of view in the case of a
sensor network (see for instance [6], [7]). However, these
type of algorithms does not consider computational load,
stability , robustness with respect to traffic loss, queueing
delays and disturbance.
When wanting to suitably describe the dynamics be-

hind the activity of servers that could be turned on
an off, a natural approach that comes to mind is that
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of hybrid dynamical systems, where solutions may con-
tinuously flow according to some differential equation
(thereby describing the continuous evolution of the net-
work) and may discontinuously jump according to some
re-initialization rule that would comprise, for example,
the turning on and off of a server. Here we adopt this
strategy and we develop our results using the notation
and the framework proposed in the recent work [8], [9],
wherein a hybrid dynamical systems is described as a set
of constraints that a generic solution should satisfy when
flowing and when jumping.

This paper proposes a novel strategy for management
of the activity in a network. Our approach relies on a
relevant dynamic model following deterministic control
theory (differently, e.g., from [10] where probabilistic
approaches like Markov chains are used), and to the
theory of multi-agent systems [11], and the above men-
tioned theory of hybrid systems [8]. In addition to a
load balancing control, this work aims at controlling the
activity of agents in a network. A distributed activity
management of the agents to adjust the number of them
to the total demanded load appears as an innovative and
relevant solution.

The paper is organized as follows. In Section II,
problem formulation for three agents is stated. Then, a
description of the control law based on a consensus algo-
rithm and a hybrid modeling is proposed in Section III.
The proof of the main theorem is provided in Section IV.
Some simulations are showed in Section V to emphasize
the control architecture presented in this article. Finally
Section VI draws some conclusions.

Notation: The set of non-negative reals is denoted by
R≥0. Given a vector w, |w| denotes its Euclidean norm.
The notation 1 represents the vector of appropriate
dimension whose entries are all 1. Given a set D, D̄
denotes its closure and Dc denotes its complement.

II. Problem formulation

A. Source and agents

Consider a source S that distributes the requests rate
w among a set of three agents N := {1, 2, 3}. The
objective of the agents is to perform suitable processing
of this processing load.

We represent the information flow through the network
via the processing requests coming from the source and
the processing service provided by the agents. The agents
are assumed to have limited and fixed processing rate
denoted as computational capacity y.



Fig. 1: The considered three-agent cluster.

The core contribution of this paper within the consid-
ered scenario is to propose a feedback control scheme for
suitably turning on and off each agent, which adjusts the
right number of agents to be activated in order to process
the amount of requests from the source. For this reason,
the following assumption is introduced

Assumption 1: The amount of load rate w̄ ∈ R>0

requested by the source is constant and the processing
rate y ∈ R satisfies

w̄ = yn∗ = 2y. (1)

Assumption 1 means that there exists a number n∗ =
2 of switched-on agents in the network that can treat
exactly the number of requests provided by the sources.

B. Dynamics of the agents: a saturated integrator model

Associate with each agent i ∈ N a state variable αi ∈
{0, 1}, whose value indicates whether the agent should be
in a quiescent state (αi = 0), typically associated with
low consumption, or in an active state (αi = 1) that, as
clarified later, corresponds to full information processing
rate. We say that an agent i ∈ N is active if αi = 1
and it is inactive if αi = 0. For notational simplicity
we introduce the following network activity vector α ∈
{0, 1}3:

α =





α1

α2

α3



 ,

which is a (discontinuously) time-varying quantity.

To perform suitable processing of the workload coming
from source, we equip each agent with a queue which is
able to locally store the requests arriving from the source
and still not processed. To this aim, we introduce for each
i ∈ N the state queue length qi ∈ R≥0, whose variation q̇i
corresponds to the difference between the requested rate
coming from the source and the maximum processing
rate y. Note that special care has to be taken to ensure
that any solution t 7→ qi(t) to the proposed dynamics
satisfies qi(t) ∈ R≥0 for all t ≥ 0. Hence, to ensure
existence of solutions of the corresponding mathematical
model, we need to formulate the dynamics in terms of a
hybrid system given below, where we use xi = (qi, βi, αi):






q̇i = βi

:=ξi
︷ ︸︸ ︷

(αi(ui + w̄/n)− y),

β̇i = 0,

(xi, ξi) ∈ C0
i , i ∈ N

{
q+i = 0,
β+
i = gβ(αi, ξi),

(xi, ξi) ∈ D0
i , i ∈ N

(2a)
where the flow and jump sets are given by:

