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Abstract

A wide range of diffractive elements have been used to evaluate the topological charge

of Laguerre-Gaussian beams. Here we show theoretically and experimentally that this

charge can be simply and readily measured from the interference pattern in Young’s

double slit experiment. It can be evaluated from the twisting order of the interference.

The results are confronted with previously published studies. The potentialities of the

method are then compared with existing techniques.
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I. INTRODUCTION

Young’s double slit is may be one of the most popular and fascinating experi-

ment in physics. As R. Feynman said: ”It is a phenomenon which is impossible to

explain in any classical way and which has in it the heart of quantum mechanics”

[1]. Curiously, when a phase difference is added in between the two interfering

paths, like in an Aharonov-Bohm type experiment [2], the interference pattern is

shifted. However, along a single slit, the wave encounters exactly the same phase

shift and thus the interference fringes remain straight lines. On the other hand, a

new category of waves, called ”twisted waves” appeared in the 1990s, which phase

distribution is not uniform in a plane perpendicular to the direction of propagation

[3, 4]. Since its first observation in optics, it has then found many applications

in various domains including microwaves [5], atom optics [6], quantum cryptog-

raphy [7], telecommunications [8? ], astronomy [9], biophysics [10], acoustics [11]

and electron beams [12]. Besides, these waves are known to produce diffraction or

interference patterns as well [13? –19]. However, researchers in the field mainly

use the diffraction by a triangle aperture [20–22], or transformations with cylin-

drical or tilted spherical lens [23, 24], to characterize the beam whereas the double

slit experiment is hardly ever implemented although it seems easy to settle up and

handle. The aim of this letter is to seek an analytical expression of the interference

pattern of a Laguerre-Gaussian (LG) beam in a double slit experiment, to compare

it with experimental observations and to investigate practical applications in the

characterization of LG beams.

II. THEORETICAL CONSIDERATIONS

From a theoretical point of view, the phase ψ of the twisted beam, on a plane

perpendicular to the direction of propagation, is not uniform as for usual plane

waves. It varies from 0 to 2lπ as one makes one complete turn around the direction
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of propagation [4]. l is called the Topological Charge (TC) of the beam. The

phase writes ψ(θ) = lθ, where θ is the usual polar coordinate (see figure 1). θ is

related to the coordinate z along the vertical direction by the following relation:

tan(θ) = a/z, where 2a is the distance between the slits. Then the phase difference

δψ between the two paths of the double slit experiment, at a given height z, writes,

δψ = ψ(θ)−ψ(−θ) = 2lθ = 2l tan−1(a/z). The intensity variation I(x) due to the

interference between the paths along the horizontal axis can be written as [1]

I(x) = I0 cos
2(2πxa/(λD) + δψ) (1)

where D is the distance between the slits and the screen used for observation. The

interference pattern in the x direction varies as

2πxa/(λD) + 2l tan−1(a/z) (2)

In particular, this means that as z tends towards +∞ (i.e. in the upper zone

of the laser beam where θ = 0), the interference fringes should correspond to the

usual pattern of a plane wave. The two interfering beams have the same phase on

the double slit. Using exactly the same reasoning, as z tends towards −∞ (i.e.

in the bottom zone of the laser beam where θ = π) the interference fringes also

correspond to the usual pattern of a plane wave. The phase difference equals 2lπ.

Actually equations 1 and 2 offer a general description of the double slit inter-

ference with a LG beam. This theoretical result is in disagreement with what has

been found previously [15], where, from numerical calculations, a π phase differ-

ence between the top and the bottom of the slits is predicted (see relation (4) and

figure 2d [15]). For a correct description, one has to first take into account the

phase difference δψ between the interfering paths at the top and at the bottom

separately (see figure 1). Second, one has to compare the resulting δψ between

the top and the bottom of the slits. It unambiguously equals 2π.
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FIG. 1. Schematic of the phase of the LG beam impinging on a double slit experiment.

