
HAL Id: hal-01065030
https://hal.science/hal-01065030v1

Submitted on 12 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matter waves in two-dimensional arbitrary atomic
crystals

Nicola Bartolo, Mauro Antezza

To cite this version:
Nicola Bartolo, Mauro Antezza. Matter waves in two-dimensional arbitrary atomic crystals. Physical
Review A, 2014, 90 (3), pp.033617. �10.1103/PhysRevA.90.033617�. �hal-01065030�

https://hal.science/hal-01065030v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW A 90, 033617 (2014)

Matter waves in two-dimensional arbitrary atomic crystals

Nicola Bartolo1,2,3,* and Mauro Antezza1,2,4,†
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We present a general scheme to realize a cold-atom quantum simulator of bidimensional atomic crystals.
Our model is based on the use of two independently trapped atomic species: the first one, subject to a strong
in-plane confinement, constitutes a two-dimensional matter wave which interacts only with atoms of the second
species, deeply trapped around the nodes of a two-dimensional optical lattice. By introducing a general analytic
approach we show that the system Green function can be exactly determined, allowing for the investigation of the
matter-wave transport properties. We propose some illustrative applications to both Bravais (square, triangular)
and non-Bravais (graphene, kagomé) lattices, studying both ideal periodic systems and experimental-size and
disordered ones. Some remarkable spectral properties of these atomic artificial lattices are pointed out, such as
the emergence of single and multiple gaps, flat bands, and Dirac cones. All these features can be manipulated
via the interspecies interaction, which proves to be widely tunable due to the interplay between scattering length
and confinements.
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I. INTRODUCTION

In spite of the development of supercomputers and cutting-
edge numerical methods, the simulation of experimental-size
many-body systems is still a hard task. Following Feynman’s
conjecture of a quantum simulator, it proves useful to analyze
manipulable systems able to reproduce, in a controllable
way, the physical scenario that one wants to investigate. The
theoretical and experimental progress of the last decades,
boosted by nanotechnological needs, has made it possible to
combine the properties of cold gases and optical lattices to
build up artificial crystals able to mimic condensed-matter
systems [1]. A crucial factor in the success of these models is
their experimental versatility. Interactions between cold atoms
can indeed be tuned via Feshbach [2], dipolar-induced [3],
or confinement-induced [4] resonances. On the other hand,
optical lattices offer full control of the potential landscape felt
by cold atoms, allowing for the exploration of quantum phase
transitions [5]. Furthermore, these kinds of simulators enable
the exploration of parameter ranges beyond those of the real
material they imitate, unveiling new physical scenarios.

In solid-state physics, among the plethora of crystals that
can be investigated, two-dimensional ones (2D) are of special
interest due to the intriguing properties that 2D materials
have been shown to possess. Up to the early 2000s the
study of these systems was only of academic interest, 2D
solids being considered unstable structures never observed
experimentally. Things changed in 2004, when graphene was
finally isolated [6]. This discovery paved the way to the study
of this astonishing carbon allotrope composed of a monolayer
of ions forming a honeycomb lattice in which charge carriers
manifest peculiar transport properties [7,8]. In particular,
conduction and valence bands touch in isolated points of k
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space: the Dirac points. Around them the energy-momentum
dispersion relation is conical and a Dirac-like equation for
massless fermions replaces Schrödinger’s equation to describe
the quantum motion of the carriers. Graphene thus qualifies
as a quantum electrodynamics simulator on a benchtop
scale. Furthermore, relativistic effects, in general, inversely
proportional to the speed of light, would be enhanced in
graphene: the role of c is played here by the group velocity vg

of the particles around the cone and c/vg ∼300 [7].
The growing attention to graphene and other monolayer