C0
i = ([0,+∞)× {0, 1} × {0, 1}) \ ([0,+∞]× {0} × {1}) ,

D0
i =Dact

i ∪Dempty
i

,
Dact

i = {(xi, ξi) : qi = 0 and αi 6= βi}
Dempty

i
= {(xi, ξi) : qi = 0, βi = 1 and ξi ≤ 0}

(2b)

and the jump map for the activation states (αi, βi) is
defined as:

gβ(αi, ξi) =

{

αi if (xi, ξi) ∈ Dact
i

0, if (xi, ξi) ∈ Di.
empty

(2c)

In the selection of the input ξi to the i-th agent, w̄/n
represents the requests rate coming from the source and
n is the number of active agents, which is defined by

n = αT
1 = αTα = αTβ. (3)

Note that for simplicity the total rate is split in equal
parts among the active agents. Finally, ui ∈ R is the
control input that will be designed in this paper, as
specified in the next section.
According to the hybrid system notation in [8],

the continuous-time dynamics equation (2a) should be
understood in the sense that solutions may satisfy
d
dt
qi(t, j) = αi(ui + w̄/n) − βiy for all (t, j) in their do-

main. As a consequence, if one chooses the unreasonable
initial conditions qi(0, 0) < 0, namely qi(0, 0) /∈ R≥0 the
dynamics constraint (2) implies that the solution cannot
be continued because the flow map (that is, the set of
allowed flow directions) is empty. Conversely, whenever
one selects the reasonable initial condition qi(0, 0) ≥ 0,
the following lemma ensures the well behavedness of
dynamics (2) in terms of existence of complete non-
negative solutions (in addition to regularity of the right
hand side of (2a)).

Lemma 1: The system data in (2) satisfies the hybrid
basic conditions of [8, Ch. 6]. Moreover, if qi(0, 0) ∈ R≥0,
then for any selection of the inputs ξi, αi such that ξi ≤ 0
and qi = 0 only if αi = 0, dynamics (2) has at least
one complete solution having unbounded domain in the
ordinary time direction.

Proof: The hybrid basic conditions can be easily
checked by inspection. Regarding existence of solutions,
notice that for all qi > 0 solutions can flow, while for qi =
0, if the input ξ is negative (so that the flow map would
point outside of the flow set), then the state belongs to
the jump set and may jump to βi = 0, from where flow
is once again possible.

Remark 1: Dynamics (2) can be interpreted as a suit-
able description of the dynamics of a scalar saturated
integrator whose output is qi. In particular the integrator



is only saturated from below and its lower saturation
value is zero. This dynamical description may be easily
equipped with an upper saturation limit and corresponds
to a desirable outer semicontinuous model of the satu-
rated integrator ensuring existence of solutions from the
well-posedness results in [8, Ch. 6]. �

Despite the desirable result about existence of com-
plete solutions (thereby providing a practically reason-
able mathematical model), the hybrid basic conditions
ensure that the agents dynamics in (2) is a well-posed
hybrid dynamical system (see [8, Ch. 6]). As established
in [8, Ch. 5 and 6], well-posedness ensures that no
unpredicted solutions can be generated by arbitrarily
small perturbations affecting the system’s data.

A more realistic server structure dynamical model will
have to take into account in future work.

C. Connection graph among agents

According to the activities of the agents α =
[α1, α2, α3]

T , we classically define the adjacency matrix
as

A(α) = [aih(α)] =

{
αiαh if i 6= h,
0 if i = h.

(4)

and the diagonal matrix ∆(α) as

∆(α) =

{
0 if i 6= h,

∑

k∈N ,k 6=i aik(α) if i = h.

Therefore, the Laplacian matrix representing the undi-
rected graph is given by

L(α) = ∆(α)−A(α). (5)

The Laplacian of an undirected graph is a symmetric
positive semi-definite matrix. It is worth mentioning that
the resulting Laplacian L(α) represents the complete
graph among the agents that are on (comprising the
bold arrows in Figure 1 not insisting on inactive agents).
Matrix L(α) satisfies the following useful properties.

Property 1: The following relations hold

L(α)1 = L(α)α = 0, 1
TL(α) = αTL(α) = 0. (6)

Proof: The proof of the previous relation are
straightforwardly derived from the property of a Lapla-
cian matrix and from the construction of L(α).

