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On Output Regulation in Systems with Differential Variational Inequalities

Aneel Tanwani, Bernard Brogliato, Christophe Prieur

Abstract— We consider the problem of designing state feed-
back control laws for output regulation in a class of dynamical
systems which are described by variational inequalities and
ordinary differential equations. In our setup, these variational
inequalities are used to model state trajectories constrained to
evolve within time-varying, closed, and convex sets, and systems
with complementarity relations. We first derive conditions to
study the existence and uniqueness of solutions in such systems.
The derivation of control laws for output regulation is based
on the use of internal model principle, and two cases are
treated: first, a static feedback control law is derived when full
state feedback is available; In the second case, only the error
to be regulated is assumed to be available for measurement
and a dynamic compensator is designed. As applications, we
demonstrate how control input resulting from the solution of
a variational inequality results in regulating the output of the
system while maintaining polyhedral state constraints. Another
application is seen in designing switching signals for regulation
in power converters.

I. INTRODUCTION

Differential variational inequalities (DVIs) provide a math-

ematical framework to model evolution of state trajectories

which, in addition to ordinary differential equations, satisfy

some algebraic relations as well. Roughly speaking, DVIs

comprise an ordinary differential equation to describe the

motion of the state variable, and a variational inequality

(VI) that expresses the constraints, and relations that must be

satisfied by the state variable. VIs are most commonly en-

countered in optimization, and DVIs have found applications

in modeling of electrical circuits with nonsmooth devices,

and mechanical systems with impacts.

While most of the work on DVIs in the recent past has

focused on studying the solution theory of such systems [5],

[7], [8], [21], some classical control-theoretic problems such

as stability [9], [16], optimal control [4], observer and

controller design [6], [17], [23] have been investigated in

related system classes. The problem of output regulation for

such systems, which relates to designing control laws for

asymptotically tracking a reference trajectory or rejecting

disturbances while respecting the relations imposed by sys-

tem dynamics, was introduced in our recent work [25] and

in this paper, we extend our results to a broader class of

systems.

In the standard formulation of VIs [13], we consider a

set-valued map, say F , and are interested in solving the
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following inequality:

〈F (v), v′ − v〉 ≥ 0, ∀ v′ ∈ S,

for some closed, convex, and stationary set S . In the dy-

namical systems considered in this paper, we couple such

VIs with ordinary differential equations, and moreover also

let the set S be time-varying.1 Since the solutions of VIs

could be abstractly represented using a set-valued operator,

different tools from the theory of differential inclusions could

be used to study the solutions of DVIs. We refer the reader to

a recent paper [21] for results and literature in this direction.

In this paper, we also propose results on existence and

uniqueness of solutions for a particular system class, which

is based on the theory of evolution equations with maximal

monotone operators [3]. While VIs essentially describe a

maximal monotone operator, in many practical systems, these

operators only appear after certain linear transformations,

and it is not evident that such transformations preserve

maximality, or even monotonicity. Our approach extends

the work of [5] by relaxing certain assumptions (that de-

scribe the transformation) required to show the existence

of solutions. In a recent paper [10], it is shown that if

the transformation matrices satisfy certain LMI (related to

the passivity assumption in control theory), then maximal

monotonicity is preserved. We generalize the results of [10]

by considering nonlinear globally Lipschitz vector fields in

system description, and consider nonstationary sets S . The

proof worked out in this case is also completely different

than the work of [10].

The second main contribution of this paper comes in ap-

plying these results to study the problem of output regulation.

Our approach is based on the pioneering work of [14] which

proposed simple algebraic criteria for output regulation in

multivariable linear time-invariant (LTI) systems. In [14], it

is assumed that the plant under consideration is driven by

the output of an LTI exosystem that models the dynamics

of the reference trajectories and/or disturbances. Intuitively

speaking, the proposed control input that achieves the output

regulation comprises a feedback component to make the

closed-loop dynamics stable and an additional open-loop

component that shapes the steady state of the plant. The

derivation of the open-loop component of the control input

requires the exact knowledge of the exosystem dynamics, and

hence the approach is termed as internal model principle. A

large amount of work has followed on the problem of output

regulation using internal model principle in more general

1In the paper [21], the case of time-varying S is termed as quasi-DVI,
but in this paper we do not make this distinction as we only consider the
time-varying case and our results obviously hold when S is stationary.
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contexts and more recently in the context of discontinuous

and hybrid systems, see [11], [12], [15], [19] and references

therein. This paper could be seen as extending this principle

for a class of nonsmooth systems expressed as DVIs.

In our results on output regulation, we will restrict our-

selves to linear systems. The sets considered in the descrip-

tion of VIs for the exosystem and the plant are assumed to

be the same but the mappings used to describe the relations

could be different. We derive sufficient conditions under

which there exists a control input that achieves output regu-

lation while maintaining state constraints. In addition to the

classical regulator synthesis equations, additional conditions

are needed in our work to generate a dissipative relation

between the multivalued part and the output regulation error.

These additional conditions also guarantee that the closed-

loop system is well-posed, that is, it admits a unique solution

which is an important consideration for designing controllers

for such class of systems. We study two cases for control

synthesis depending on how much information is available

to the controller. In the first case, it is assumed that the entire

states of the plant and the exosystem are available and thus,

a static controller is designed to achieve output regulation.

In the second case, it is assumed that only the regulation

error (which needs to converge to zero) is available and in

that case a dynamic compensator is designed.