materials translates into an increasing interest in their quantum
simulators, so that many artificial prototypes of 2D lattices
have been proposed and realized in past years (for a recent
review see [9]). In the present work we introduce a general,
highly controllable model for the realization of artificial
bidimensional lattices, based on the use of two cold-atomic
species. In our system a 2D matter wave (MW), made up
of A atoms, interacts with point-like scatterers of the second
atomic species, denoted B, independently trapped around the
nodes of a 2D optical lattice. A schematic of our model is
presented in Fig. 1. Such a scheme is already experimentally
realizable using species-selective optical lattices: trapping
potentials engineered to act on an atomic species (B in the
present case) being, at the same moment, invisible to a second
one (for us, A) [10,11]. This has been done, for instance,
in Ref. [10] for a mixture of 87Rb and 41K atoms: when
the optical-lattice frequency is tuned exactly in between two
87Rb resonances, the attractive and repulsive contributions to
the optical force cancel each other and only 41K feels the
added potential. In this study we limit our investigations to
one-body physics in the MW; i.e., we assume A atoms to
be noninteracting with themselves, a situation attainable by
using polarized fermions or bosons at zero scattering length.
One can instead employ the B-B interaction to reach a Mott
insulating phase with exactly one atom per lattice site [5]
and subsequently freeze the atoms in this configuration by
increasing the lattice depth. Other techniques are also available
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FIG. 1. (Color online) Schematic of our model for the realization
of 2D atomic crystals. Two atomic species, namely, A (depicted in
blue) and B (depicted in red), are strongly confined on a plane.
Making use of a species-selective optical lattice [10,11], B atoms are
arranged in a 2D lattice of point-like scatterers of arbitrary geometry
(a square one in this example), while A atoms form a matter wave
which propagates through the artificial crystal.

to probe [12] and manipulate [13], at the single-site and
single-atom level, the scatterer arrangement. This model has
recently been proposed to study the effects of disorder in
1D [14], 2D, and 3D [15] systems, and it has the advantage of
showing a one-to-one correspondence with the bidimensional
lattices that it can mimic : the A atoms of the MW play the
role of the electronic cloud, while the deeply trapped B atoms
represent the crystalline structure. Henceforth we refer to our
system as an atomic artificial crystal (AAC), since the periodic
potential felt by the MW is generated by other atoms and not
by an optical potential.

The paper is organized as follows. We start by introducing
the theoretical model in Sec. II, briefly discussing the problem
of scattering in reduced and mixed dimensions (Sec. II A)
and describing the general approach to the study of an AAC
in Sec. II B. In Sec. III we specify the model to the case
of ideal Bravais arrangements of the scatterers, studying as
illustrative examples the square (Sec. III A) and triangular
(Sec. III B) lattices. For both of them the spectral properties
are analyzed as a function of the A-B interaction strength.
Finite-size and disorder effects are also investigated. Sec. IV is
devoted to the generalization of previous results to non-Bravais
lattices, focusing on the exemplary atomic artificial graphene
(AAG) (Sec. IV A) [16] and kagomé lattice (Sec. IV B).
Some properties of these systems, namely, the emergence of
Dirac cones and nondispersive flat bands, are pointed out and
characterized. We, finally, present our conclusions in Sec. V.

II. THEORETICAL MODEL

A. 0D-2D scattering process

A remarkable feature of cold-atomic systems is the pos-
sibility of using experimentally controllable parameters as
knobs to tune the interatomic scattering lengths, for example,
by means of Feshbach or dipolar-induced resonances [2,3].
When the interacting particles are subjected to a trapping
potential, this can, in turn, play a role leading to confinement-
induced resonances [4]. If the trapping is sufficiently strong,
the dimensionality of the system can be reduced: it has
been proven, for instance, that a 3D system subject to a
strong axial confinement (quasi-2D) can be mapped into a
strictly 2D one by introducing an effective 2D scattering