D. Control objectives

The goal of this paper is to propose a suitable control
law that both coordinates the activation/deactivation of
the agents and assigns the inputs ui to each agent to
achieve the following goals along the solutions to the
proposed closed-loop :

• The number of active agents satisfies,

lim
t→+∞

(n− n∗) = 0. (7)

• Given a desired queue length q∗ > 0 and a desired
range ε > 0, the queue length qi, for any i = 1, 2, 3,
must satisfy

lim
t→+∞

αi = 1 ⇒ lim
t→+∞

qi ∈
[

q∗ −
ε

2
, q∗ +

ε

2

]

, (8)

lim
t→+∞

αi = 0 ⇒ lim
t→+∞

qi = 0. (9)

• All the requested processing is treated during the
transient:

∑

i∈N

q̇i = w̄ −
∑

i∈N

βiy, ∀t ≥ 0. (10)

Remark 2: Note that the first two control objectives
above essentially correspond to a practical load balanc-
ing requirement among the agents that will eventually
remain active, together with the requirement that the
agents eventually remaining inactive converge to having
an empty queue (so that they can be shut off). Condition
(7) can be enforced in the simplified setting of this paper
because of Assumption 1. The third requirement is a flow
constraint on the solutions comprising the fact the sum of
the instantaneous difference between the total requested
processing rate (w̄) and the actual total processing rate
of the agents (

∑

i∈N βiy) is losslessly stored within the
queues of the agents (

∑

i∈N q̇i). This requirement can be
satisfied by a suitable selection of inputs ui. �

We may well represent the two first control objectives
in terms of an error variable e, which is defined by

e =

[
αT q̃
ñ

]

, (11a)

where ñ = n− n∗and q̃ =





q1 − q∗

q2 − q∗

q3 − q∗



 . (11b)

In the next section, we will develop a control scheme
based on a consensus algorithm and a hybrid modeling
which fulfills these control objectives.

III. Proposed control law

A. Load balancing control law

Using model (2), and the interconnection (Lapla-
cian) matrix (5), we may select a dynamic distributed
controller, that represents the flux exchanged between
agents, corresponding to

ui = −kp
∑

h∈N

aih(qh − qi), ∀i = 1, 2, 3. (12)

The coefficient kp is positive parameter. This control
refers to a classical consensus algorithm for simple in-
tegrator multi-agent systems [11], [12], which ensures
that the length of the queues converge to an agreement.
Gathering all the dynamics of the queues in (2), the
following equations are derived

q̇ = u+ α
w̄

n
− βy, u=





u1

u2

u3



=−kpL(α)q, (13)



where L(α) is the Laplacian matrix defined in (5). Equa-
tions (13) have been obtained from the entries of L(α)
defined in (4), which ensure that the equality αiui = ui

holds for any i = 1, 2, 3, and thanks to the fact that,
according to dynamics (2), when the queue is empty, the
agent will be turned off and we will obtain, in (13), q̇i = 0
until the agent is possibly activated again.

In the following lemmas, we will show two important
properties of selection (12), which correspond to a few
central features enabling us to meet the control objectives
specified in Section II-D.

Lemma 2: The distributed control law (12) satisfies
the complete processing condition (10).

Proof: Consider equations (13) and take the sum
over all the agents, to get

∑

i∈N

q̇i =
∑

i∈N

ui + αT
1
w̄

n
︸ ︷︷ ︸

=w̄

−
∑

i∈N

βiy,

therefore the result follows if:
∑

i∈N

ui = αTu = −kp
(
αTL(α)

)
q = 0, (14)

which follows from the relation αTL(α) = 0, established
in Property 1.

Lemma 3: The quantity αT q represents the sum of the
active queues and satisfies

αT q̇ = −ñy. (15)

Proof: From equation (13), we get

αT q̇ = −kp
(
αTL(α)

)
q + (αTα/n)w̄ − αTβy.

We may use again αTL(α) = 0 together with the
definitions of n in (3) and n∗ in (1) to show that

αT q̇ = (n∗ − n)y = −ñy,

which ends the proof.