The rest of the paper is organized as follows: In Section II,

we define the system class, formulate the problem of output

regulation that we consider, and introduce some basic results

from convex analysis. These results are used to develop a

result on existence and uniqueness of solutions for proposed

system class in Section III. The design of static state feed-

back is considered in Section IV, followed by the design of

a dynamic compensator in Section V. The proofs of some

intermediate results are collected in the Appendix.

II. PRELIMINARIES

A. Differential Variational Inequalities

Consider a set-valued mapping S : [0,∞) ⇒ R
ds , and

assume that S(t) is closed, convex, and nonempty, for each

t ≥ 0. The class of differential variational inequalities

considered in this paper are described as follows:

ẋ(t) = f(t, x) +Gλ(t) (1a)

v(t) = Hx(t) + Jλ(t), v(t) ∈ S(t), (1b)

〈v′−v(t), λ(t)〉 ≥ 0, ∀ v′ ∈ S(t). (1c)

In the above equation x(t) ∈ R
n denotes the state,

λ(t), v(t) ∈ R
ds , the vector field f : [0,∞) × R

n →
R

n is absolutely continuous in first argument, and globally

(and uniformly with respect to time) Lipschitz in second

argument, G ∈ R
n×ds , H ∈ R

ds×n, J ∈ R
ds×ds are

constant matrices, and J is positive semidefinite.

In the standard references on variational inequalities, the

multivalued mapping S(·) is assumed to be stationary [13],

[21]. To make connections with the standard formulation of

evolution equations with time-varying domains [2], [20], it

is seen that (1b), (1c) could be compactly written as:

λ(t) ∈ −NS(t)(Hx(t) + Jλ(t)), (2)

where NS(t)(v(t)) denotes the normal cone to a convex set

at v(t) ∈ S(t), and is defined as:

NS(t)(v(t)) := {λ ∈ R
ds | 〈λ, v′ − v(t)〉 ≥ 0, ∀ v′ ∈ S(t)},

and as convention we let NS(t)(v(t)) := ∅, for v(t) 6∈ S(t).
In what follows, we will use the standard notations, int,

and rint to denote the interior, and the relative interior of a

set respectively. The domain, range, and kernel of an operator

are denoted by dom, rge, and ker respectively.

B. Problem Formulation

As stated in the introduction, we basically consider two

problems related to system class (1).

1) Well-posedness of DVI (1): First, we are interested in

knowing under what conditions on the system dynamics, a

unique solution exists in the following sense:

Definition 1: For each initial condition x(0) satisfying

Hx(0) ∈ S(0) + rge J , there exists a locally absolutely

continuous function x : [0,∞) → R
n, such that x(·) satisfies

(1a) for (Lebesgue-almost) every t ≥ 0, and Hx(t) ∈
S(t) + rge J .

2) Output Regulation: For this problem, we restrict our-

selves to the case of linear vector fields, and the system class

in particular is defined as follows:

ẋ(t) = Ax(t) +Bu(t) + Fxr(t) +Gλ(t) (3a)

λ(t) ∈ −NS(t)(Hx(t) + Jλ(t)) (3b)

where xr : [0,∞) → R
dr is the reference signal that is

generated from the following equations:

ẋr(t) = Arxr(t) +Grλr(t) (4a)

λr(t) ∈ −NS(t)(Hrxr(t) + Jrλr(t)). (4b)

The output regulation variable w(·) is defined as:

w(t) = Cx(t) +Dxr(t). (5)

It will be assumed throughout the paper that system (4)

admits a solution (not necessarily unique) in the sense of

Definition 1. We say that the output regulation is achieved

if there exists a control input u(·) such that the following

properties are satisfied:

• Well-posedness: For each initial condition x(0) satisfying

Hx(0) ∈ S(0) + rge J , there exists a unique solution in

the sense of Definition 1.

• Regulation: It holds that limt→∞ w(t) = 0.

• Closed-loop stability: The plant and controller dynamics

have a globally asymptotically stable equilibrium at the

origin when xr ≡ 0.

C. Motivation

The solution theory for system (1) could be useful in

many aspects since several electrical and mechanical systems

are modeled using this framework. To motivate the output

regulation, we mention two possible applications of the

proposed problem.
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1) Viability Control and Regulation: As first application,

we consider the problem of finding a control input which

maintains predefined constraints on the state trajectories of a

dynamical system while achieving output regulation. Stated

more precisely, suppose that we are given a plant described

as:

ẋ(t) = Ax(t) +Bu(t) + Fxr (6)

and we would like to find a control u(·) which not only tracks

a reference trajectory generated by the exosystem of form

(4), but also results in the state satisfying the constraint that

Hx(t) ∈ S(t), for all t ≥ 0, where S(·) is some predefined

closed and convex set-valued map. This could be achieved

by decomposing u as u := ureg+uλ, where we choose uλ(t)
as the solution of the following variational inequality:

uλ(t)
⊤(v′ −Hx(t)) ≥ 0, ∀ v′ ∈ S(t). (7)

This choice of control input transforms the plant equation

(6) as follows:

ẋ(t) = Ax(t) +Bureg(t) +Buλ(t) + Fxr(t). (8)

For any uλ(·) that satisfies (7), it now holds for the trajecto-

ries of the closed-loop system (8) that v(t) := Hx(t) ∈ S(t),
provided that the system (8) is well-posed. The case of

S(·) being a time-varying polytope was also considered as

a special case in our previous work [25]. In that case, (7) is

formulated as a linear complementarity problem which could

be solved very efficiently using standard softwares.