A

impinging atom
in strictly 2D space

B

fixed point like
scatterer

Ω0

ΩBΩA

A

impinging atom
confined in 2D

B

0D trapped
scatterer

Actual scattering process in 3D

Equivalent scattering process in 2D

FIG. 2. (Color online) Schematic of the two-body scattering pro-
cess between a 2D-trapped A atom and a 0D-trapped B atom. The
scattering process in the actual system (top) is ruled by the 3D A-B
scattering length a3D of the contact interaction, as well as by the
trapping frequencies and the mass ratio of the two atomic species.
The system is equivalent to a strictly bidimensional one (bottom)
in which the B atom constitutes a fixed point-like scatterer and the
scattering process is ruled only by an effective 2D scattering length
aeff

2D [20].

length, the latter depending on the free 3D interaction and
on the trapping parameters [17]. Another related subject
is the study of scattering processes involving differently
trapped atoms; in this case we talk about scattering in
mixed dimensions. Recently processes involving a free particle
and a trapped one have been addressed (nD-3D scatter-
ing [18,19]) and some theoretical predictions have been tested
experimentally [10].

In the case of the AAC the building block of any analysis
is the two-body low-energy scattering process between an A

atom of mass mA =m, harmonically trapped on a plane, and a
B one of mass mB , trapped around a node of an optical lattice,
the process represented schematically in Fig. 2. It can be shown
that, by providing a proper effective 2D scattering length aeff

2D,
the system is mapped into a strictly 2D space in which the B

atom is now a fixed point-like scatterer. The effective parameter
aeff

2D, which also takes into account the quantum motion of the
B atom in the real system, depends on the atomic mass ratio,
the trapping frequencies, and the A-B scattering length a3D in
free space (cf. Fig. 2). A detailed study of this 0D-2D scattering
process will be extensively presented elsewhere [20]. For the
purposes of the present work we assume aeff

2D to be tunable in
its full range of existence [0,∞[, protecting the validity of the
point-like approximation for B. In this regime the interaction
can be taken into account by considering the A atom as free
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and imposing the Bethe-Peierls contact conditions,

ψ(r)
r→rB−−−→ m

π�2
DB ln

( |r − rB |
aeff

2D

)
+ O(|r − rB |), (1)

on its wave function at the position rB of the scatterer, where
DB is an arbitrary complex coefficient. We, finally, recall that,
in the case of 2D scattering, the limit aeff

2D →∞ corresponds to
a weakly attractive interaction, while for aeff

2D →0 the effective
potential allows a single, infinitely deep bound state and results
weakly repulsive for positive-energy scattering states [21].

B. General approach

Let us start by considering now a general case in which
N point-like B scatterers are fixed at positions {ri}. The
first steps of our calculation follow [15]: we consider the
Hamiltonian of the MW as that of a free A atom, i.e.,
H=− �

2

2m
∇2

2D, with ∇2
2D the 2D Laplace operator, and add the

A-B interaction by imposing the boundary condition (1) at
the position of each B scatterer. This introduces a set of N

independent complex coefficients Di . The same conditions
apply to the MW Green’s function, G(r,r0), solution of the
Schrödinger equation for a point-like source term of MWs
in r0: (E + i0+ − H)G(r,r0) = δ(r − r0). The latter wave
equation can be rewritten to take the boundary conditions
directly into account. By using the identity ∇2

2D ln(r)=2πδ(r),
the effect of contact conditions resumes in the inclusion of
secondary point-like sources of amplitude Di at the position
of each scatterer [15], leading to

(E + i0+− H) G(r,r0) = δ(r − r0) +
N∑

i=1

Di δ(r − ri). (2)

Since the poles of G (and of its analytical continuation
to complex energies in the lower half-plane) correspond to
eigenstates of the system, its knowledge is of fundamental
importance to determine the properties of the AAC.

To integrate Eq. (2) we use its solution in the absence of
scatterers, which is the case for a free 2D MW. In this case,
G(r,r0)=g(r − r0), with

g0(r) = −i
m

2�2
H

(1)
0 (kr), (3)

where H
(1)
0 is the zero-index Hankel function of the first kind.