B. Hybrid control scheme

This section is dedicated to the introduction of an ap-
propriate model to represent the continuous and discrete-
time behavior of the system. Hence, we propose a hybrid
modeling, which basically gathers the two dynamics in a
single model. A possible solution is described below

ẋi = fi(xi, ui, w̄), (xi, e) ∈ Ci,
x+
i ∈ Gi(xi), (xi, e) ∈Di,

(16a)

for i = 1, 2, 3, where for each i ∈ {1, 2, 3},

Gi(xi, e) =







goni (xi), if (xi, e) ∈Don
i ,

goffi (xi), if (xi, e) ∈Doff
i \D0

i ,
g0i (xi), if (xi, e) ∈D0

i \D
off
i ,

g0i (xi) ∪ goffi (xi), if (xi, e) ∈Doff
i ∪ D0

i ,
(16b)

xi :=





qi
βi

αi



 , fi(xi, ui, w̄) :=





αi(ui + w̄/n)− βiy
0
0





(16c)

goni (xi) :=





qi
1
1



 goffi (xi) :=





qi
1
0



 g0i (xi) :=





0
0
0





(16d)
and D0

i is defined in (2b)

Don
i = {(xi, e) : αi = 0, φon(qi, e) ≥ 0, αT q̃ + ñq∗ ≥ ε/2}

Doff
i = {(xi, e) : αi = 1, φoff(qi, e) ≤ 0, αT q̃ + ñq∗ ≤ −ε/2}

Ci =Dc

i
,

(17)
where Dc

i is the closure of the component of Di, Di =
Don

i ∪ Doff
i ∪ D0

i . The variable e represents the shared
information, which has been introduced in (11a) and
will be used to define the control law. The functions
associated to the jump sets in (17) are selected as:

φon(qi, e) := αT q̃ − ñq̃i − (ñ+ 1)(ε+ ñq∗) (18)

φoff(qi, e) := αT q̃ − ñq̃i − (ñ− 1)(ε− ñq∗) (19)

where we recall that q̃i = qi − q∗, q̃ = q − 1q∗ and ñ =
n− n∗ as defined in equation (11a).
Remark 3: Note that the state βi multiplies the whole

right hand side in the first equation of (2a) but it only
multiplies the quantity y in the first equation in the
definition of fi in (16). This simplification is possible
because fi is only evaluated along flows, and no solutions
to (2) can flow if βi = 0 and αi = 1 (see the definition of
C◦
i in (2b)). �

We are now in the position to express the dynamics of
the overall system as a hybrid system described by

ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D

(20)

where x =





x1

x2

x3



 , and

f(x) =





f1(x1, u1, w̄)
f2(x2, u2, w̄)
f3(x3, u3, w̄)



 , C =
⋂

i=1,2,3

Ci

G(x) =
⋃

k=1,2,3: xk∈Di

Ḡk(x), D=
⋃

i=1,2,3

Di

where we recall that the input ui’s are functions of the
variable x as showed in equation (12) and

Ḡ1(x, e) =





G1(x1, e)
x2

x3



 , Ḡ2(x, e) =





x1

G2(x2, e)
x3



 ,

Ḡ3(x, e) =





x1

x2

G3(x3, e)



 .

The following theorem is the main result of this paper.



Theorem 1: Consider the overall network cluster
whose dynamics is governed by equations (16)–(19),
equivalently (20). Under Assumption 1, this network
cluster meets the three design goals specified in Sec-
tion II-D.

The proof of Theorem 1 is given in Section IV and re-
quires suitable characterizations of the overall dynamics
and using the peculiar selections of jump and flow sets
in (17)–(19), in addition to the instrumental results of
Lemmas 2, 3 and Property 1.

From an intuitive viewpoint, the scheme is character-
ized by a peculiar behavior where the activation and de-
activation of the agents is autonomously decided in order
to guarantee convergence to the set [−ε/2, ε/2] of the
quantity αT q̃. Indeed, as a byproduct of Lemma 3, this
quantity evolves according to the following “quantized”
behavior:

α ˙̃q = −ñy,

and enabling or disabling agents (namely, changing ñ)
allows us to shrink it to zero.

A second part of the scheme, which is perhaps more
classical, is the consensus law, operating when solutions
flow, which can be rewritten in terms of the shifted
variables q̃i and ñ. From equation (13) and since q∗ is
constant, the dynamics of the shifted variable q̃ can be
written as

˙̃q = −kpL(α)q̃ −
w̄
n
α− βy, (21)

which performs the desired load balancing among the
queues of the active agents.