2) Regulation in Power Converters: A large number of

electrical circuits with nonsmooth devices (diodes, switches,

etc.), such as power converters, are modeled using comple-

mentarity relations which is a special kind of variational

inequality when the set-valued map S(t) = K, where K ⊆
R

dK is some closed convex cone (see [1], [26] for examples).

Let K∗ denote the dual cone to K, defined as:

K∗ := {v ∈ R
dK | 〈v, w〉 ≥ 0, ∀w ∈ K}.

Our framework allows us to consider the models of electrical

systems of the following form:

ẋ(t) = Ax(t) +B1u1(t) + F1xr(t) +Gλ(t) (9a)

v(t) = Hx(t) + Jλ(t) + F2xr(t) +B2u2(t) (9b)

K ∋ v(t) ⊥ λ(t) ∈ K∗, (9c)

where u1(·) and u2(·) are control inputs that need to be

designed to solve the regulation problem. Since K is assumed

to be a cone, the cone complementarity problem (9c) is

equivalent to [13, Proposition 1.1.3]:

λ(t) ∈ −NK(v(t)).

If we let K(t) := K−F2xr(t)−B2u2(t), so that v(t) ∈ K(t)
if and only if v̄(t)+F2xr(t)+B2u2(t) ∈ K, then (9b), (9c)

are equivalently written as:

v̄(t) = Hx(t) + Jλ(t)

λ(t) ∈ −N
K(t)(v(t))

and hence the system (9) is of the same form as (3).

D. Basic Results: Convex Analysis

In this section, we recall some basic results from convex

analysis which are used in the subsequent sections for

deriving main results of this paper. One can consult standard

references, such as [22], for the results given here.

A set-valued map Φ(·) is called maximal monotone if

for each x1, x2 ∈ dom(Φ), and yi ∈ Φ(xi), i = 1, 2, we

have 〈y2 − y1, x2 − x1〉 ≥ 0, and the graph of Φ cannot be

extended any further while satisfying the monotone property.

We will not use the definition in its entirety. The monotone

property is important and will be used repeatedly in analysis.

Another important thing to know is that there is a vast

literature on the solution theory of differential inclusions

where the multivalued operator on the right-hand side is

maximal monotone [3].

The following result allows us to draw connection between

system (1a), (2) and the theory of maximal monotone oper-

ators.

Proposition 1: Consider a nonempty, closed and convex

set S and let ψS(·) denote its indicator function, that is,

ψS(v) = 0, if v ∈ S and ψS(v) = +∞ otherwise; Then

1) it holds that ∂ψS(v) = NS(v),
2) and NS(·) is a maximal monotone operator.

In our approach, we would like to express (1) as a differ-

ential inclusion by replacing λ with a set-valued operator. In

order to do that, one can see from (2) that we would need to

define the “inverse” of the normal cone operator. The theory

of conjugate functions (or Legendre-Fenchel transforms) [22,

Chapter 11] allows us to make this connection.

Definition 2: For a function g : Rn → [−∞,+∞], the

function g∗ : Rn → [−∞,+∞] defined as:

g∗(η) := sup
v

{〈η, v〉 − g(v)}

is called the conjugate of g. For a closed convex set S ,

the conjugate of the indicator function ψS(·) is the support

function σS(·) defined as:

σS(η) = max
v∈S

〈v, η〉.

We now recall the following fundamental result:

Proposition 2 ([22, Proposition 11.3]): For any proper,

lower semicontinuous, convex function g(·), one has ∂g∗ =
(∂g)−1 and ∂g = (∂g∗)−1. That is,

η ∈ ∂g(v) ⇐⇒ v ∈ ∂g∗(η). (10)

In particular, for a closed and convex set S:

η ∈ NS(v) ⇐⇒ v ∈ ∂σS(η).

III. INCLUSION WITH MAXIMAL MONOTONE OPERATOR

There is a considerable amount of literature on the solution

theory for differential inclusions, depending on the structure

of the set-valued map on the right-hand side. One particular

class of set-valued maps, which are interesting from the

point of analysis and applications, are maximal monotone

operators, and the solution theory for differential inclusions

with such operators has been well-studied since the work of

Brézis [3]. For our setup, such inclusions are of particular
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interest because we will now show that, when the set S(t) is

closed and convex valued, for each t ≥ 0, then equation (1)

can be equivalently written as a differential inclusion with

time-varying maximal monotone operator plus a globally

Lipschitz vector field on the right-hand side.

To see this, we use Propositions 1 and 2, and describe the

relations in (1a), (1b), using a set-valued map for λ(t) as

follows:

〈v′ − v(t), λ(t)〉 ≥ 0, ∀ v′ ∈ S(t) (11a)

⇐⇒ λ(t) ∈ −∂ψS(t)(Hx(t) + Jλ(t)) (11b)

⇐⇒ Hx(t) + Jλ(t) ∈ ∂σS(t)(−λ(t)) (11c)

⇐⇒ Hx(t) ∈
(
∂σS(t) + J

)
(−λ(t)) (11d)

⇐⇒ λ(t) ∈ −
(
∂σS(t) + J

)−1
(Hx(t)) (11e)

Letting Φ(t,Hx(t)) :=
(
∂σS(t) + J

)−1
(Hx(t)), sys-

tem (1) can be equivalently written as the following differ-

ential inclusion:

ẋ(t) ∈ f(t, x)−GΦ(t,Hx(t)). (12)

It is an easy exercise to show that the operator Φ(t, ·)
is maximal monotone for each t ≥ 0 (see also proof of

Lemma 1 in the Appendix) but it is not true in general

that GΦ(t,H·) is also maximal monotone. If it is assumed

that f(t, x) = Ax + u(t), and that the LTI system defined

using the matrices (A,G, J,H) is passive and Φ is time-

independent, then the maximal monotonicity of the multi-

valued operator on the right-hand side of (12) was proven

in [10]. Our goal in this section is to generalize this result

for the class of systems (12), and the contribution of what

follows could be seen in following two regards:

• A direct approach (different than [10]) to transform the

right-hand side of (12) into a maximal monotone operator

(with a minus sign) and a Lipschitz vector field, the

solutions for which can be derived using existing results.