The wave-vector modulus k is linked to the MW energy by
E=�

2k2/2m, with k>0 for E>0 and k= iκ with κ >0 for
E<0 (i.e., for bound states). The formal solution of the wave
equation is hence

G(r,r0) = g0(r − r0) +
N∑

i=1

Di g0(r − ri), (4)

where the determination of the N coefficients Di depends on
the system geometry, encoded in the set {ri}. This problem
can be traced back to the solution of a complex linear system
in the N unknowns Di . Each equation of this system comes
from the limit r→rj of Eq. (4), imposing the Bethe-Peierls
condition on the left-hand side and applying

H
(1)
0 (kr) −−→

r→0
1 + 2i

π
ln

(
eγ

2
kr

)
+ o(1) (5)

on the right-hand side, where γ �0.577216 is the Euler-
Mascheroni constant. After some straightforward algebraic
manipulation the system can be cast as

N∑
i=1

MjiDi = −π�
2

m
g0(rj − r0) j = 1,2, . . . ,N, (6)

with the introduction of the matrix M of elements

Mji =
{

π�
2

m
g0(rj − ri), rj �= ri ;

ln
(

eγ

2 kaeff
2D

) − i π
2 , rj = ri .

(7)

The formal solution of G [Eq. (4)] has a pole if M is not
invertible, i.e., if det(M)=0. The latter is thus our general
condition for the existence of an eigenstate of the MW in the
gas of scatterers.

The condition det(M)=0 can be rewritten in a more
practical form by noting that the interaction-dependent terms
appear only in the diagonal elements of M. In particular, one
can write

Mjj = ln

(
eγ

2
ka

)
− i

π

2
+ α, (8)

with the introduction of the 2D interaction coefficient α=
ln(aeff

2D/a) and for an arbitrary choice of the unitary length a.
It follows that M=Mo + Iα, for Mo =M(α=0) and I the
N × N identity matrix. For E<0 the matrix Mo is real, and
looking for solutions of det(M)=0 is equivalent to solving

mo
i (E) = −α, i = 1,2, . . . ,N, (9)

for each of the N eigenvalues mo
i of Mo. Solutions of Eq. (9)

give real and negative energies of the MW bound states in the
gas of scatterers. For E>0 the situation is slightly different.
A continuum of states is allowed for the MW; nevertheless,
for a large enough number of scatterers, precursors of the bulk
Bloch states of the infinite periodic system can be identified in
the form of complex poles of the analytical continuation of G

to the lower half-plane of complex energies. In our approach,
this corresponds to the fact that Mo is now a complex matrix
and the poles of the extended G can be found by solving

mo
i (z) = −α i = 1,2, . . . ,N, (10)

for complex energies of the form z=E − i��/2, where E and
�>0 represent, respectively, the position and bandwidth (i.e.,
inverse lifetime) of the eigenstate. The latter, in an extended
and ordered system, would be a quasi-Bloch state, i.e., a state
showing the periodicity properties of a Bloch state within the
gas of scatterers but with a finite lifetime inside of it.

III. BRAVAIS LATTICES

In this section we adapt the general formalism introduced
in Sec. II B to the case in which B atoms are arranged in a
Bravais lattice: an infinite periodic structure where a unit cell,
containing only one atom, is repeated to cover the entire 2D
space (cf. Figs. 3 and 4). Such a lattice is invariant under any
translation R∈L with L={n1a1 + n2a2 : n1,n2 ∈ Z}, where
the set L is defined in terms of the two primitive vectors
a1 and a2. Consequently, we can define the reciprocal lattice
as a periodic structure invariant under translations K∈RL

with RL = {n1b1 + n2b2 : n1,n2 ∈ Z}, where b1 and b2 are
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b1

b2FBZ

2Π a

X

M

a2

a1

a

FIG. 3. (Color online) Left: Schematic in real space of a square
lattice of primitive vectors a1 =a(1,0) and a2 = a(0,1). The shaded
area represents the unit cell. Right: Reciprocal lattice in k space corre-
sponding to the square lattice. Consequently the reciprocal primitive
vectors are b1 = 2π

a
(1,0) and b2 = 2π

a
(0,1). The first Brillouin zone

(FBZ) is shaded. The high-symmetry points �= (0,0), X= π

a
(1,0),

and M= π

a
(1,1) are highlighted and the �-X-M-� path [dashed (red)

line] constitutes an irreducible symmetry path.