2a: distance between the slits, D distance between the slits and a screen. Two corre-

sponding points at the same height have a phase difference equal to δψ = 2lθ. This leads

to a twisted interference pattern.

III. EXPERIMENTS AND RESULTS

From an experimental point of view, let us consider a typical double slit ex-

periment like the one that can be found in textbooks [1]. We replace the usual

light source by a twisted laser beam (see figure 2). The twisted beam is here a

LG beam, but the experiment could be implemented for any twisted beam. It is

generated from the fundamental beam of a red He-Ne laser (λ = 633 nm, Melles

Griot). The beam passes through a vortex phase plate [25] (RC Photonics) with
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TC that can be chosen from l = 0 to l = 3 and a telescope (final beam waist

0.7 mm), before impinging on the double slit experiment. The slits are 3 cm long

and 70 µm large. The distance between them is 2a = 300 µm. Pictures of the

interference patterns are taken on a screen at a distance D = 4 m with a camera.

VPP D

ScreenHe-Ne laser 

λ= 633 nm

2a

x

z

Young slits

FIG. 2. Experimental set up. VPP: Vortex Phase Plate. The zoom of the VPP shows

a variable thickness that induces a phase variation in order to generate a LG beam.

Figure 3 presents several photographs of the interference pattern for various

values of l. In figure 3a (l = 0), one recognizes the usual interference pattern of

the typical double slit experiment using plane wave sources. In particular, the

fringes are straight lines. The diffraction pattern has the same symmetry as the

diffracting object. It has a cylindrical symmetry for a diffracting hole and has

a Cartesian symmetry for diffracting slits [26]. However, for a twisted beam, for

example for l = 1 (see figure 3b), the interference pattern is twisted. The fringes

are not straight lines any more. They follow a 2 tan−1(a/z) variation, as expected.

The interferences, at the bottom zone of the laser beam, have been shifted by
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exactly one interference order compared with the ones corresponding to the upper

zone of the laser beam (see green arrows on the figure). This is a very unusual

behaviour of the interference pattern in a double slit experiment. Moreover, as l

is further increased, the twist of the fringes becomes more and more important.

For l = 2, the fringes at the bottom zone (see figure 3c) have been shifted by two

interference orders compared to the ones at the upper zone, whereas for l = 3 (see

figure 3d), they correspond to three interference orders. Analogously, for l = n,

they should correspond to n orders.

IV. DISCUSSION

Actually this experiment is a quick and easy to handle way to determine the

TC of a twisted beam. The twist of the fringes can be readily seen on a screen

with the naked eye. One has only to count the number of twists from the top of

the interference pattern to the bottom, following the whole interference pattern.

However, one cannot determine the TC of the beam when considering the top and

the bottom of the fringes only, since the bottom fringes are shifted exactly by an

integer number order of fringes. Besides, in order to obtain such patterns, there

must be some light impinging on the various zones of the slits. In particular, since

the center of the laser beam is a vortex, one has to adapt the distance 2a between

the slits to obtain a good and usable pattern.

Let us be more quantitative and define a minimum and a maximum distance

2a between the slits to determine the TC of the beam. There are two criteria

concerning: (i) the visibility of the fringes, (ii) the zone of the beam probed. For

(i), from the naked eye, the intensity of a fringe should not vary more than a factor

of 5 to be clearly detected. If one considers a l = 1 LG beam with a waist w, the

beam intensity I(r) (r being the polar coordinate) is proportional to
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FIG. 3. Twisted interference patterns for beams with a) l = 0; b) l = 1; c) l = 2; d)

l = 3. The twist corresponds to l bright fringes of the interference pattern. The green

arrows indicate the fringe order shift.