• Generalize the system class by addressing time-dependent

sets and nonlinear vector fields.

A. Solution of Differential Inclusion (12)

Compared to the standard formulations of evolution equa-

tions with maximal monotone operators, the primary dif-

ficulty in studying the well-posedness of (12) is that the

operator GΦ(t,H·) may not necessarily be monotone for

some arbitrary matrices G and H because multiplication with

matrices does not preserve monotonicity. Secondly, the right-

hand side depends on time and we need to impose some

constraints on the evolution of the set-valued map S(·) along

with some regularity assumptions on f(·, x). The main result

overcoming these difficulties is stated as follows:

Theorem 1: Assume that the following holds:

(A1) The matrix J is positive semidefinite and there exists a

symmetric positive definite matrix P such that ker(J +
J⊤) ⊆ ker(PG−H⊤).

(A2) For each t ≥ 0, the range space of H , denoted as rgeH ,

cannot be separated from S(t) + rge J .

(A3) The mapping S : [0,∞) ⇒ R
ds is closed and convex

valued with nonempty relative interior for each t ≥ 0,

and varies in an absolutely continuous manner with

time, that is, there exists an absolutely continuous

function ν(·) : [0,∞) → R+, such that,

|d(v,S(t1))−d(v,S(t2))| ≤ |ν(t1)−ν(t2)|, ∀ t1, t2 ≥ 0.

(A4) The function f(t, ·) is globally Lipschitz (uniformly in

time), that is, there exists a constant µ > 0 such that

for each t ≥ 0:

|f(t, x1)− f(t, x2)| ≤ µ|x1 − x2|, ∀x1, x2 ∈ R
n,

and f(·, x) is absolutely continuous for each x ∈ R
n.

Then there exists a unique solution to (12), and hence (1),

in the sense of Definition 1.

Discussions:

1) If J = 0, then (A1) basically implies that PJ = H⊤,

which was the assumption used to deduce the maximal

monotonicity of the multivalued operator in [5]. Also, if

the quadruple (A,B, J,H) is passive, then the assumption

(A1) automatically holds and this fact was also used in

[10].

2) The constraint qualification (A2) is somewhat a standard

assumption when dealing with problems on variational

inequalities, and is introduced to preserve maximality

under the composition function.

3) The bound on the variation of S(·) is introduced to obtain

absolutely continuous trajectories. It basically imposes the

constraint that the Hausdorff distance between the sets

S(t1) and S(t2) is relatively small for |t1−t2| sufficiently

small. One could also relax the function ν(·) to be

continuous, or a function with locally bounded variation,

in which case the resulting state trajectory will also be

in the class of functions with locally bounded variation.

However, this will only complicate the development as one

has to interpret (12) as a measure differential inclusion.

Nonetheless, we conjecture that most of the development

carried out in the sequel will also carry over to that case.

4) The Lipschitz condition on the function f(t, ·) is imposed

because the inclusions with maximal monotone operators

and Lipschitz perturbations are well-posed [3].

Proof of Theorem 1: The proof of Theorem 1 is

based on several intermediate results which we will state

as lemmas. The proofs of these lemmas are given in the

Appendix.2

Lemma 1: For each t ≥ 0, the operator Φ(t, ·) =
(∂σS(t) + J)−1(·) is maximal monotone and domΦ(t, ·) =
S(t) + rge J .

Lemma 2: Consider η1, η2 ∈ Φ(t,Hx), then η1 − η2 ∈
ker(J + J⊤).

For each ηα ∈ Φ(t,Hx) (with t and x fixed), let ηim

denote the projection of ηα on the orthogonal complement of

ker(J+J⊤), denoted as ηim = PJ(ηα), then using Lemma 2,

ηim is uniquely defined and we can write

ηα := ηim + ηkerα

2In the proof of Theorem 1 and the Appendix, we will use the notation
η(t) to denote an element of the set Φ(t,Hx). From (11e), it is seen that
the variable η and λ only differ by a sign change.
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for some ηkerα ∈ ker(J + J⊤). Since we have assumed that

ker(J + J⊤) ⊆ ker(PG − H⊤), we must have Gηkerα =
P−1H⊤ηkerα . This allows us to rewrite (12) as follows:

ẋ(t) =f(t, x)−Gηim(t)− P−1H⊤ηkerα (t)

=f(t, x)+(P−1H⊤−G)PJ(ηα(t))− P−1H⊤ηα(t)

ηα(t) ∈ Φ(t,Hx(t)).
(13)

Let R denote the square root of the matrix P in (A1), so

that R is also positive definite and symmetric. Introduce

the coordinate transformation z = Rx, then in the new

coordinates, (13) is written as:

ż(t) = Rf(t, R−1z) + (R−1H⊤−RG)PJ(ηα(t))

−R−1H⊤ηα(t)

ηα(t) ∈ Φ(t,HR−1z(t)).