the reciprocal primitive vectors, defined by the relation ai ·
bj =2πδij (i,j =1,2) [22]. Some examples of Bravais and
corresponding reciprocal lattices are presented in Figs. 3 and 4.

The condition for the existence of an eigenstate, i.e.,
det(M)=0, implies that the homogeneous system

∞∑
i=1

MjiDi = 0, j = 1,2, . . . ,∞, (11)

associated with the inhomogeneous one of Eq. (6) admits a
nontrivial solution. Note that now the number of scatterers N ,
and thus the number of equations and unknowns in the system,
is infinite [23,24]. In such a periodic structure Bloch’s theorem
holds, implying that

Di = Dje
iq·(rj −ri ), (12)

where q is a vector of the first Brillouin zone (FBZ) in
reciprocal space. Resorting to this property all the equations
of the homogeneous system (11) become identical, so that the

b1

b2

FBZ

4Π
3a

K

K'
M

a2

a1

a

FIG. 4. (Color online) Left: Real-space representation of a tri-
angular lattice of primitive vectors a1 = 3a

2 (1,1/
√

3) and a2 = 3a

2 (1,

− 1/
√

3). The shaded region represents the Wigner-Seitz unit cell.
Right: Reciprocal lattice for the triangular one, b1 = 2π

3a
(1,

√
3) and

b2 = 2π

3a
(1,−√

3) being the reciprocal primitive vectors. The first
Brillouin zone (FBZ) is shaded and the high-symmetry points
�= (0,0), M= 2π

3a
(1,0), K= 2π

3a
(1,1/

√
3), and K′ = 2π

3a
(1,−1/

√
3)

are highlighted. The �-M-K-� path [dashed (red) line] is a high-
symmetry one.

unique condition to verify is

ln

(
eγ

2
kaeff

2D

)
− i

π

2
+

∑
R∈L∗

π�
2

m
g0(R)eiq·R = 0, (13)

where L∗ =L \ {0}. Due to the slow convergence of the
sum in Eq. (13), a rewriting of the equation in terms of
reciprocal-lattice vectors is appropriate. The delicate details
of this transformation are reported in the Appendix 1, the
result being

C∞ + ln

(
eγ

2

)
+ 2π

A
1

k2 − q2

+ 2π

A
∑

K∈RL∗

(
1

k2 − |K − q|2 + 1

K2

)
+ α = 0. (14)

Here C∞ is a coefficient depending only on the geometry
of the Bravais lattice; its origin and definition follow from
the real-to-reciprocal lattice transformation, presented in the
Appendix 1. We have also reintroduced the 2D interaction
coefficient α= ln(aeff

2D/a) (a being an arbitrary unit of length)
and A is the area of the real-space unit cell of the Bravais
lattice.

It is worth noting that Eq. (14) can be cast as

f (q,E) = −α, (15)

with the introduction of the interaction-independent function

f (q,E) = C∞ + ln

(
eγ

2

)
+ 2π

A
1

k2 − q2

+ 2π

A
∑

K∈RL∗

(
1

k2 − |K − q|2 + 1

K2

)
. (16)

It follows by its definition that f (q,E) diverges for

k = |K − q| ∀ K ∈ RL, (17)

where wave vector and energy of the MW are related
by E = �

2k2/2m. Furthermore, f (q,E) is monotonically
decreasing in E between two divergences, ensuring that for
a given q only one solution of Eq. (15) exists between them.
Another remarkable consequence is that if Eq. (17) holds, then
condition (15) is satisfied only for |α|→∞, which is in the
limit of noninteraction between the MW and scatterers (cf.
Fig. 5 for a practical example). This implies that for |α|→∞
one would recover the dispersion relation of a free MW, whose
energy is given by