IV. Proof of Theorem 1

To the aim of proving Theorem 1, we will use the
following lemma, establishing useful properties of trajec-
tories. Note that we cannot perform a Lyapunov proof
of the convergence property established in Theorem 1
because the proven convergence result is non-uniform and
it may take an arbitrarily long time to reach the desired
attractor. Due to this fact, the attractor is unstable
(even though globally attractive), thereby highlighting
a somewhat interesting peculiarity of the problem under
consideration.

Proof of Theorem 1.

The proof of Theorem 1 requires the use of the follow-
ing lemma. Note that due to space limitations, the proof
of this lemma is omitted.

Lemma 4: All solutions to (20) eventually evolve con-
tinuously in set A = F2 ∩

{
|αT q̃| ≤ ε

2

}
.

The processing constraint (10) is proven in Lemma 2.
Next we prove the convergence properties in (7)–(9). To
this aim, based on Lemma 4, we know that any solu-
tion to (20) is eventually continuous. After the solution
evolves continuously, thereby not exhibiting any jumps
and satisfying n = n∗ = 2, we may use equation (21) to

obtain that function V (α, q̃) = q̃TL(α)q̃ satisfies along
flows:

V̇ =−q̃TL(α)(−kpL(α)q̃ + α
w̄

n
− βy)

=−kpq̃
TL(α)2q̃ + q̃TL(α)n(w̄/n− y

︸ ︷︷ ︸

=0

),
(22)

where the term on the right is derived using (3) and
Property 1, and is equal to zero due to Assumption 1,
Then, from the structure of L(α) and standard consensus
results, we obtain that all active agents reach consensus.
In particular, since from Lemma 4 the solution eventually
evolves continuously in set F2, then we have

lim
t→∞

n(t, j∗) = 2 = n∗,

where j∗ is the maximum j in the eventually continuous
domain of the solution. Moreover, notice that after a
finite time, when the solution evolves continuously in F2,
we have that αT q̃ remains constant (from Lemma 3, Eq.
(15)) and that |αT q̃| ≤ ε (from the definition of F2).
This, together with the consensus established by (22),
implies that if αk converges to 1, then

lim
t→∞

|q̃k(t, j
∗)| =

1

2
lim
t→∞

|αT q̃/2| =
ε

2
,

and if αk converges to 0, then the corresponding agent
remains inactive and its queue qk converges to zero in
finite time. �

V. Simulations

Some simulations are performed in MAT-
LAB/Simulink with the Hybrid Equations (HyEQ)
Toolbox [13]. In these simulations, 3 agents are
considered with a processing rate y = 5. The reference
for the queue is q∗ = 20 and the desired number of
agents is n∗ = 2. The parameter of the load balancing
control law is kp = 2.
Figure 2 shows three simulations in the situation when

the request rate is constant and is chosen w̄ = 2y. Figures
2a,b,c show the evolution of the three queues and the
components of α, for various initial conditions.
In Fig. 2a , all the queues are initially above the desired

values q∗. All agents stay or turn on and the queues are
decreasing because the processing rate of the network is
larger than a threshold rate. Then agent 2 and 3 turn
off when the system reaches the jump set, and the other
agent remains on. System evolves in this situation until
agent 1 reaches 2q∗, at this moment, agent 3 turns on. In
this last configuration, the processing rate in the network
is going to became equal to the requests rate and the
active agents stay in the desired neighborhood of [q∗ −
ε
2
, q∗ + ε

2
].

In Fig. 2b, all the queues are initially below the desired
values q∗, and in Fig. 2c queues are initially above and
below the desired values q∗. Note, that queues evolves
with a similar behavior than in Fig. 2a .
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(a) Simulation with q(0) = (37, 25, 32)T , α0 = (0, 1, 1)T .
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(b) Simulation with q(0) = (12, 3, 7)T , α0 = (0, 1, 1)T .
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(c) Simulation with q(0) = (22, 37, 5)T , α0 = (0, 1, 1)T .

Fig. 2: Simulations a three nodes network representing
the evolution of the queues qi, i = 1, 2, 3 with q∗ = 20,
n∗ = 2, kp = 2 w̄ = 10, y = 5 and ε = 2 with different
initial conditions.

VI. Conclusions

In this article, a novel control architecture for a three
agents network is provided. The control law, which is
based both on consensus algorithms and on an appropri-
ate hybrid modeling, allows managing the activity of each
agent in a distributed manner but with the knowledge
of the state of the overall network. This preliminary
work finally shows the potential of considering the hybrid
representation for this system.
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