(14)

We will next use the following two results:

Lemma 3: The operator PJ(Φ(t,H·)) is single-valued

and Lipschitz continuous.

Lemma 4 ([22, Theorem 12.43]): The multivalued oper-

ator R−1H⊤Φ(t,HR−1·) is maximal monotone, for each

t ≥ 0, if rge(HR−1)∩ rint(dom(Φ(t, ·))) 6= ∅, which holds

in particular under the constraint qualification (A2).

As a result of these two lemmas, one can now write (14) as:

ż(t) ∈ g(t, z)−Ψ(t, z) (15)

where g(t, z) = Rf(t, R−1z)− (R−1H⊤ − RG)PJ(ηα(t))
is globally Lipschitz (in second argument) and Ψ(t, z) =
R−1H⊤Φ(t,HR−1z(t)) is maximal monotone for each t ≥
0. Finally, let

Ψ(t, z) := Ψ(t, z) + g(t, z)− µx,

where µ > 0 denotes the Lipschitz constant of g(t, ·). It

is easy to check that Ψ(t, z) is also maximal monotone.

Inclusion (15) is now equivalent to:

ż(t) ∈ µx−Ψ(t, z). (16)

One can now deduce the solution to (16) in the sense of

Definition 1 by combining the results from [3, Chapter 3]

and [18]. The precise arguments are worked out in the proof

of following lemma given in the Appendix.

Lemma 5: For each t ≥ 0, and there exists a unique

locally absolutely continuous solution z(·), that satisfies (16)

for almost every t ≥ 0.

Since we have only introduced bijective operations in arriv-

ing from system (1) to (16), the conclusion also holds for

system (1).

IV. FULL STATE FEEDBACK AND STATIC CONTROL

We will now use the results on the well-posedness of

system (1) to solve the output regulation problem. In this

section, it is assumed that all the states of the plant (1) and

(4) are available for feedback and thus a control input with

static state feedback can be designed which achieves the

stability and regulation. In the formulation of our results,

the following terminology is used: A quadruple of matrices

(A,B,C,D) is called strictly passive if there exist a scalar

γ > 0 and a symmetric positive definite matrix P such that
[
A⊤P + PA+ γP PB − C⊤

B⊤P − C −(D +D⊤)

]

≤ 0. (17)

Theorem 2: Consider systems (3), (4) under assumptions

(A2) and (A3). Suppose that a matrix K renders the triplet

(A + BK,G,H, J) strictly passive, and that there exist

matrices Π ∈ R
n×dr and M ∈ R

du×dr such that

ΠAr = AΠ+BM + F and CΠ+D = 0 (18a)

ΠGr = G, HΠ = Hr and Jr = J. (18b)

Then the output regulation problem is solvable with the

following static feedback control law:

u(t) = Kx(t) + (M −KΠ)xr(t). (19)

Remark 1: In the work of [14], the control law (19) was

proposed to solve the output regulation problem in LTI

systems, where Π and M were obtained as solution of (18a)

only, and K is any matrix that makes (A + BK) Hurwitz.

The strict passivity requirement, and additional conditions

on the matrix Π in (18b) are required in the well-posedness

and stability analyses for the class of systems considered in

this paper.

Proof: a) Well-posedness: With control input (19), the

closed-loop system is written as

ẋ(t) = (A+BK)x(t) + (F +BM −BKΠ)xr(t) +Gλ(t)

λ ∈ −NS(t)(Hx(t) + Jλ(t)).

Since (A+ BK,G,H, J) is assumed to be strictly passive,

the matrix J is positive semidefinite and ker(PG−H⊤) ⊆
ker(J+J⊤). All the remaining hypothesis of Theorem 1 hold

by construction, and hence the closed-loop system exhibits

a unique solution.

b) Regulation: Let Π be the matrix that satisfies (18) and

introduce the variable e = x − Πxr. The output regulation

is achieved if we can show that limt→∞ e(t) = 0, since

w(t) = Cx(t) +Dxr(t)

= Cx(t)− CΠxr(t) = Ce(t).

To show that e(t) → 0 as t→ ∞, we observe that

ė(t) = (A+BK)x(t) + (F +BM −BKΠ)xr(t)

+Gλ(t)−ΠArxr(t)−ΠGrλr(t)

= (A+BK)x(t)− (ΠAr − F −BM
︸ ︷︷ ︸

=AΠ

+BKΠ)xr(t)

+Gλ(t)−ΠGrλr(t)

= (A+BK)x(t)− (A+BK)Πxr(t)

+Gλ(t)−ΠGrλr(t)

= (A+BK)e(t) +G(λ(t)− λr(t)).

Now introduce the Lyapunov function V (e) = e⊤Pe, so that

the following holds for almost all t ≥ 0 :

V̇ (e(t)) = e(t)⊤
(
(A+BK)⊤P + P (A+BK)

)
e(t)

+ 2e(t)⊤PG(λ(t)− λr(t))

≤ −γe(t)⊤Pe(t)

+ 2〈λ(t)− λr(t), He(t) + J(λ(t)− λr(t))〉
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where we used the passivity of (A+BK,G,H, J) to arrive

at the last inequality. Recalling that He(t) = Hx(t) −
HΠxr(t) = H(x(t)−xr(t)), and Jr = J , the monotonicity

of the normal cone operator leads to

〈λ(t)− λr(t), H(x(t)− xr(t)) + J(λ(t)− λr(t))〉 ≤ 0.