I(r) ∼
r2

w2
exp

−2r2

w2
(3)

The beam intensity is maximum for r = w
√
l/
√
2. The intensity of a single

fringe F (z) follows the same variation as I(r), taking r =
√
a2 + z2. The minimum

intensity of the fringe is for z = 0 (θ = π/2). The minimum distance 2a between

the slits, corresponding to F0/5 is 2w/5. The maximum intensity F0 corresponds
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to z = 0.95w/
√
2. As z increases further, the intensity of the fringe decreases and

the intensity F0/5 corresponds to z = 2w/
√
2 (θ = 0.14 rad). The phase variation

of the beam is thus probed in the region 0.14 < θ < π − 0.14. Let us move to the

(ii) criterium. We assume that the TC of the beam could be easily identified if

we probe more than 80% of the beam, i.e. 0.35 < θ < π − 0.35. Then criterium

(i), applied to θ = 0.35 rad, leads to a < w/2. Thus, practically, the distance 2a

between the slits should be such as w/5 < a < w/2 in order the TC of the LG

beam to be easily determined. In our case, w = 700 µm and a = 150 µm, fulfill the

two criteria. Besides, for a = w/5, the height of the slits should be at least more

than 4w/
√
2 ≃ 3w (θ = 0.14 rad) not to truncate the beam. This last argument

about the height of the slits may be the reason why previous works incorrectly

evidence a smaller twist of the fringes [15]. Finally, the beam must be centered on

the middle of the slits.

So far, we have shown that the interference pattern of a double slit experiment

allows to precisely determine the TC of a twisted beam. One may thus wonder

whether the sign of this charge could be also fixed. Actually, following equation

2, the sign of the twist of the pattern should be reversed when changing the

sign of the TC. Experimentally, let us reverse the orientation of the vortex phase

plate (see figure 2) so as to reverse the sign of l. Figure 4 shows the interference

pattern for l = 1 and l = −1. The sign of the twist of the fringes is reversed,

as expected. It can be determined unambiguously. Could this technique be used

to precisely determine non integer TC [27–29]? It seems difficult since the light

intensity distribution is non symmetrical. This would scramble the interference

pattern. Nevertheless, when the slits are aligned with the light discontinuity, the

symmetry is restored and the non integer TC could be estimated.

Several interferential techniques have been proposed to determine the TC of the

beam. The most popular one is perhaps the diffraction by a triangular aperture

[16, 20–22] that needs to count the number of diffracted spots. However, for l > 7

8
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FIG. 4. Twisted interference patterns for two opposite signs of l. The interferences are

shifted in opposite directions (see blue arrows).

it is sometimes hard to determine the number of spots. There are similar tech-

niques using more complicated apertures such as hexagonal aperture [30], annular

aperture [31? ], or multi points interferometer [32]. One can mention the inter-

ference of the LG beam with itself that needs a biprism and a lens [13, 18], the

diffraction by an edge [33] and by a single slit [34], or even with a double angular

slit [35], where the relationship between the pattern and l is not straightforward.

The image in the focal plane of a cylindrical lens [23] or equivalently with a tilted

spherical lens [24] has also been performed. Nevertheless, Young’s double slit ex-

periment is indeed easy to settle and use. The measurements could be performed

with the naked eye. Even with high TC, or with partially coherent beams [? ] or

with tiny spots [19] the experiment would be of practical use. The calculations are

elementary and the interpretation of the experimental results is straightforward.

Besides, the sign of the TC could be easily determined.
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V. CONCLUSION

This easy-to-settle experiment enables to precisely measure, with the naked eye,

the value and the sign of the topological charge of a twisted beam. These results

are in very good agreement with a simple model, leading to analytical expressions.

This model is indeed a comprehensive description of Young’s double slit experi-

ment with twisted beams. Since this experiment could be performed for any kind

of waves in each specific domain (optics, radio electromagnetic waves, acoustics,

particle beams such as electron beams, ...), this procedure can be easily imple-

mented to determine the characteristics of the beam, when dealing with twisted

beams. This could even be performed with X-ray with newly generated vortices

[36]. This could also find applications in the growing field of light communica-

tion in the sorting of the multiplexed twisted beam [8, 37] or in encoding data for

entangle purposes [38].
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