It thus follows that V̇ (e(t)) < 0 for all e(t) 6= 0, and thus

e(t) → 0 as t→ ∞.

Closed-loop stabilization: Following the same calculations

as above, it is seen that the derivative of V (·) along the

dynamics of (3) with u in (19) satisfies

V̇ (x(t)) ≤ −γV (x(t)) + x(t)⊤P (F +B(M −KΠ))xr(t)

and it follows that x(t) → 0 as t→ ∞, when xr ≡ 0.

Example 1: As an illustration of Theorem 2, let us con-

sider an example in the context of application discussed in

§II-C.1. The plant to be controlled is a second order LTI

system described by the equations

ẋ1 = −0.1x1 + x2; ẋ2 = u.

The exosystem is defined as the following linear comple-

mentarity system:

ẋr :=

(
ẋr1
ẋr2

)

=

[
−0.1 1
−2 1

]

xr +

[
0 0
−1 1

]

λr

0 ≤ λr⊥

(
−xr2
xr2

)

+

(
1
1

)

≥ 0. (20)

Consider the set S := {z ∈ R : z + 1 ≥ 0} and the matrix

H := [ 00
−1
1 ], then following the discussion in §II-C (see

also [25, §5]), the relation (20) is equivalently expressed as

λr ∈ −NS×S(Hxr). We are interested in designing a control

input u, such that limt→∞ |x2(t) − xr2(t)| = 0, and ∀ t ≥
0, |x2(t)| ≤ 1, or equivalently Hx(t) ∈ S × S . Verbally

speaking, the exosystem has been chosen so that the plot of

xr2 (versus time) resembles a sine wave clipped at the value

1, see Fig. 1. The control objective is to guarantee |x2(t)| ≤ 1
and that x2 converges asymptotically to xr2. Decomposing

the input as u := ureg +uλ results in the closed-loop system

of the form (8). In the notation of Theorem 2, we let Π =
I2×2, P = [ 20

0
1 ], K = [−2 − 2], and M = [−2 1], so that

ureg(t) := −2x1(t)−2x2(t)+3xr2(t) follows from (19). The

discontinuous component of the input3 uλ := −uλ1 + uλ2
is obtained as a solution of the following complementarity

problem:

0 ≤

(
uλ1
uλ2

)

⊥

(
−x2
x2

)

+

(
1
1

)

≥ 0. (21)

The results of the simulation are shown in Fig. 1.

3We are implicitly using the fact that the two constraints imposed in this
problem, x2 ≤ 1 and x2 ≥ −1, are not active simultaneously. Thus, the
complementarity formulation (21) ensures that uλ = −uλ1 if x2 = 1, and
uλ = uλ2 if x2 = −1, otherwise uλ = 0.

Fig. 1. The top plot shows the phase portrait of the trajectories of the
plant and the exosystem. The middle plot confirms that x2 converges to
xr2 while staying within the set S. The bottom plot shows the values of
discontinuous component of the control input which only become nonzero
when x is on the boundary of the set S.

V. ERROR FEEDBACK AND DYNAMIC COMPENSATOR

In this section, it will no longer be assumed that the

states x(·) and xr(·) are available for feedback, but only

the regulation error w(·) is available to the controller. Our

approach is based on the certainty equivalence principle

where we first design an estimator for the state variables

x(·) and xr(·) and then define the control law as a function

of these estimates.

Towards this end, the estimator we propose is defined as

follows:

(
˙̂x
˙̂xr

)

=

[(
A F

0 Ar

)

−

(
L0

L1

)
(
C D

)
](

x̂

x̂r

)

+

(
L0

L1

)

w

+

(
B

0

)

u+

(
G 0
0 Gr

)(
λ̂

λ̂r

)

(22a)

(
λ̂

λ̂r

)

∈ −NS(t)×S(t)

(

H

(
x̂

x̂r

)

+ J

(
λ̂

λ̂r

))

, (22b)

where the gain matrix L :=

(
L0

L1

)

will be designed in the

sequel, and the matrices H , J are defined as follows:

H :=

(
H 0
0 Hr

)

, J :=

(
J 0
0 Jr

)

.

For brevity, we have suppressed the time argument in (22),

and will do so in the remainder of this section unless

required. Let us also introduce the following notation:

A :=

(
A F

0 Ar

)

, C :=
(
C D

)
, G :=

(
G 0
0 Gr

)

.

Theorem 3: Consider systems (3), (4) under assumptions

(A2) and (A3). Suppose that there exist a feedback ma-

trix K and an injection matrix L that render the triplets

(A+BK,G,H, J) and (A−LC,G,H, J) strictly passive,

respectively. If there exist matrices Π ∈ R
n×dr and M ∈

R
du×dr that satisfy (18), then the output regulation problem

is solved by letting

u(t) = Kx̂(t) + (M −KΠ)x̂r(t). (23)
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Proof: Introduce the variable x̃ := x − x̂, then the

closed-loop dynamics are similar to




ẋ
˙̃x
˙̂xr



 =





A+BK −BK B(M −KΠ)
0 A− L0C −F + L0D

0 L1C Ar − L1D





︸ ︷︷ ︸

:=Acl





x

x̃

x̂r





+





F

F − L0D

L1D





︸ ︷︷ ︸

:=Fcl

xr +





G 0 0
G −G 0
0 0 Gr





︸ ︷︷ ︸

:=Gcl





λ

λ̂

λ̂r





(24a)





λ

λ̂

λ̂r



 ∈ −NS(t)×S(t)×S(t)



Hcl





x

x̃

x̂r



+ Jcl





x

x̃

x̂r







 ,

(24b)

where we used the notation Hcl :=
(

H 0 0
H −H 0
0 0 Hr

)

, and Jcl :=
(

J 0 0
0 J 0
0 0 Jr

)

.

Well-posedness: To show that the closed-loop system ad-

mits a unique solution, we follow the same procedure as in

the proof of Theorem 2. That is, we find a symmetric positive

definite matrix Pcl such that ker(PclGcl−H
⊤
cl ) ⊆ ker(Jcl+

J⊤
cl ). The matrix Jcl is positive semidefinite by construction.

To find the matrix Pcl, it is noted that, by assumption, the

quadruples (A + BK,G,H, J) and (A − LC,G,H, J) are

strictly passive, so there exist symmetric positive definite

matrices P, P with dissipation constants γ, γ, such that (17)

holds. Now, partition P as P :=

(
P 11 P 12

P 12 P 22

)

, then P 22

is a symmetric positive definite matrix, and P 22Gr = H⊤
r .

Thus, by letting

Pcl :=





2P −P 0
−P P 0
0 0 P 22





it is easily checked that Pcl is symmetric, positive definite,

and ker(PclGcl −H⊤
cl ) ⊆ ker(J + J⊤

cl ).
Regulation: By letting W :=

(
−K (M −KΠ)

)
, it is

seen that

Acl =

(
A+BK BW

0 A− LC

)

Define the regulation error as follows:

e :=





x−Πxr
x̃

x̂r − xr



 =:





ex
x̃

er



 =:

(
ex
eξ

)

, (25)

then it can be shown using the equations in (18) that

ė =

(
A+BK BW

0 A− LC

)

e

+





G 0 0
0 G 0
0 0 Gr









λ− λr

λ− λ̂

λr − λ̂r



 (26)

where λ, λr and (λ̂, λ̂r) are defined in (3b), (4b) and (22b),

respectively.

Consider the Lyapunov function V (e) = e⊤
[
αP 0
0 βP

]

e

for some α, β > 0 to be specified later. The derivative of V (·)
along the trajectories of the closed-loop system satisfies the

following relations:

V̇ (e) = αe⊤x (P (A+BK) + (A+BK)⊤P )ex

+ 2αe⊤x PBWeξ

+ e⊤ξ (βP (A− LC) + (A− LC)⊤βP )eξ

+ 2αe⊤x PG(λ− λr) + 2βe⊤ξ P G

(
λ− λ̂

λr − λ̂r

)

≤ −αγe⊤x Pex − βγe⊤ξ Peξ + 2αe⊤x PBWeξ

+ 2α(λ− λr)
⊤(Hex + J(λ− λr))

+ 2β(λ− λ̂)⊤(Hx̃+ J(λ− λ̂))

+ 2β(λr − λ̂r)
⊤(Hrer + Jr(λr − λ̂r))

where the last inequality is obtained using the passivity

assumption on (A+BK,G,H, J) and (A− LC,G,H, J).
Using the assumptions that HΠ = Hr, and J = Jr, it now

follows from the definition of the normal cone that

(λ− λr)
⊤(Hex + J(λ− λr))

= 〈λ− λr, Hx−HΠxr + Jλ− Jrλr〉

= 〈λ− λr, Hx+ Jλ−Hrxr − Jrλr〉 ≤ 0

and using similar arguments,

(λ− λ̂)⊤(Hx̃+ J(λ− λ̂)) ≤ 0

(λr − λ̂r)
⊤(Hrer + Jr(λr − λ̂r)) ≤ 0.

Plugging these relations in the expression for V̇ (·), and using

the notation σmin to denote the smallest eigenvalue of a

matrix and χ to denote the induced Euclidean matrix norm

of PBW , we get

V̇ (e) ≤ −αγ σmin(P ) |ex|
2 − βγσmin (P ) |eξ|

2

+ 2αχ |ex| |eξ|

≤ −αγ σmin(P ) |ex|
2− βγσmin (P ) |eξ|

2+ |ex|
2

+ α2χ2|eξ|
2

= −(αγ σmin(P )− 1)|ex|
2

− (βγ σmin(P )− α2χ2)|eξ|
2.

Thus, choosing α, β in the definition of the Lyapunov

function V (·) such that αγσmin(P ) > 1 and βγ σmin(P ) >
α2χ2), makes V̇ (·) negative definite. In particular ex con-

verges to zero, from which it follows that w = Cx+Dxr =
C(x−Πxr) = Cex converges to zero.

Closed-loop stabilization: The closed-loop stabilization

could be shown in exactly the same manner as above. The

difference being, the derivative of the Lyapunov function

V (·) is calculated along the trajectories of the dynamics of

(x, x̃, x̂r) given in (24).

VI. CONCLUSIONS

This paper studied the problem of output regulation in a

certain class of nonsmooth dynamical systems that are mod-

eled as differential variational inequalities. These systems
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in particular model systems where states are constrained to

evolve within some closed, convex and time-varying set. We

first studied the conditions under which there exists a unique

solution for such systems. The classical internal model

principle was then used to derive conditions to synthesize a

control law that achieves the desired objective. The analysis

were based on using the Lyapunov methods in combination

with monotonicity property of the normal cone operator to

prove stability.

Several extensions are possible. The most interesting of

which is to consider cases where the set-valued mapping S(·)
is not just time-dependent, but also state-dependent. This

would allow us to model mechanical systems with impacts

within our framework but deeper investigation is required for

the synthesis of control in such cases.

APPENDIX

Proof of Lemma 1: First, it is noted that σS(t) is

sublinear [22, Theorem 8.24], and hence a convex functional,

so that ∂σS(t) is maximal monotone for each t ≥ 0,

and rint(dom ∂σS(t)) 6= ∅ because S(t) is convex-valued

and rint(S(t)) 6= ∅. The matrix J define a monotone

mapping, and being continuous, is also maximal mono-

tone [22, Example 12.7]. Also, dom J is R
ds . It now

holds that (∂σS(t) + J) is maximal monotone because

rint(dom ∂σS(t)) ∩ rint(dom J) 6= ∅ [22, Corollary 12.44].

Hence, (∂σS(t) + J)−1 is also maximal monotone, because

the inverse operation preserves maximal monotonicity [22,

Exercise 12.8(a)]. Also, using the fact that rge(S(t))+J) =
rge(S(t))+rge(J), and that domΦ(t, ·) = rge(∂σS(t)+J),
the desired result follows.

Proof of Lemma 2: For i = 1, 2, consider ηi ∈
(∂σS(t) + J)−1(Hx), then Hx − Jηi ∈ ∂σS(t)(ηi). Since

∂σS(t) is monotone, we have

〈Hx− Jη1 −Hx+ Jη2, η1 − η2〉 ≥ 0

or

〈J(η1 − η2), η1 − η2〉 ≤ 0.

It follows that η1− η2 ∈ ker(J +J⊤), because J is positive

semidefinite.

Proof of Lemma 3: From Lemma 2, it directly follows

that the operator PJ(Φ(t,H·)) is single-valued. Let ηj :=
PJ(Φ(t,Hx

j)), for j = a, b, so that Hxj −Jzj ∈ ∂σS(η
j).

Monotonicity of ∂σS gives

〈Hxa − Jηa −Hxb + Jηb, ηa − ηb〉 ≥ 0

or equivalently,

〈J(ηa − ηb), ηa − ηb〉 ≤ 〈H(xa − xb), ηa − ηb〉. (27)

Since J is positive semidefinite, there exists c > 0, such that

|PJ(η
a)− PJ(η

b)| ≤ c〈J(ηa − ηb), ηa − ηb〉.

Assume now that, PJ(Φ(t,H·)) is not Lipschitz, so for

every i ∈ N, there exist pairs (xai , x
b
i ), x

a
i 6= xbi , and

ηai ∈ Φ(t,Hxai ), and ηbi ∈ Φ(t,Hxbi ), such that

i|xai − xbi | < |PJ(ηi)− PJ(η
b
i )|

≤ c〈J(ηai − ηbi ), η
a
i − ηbi 〉

≤ c〈H(xai − xbi ), η
a
i − ηbi 〉

≤ c|xai − xbi | · |H
⊤(ηai − ηbi )|.

Thus, we must have |ηai − ηbi | ≥ |H⊤(ηai − ηbi )|i. Now

dividing (27) by |ηai − ηbi |
2, we get

〈

J
(ηai − ηbi )

|ηai − ηbi |
,
ηai − ηbi
|ηai − ηbi |

〉

≤

〈
xai − xbi
|ηai − ηbi |

,
H⊤(ηai − ηbi )

|ηai − ηbi |

〉

.

Since the right-hand side converges to zero as i gets large,

it follows that 〈J(ηai − ηbi ), η
a
i − ηbi 〉 converges to zero as

well because J is positive semidefinite. But then |PJ(ηi)−
PJ(η

b
i )| converges to zero, which is a contradiction, and the

desired claim follows.

Proof of Lemma 5: If µ = 0 in (16), then the result

follows directly from [18, Theorem 3]. Next, for i = 1, 2,

consider the differential inclusion

żi(t) ∈ −Ψ(t, zi) + gi(t)

for some locally absolutely continuous functions gi(·). It

again follows from [18, Theorem 3] that there exists a unique

solution zi(·), which is locally absolutely continuous. It holds

due to monotonicity of Ψ(t, ·) that

1

2

d

dt
|z1(t)− z2(t)|

2 = 〈ż1(t)− ż2(t), z1(t)− z2(t)〉

≤ 〈g1(t)− g2(t), z1(t)− z2(t)〉

≤ |g1(t)− g2(t)| · |z1(t)− z2(t)|.

Letting Z(t) := |z1(t) − z2(t)|
2, the above inequality is

rewritten as: Ż(t) ≤ 2|g1(t) − g2(t)|
√

Z(t). Applying the

comparison lemma for solution of ODEs, we get

|z1(t)−z2(t)| ≤ |z1(0)−z2(0)|+

∫ t

0

|g1(s)−g2(s)| ds. (28)

To study the solutions of (16), consider a sequence of

solutions with z1(t) = z(0), t ≥ 0, and zi+1(·), for i ≥ 1
is obtained as a solution to following inclusion with initial

condition zi(0) = z(0), i ∈ N:

żi+1(t) ∈ −Ψ(t, zi+1) + µzi(t).

Then, from (28), we have, for each t ≥ 0:

|zi+1(t)− zi(t)| ≤

∫ t

0

µ|zi(s)− zi−1(s)| ds

which through induction leads to:

|zi+1(t)− zi(t)| ≤
(µt)i

i!
‖z2 − z1‖L∞

.

Thus, the sequence {zi}
∞
i=1 converges uniformly on every

compact interval, and hence limi→∞ zi is the unique solution

to system (16).
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