Efree = �
2

2m
|K − q|2 ∀ K ∈ RL. (18)

A. Square lattice

As the first example of an AAC we consider B scaterers
arranged in a square lattice of spacing a, for which the primitive
vectors are simply a1 =a(1,0) and a2 =a(0,1). The reciprocal
lattice and the FBZ are consequently defined, as illustrated in
Fig. 3.

1. Infinite system

To study the band structure of the artificial atomic square
lattice (AASL) one needs to solve Eq. (14), where in this
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FIG. 5. (Color online) For a square lattice (cf. Fig. 3), behavior
of f (q,E) as a function of E for different values of q [namely,
π

a
(0.8,0.5), π

a
(0.9,0.5), and π

a
(1,0.5), from top to bottom]. Dashed

vertical (gray) lines represent the lowest values of Efree for the
selected q. In the sketches at the right of each panel a point indicates
the corresponding q inside the �-X-M-� symmetry path. Here
ε=�

2/ma2.

case C∞ �1.42646 [cf. Eq. (A12)]. It is convenient from a
computational point of view to evaluate once and for all the
function f (q,E) defined in Eq. (16) and then look for solutions
of Eq. (15) for a given α. In Fig. 5 we plot f (q,E) for different
values of q inside the FBZ. As expected, f diverges each
time that E=Efree [i.e., when condition (17) is satisfied], but
when q gets closer to the boundary of the FBZ some values
of Efree corresponding to different K eventually tend to each
other. A solution of Eq. (15) thus remains “trapped” in the
small corridor formed by the two divergences and it tends to
E=Efree in the degeneracy limit, independently of α.

We present in Fig. 6 the spectrum and density of states
(DOS) of the AASL for α=−0.75. The spectrum is evaluated
along the �-X-M-� symmetry path (cf. inset). The free-MW

E/

DOS
X M

5

0

5

10

15

0 0.2 0.4 0.6
5

0

5

10

15

X

M

FIG. 6. (Color online) For the artificial atomic square lattice, the
band structure (left) and density of states (right) evaluated at α=
−0.75. Left: The four lowest energy bands are evaluated along the
irreducible symmetry path �-X-M-� within the first Brilouin zone
(see inset). Dashed (gray) lines correspond to the energy spectrum
of a free matter wave. Right: Density of states (DOS) obtained by
evaluating the energies of the same bands in Ns �6100 points sampled
inside the path. For each bin of the histogram (of width δE=0.1ε, ε=
�

2/ma2) the band-normalized DOS is evaluated according to Eq. (19).

FIG. 7. (Color online) Square lattice: band structure for different
values of the interaction parameter α. Spectra are evaluated along the
same path as shown in Fig. 6. Dashed (gray) lines correspond to the
energy spectrum of a free matter wave. Energies are normalized on
ε=�

2/ma2.

energy Efree is also shown, and as expected, only one solution
of Eq. (15) exists between two (eventually coinciding) free
bands. An omnidirectional gap is found in the band structure
and, correspondingly, in the DOS. The numerical evaluation
of the DOS can be obtained by sampling each energy band in
Ns points within the FBZ. Subsequently, the formula

DOS(E) = NE

NsδE
(19)

gives the DOS in the energy range (E,E + δE), NE being
the number of sampled energies falling in the energy interval.
The DOS defined in Eq. (19) is normalized to the number of
bands taken into account. Finally, we remark that the lowest,
isolated band lies entirely at negative energies for this value of
α, meaning that the MW Bloch states are actually bound.

A fundamental aspect of our model relies on the possi-
bility of tuning its physical properties by acting on α. This
remarkable feature is shown in Fig. 7, where the spectra of the
AASL are compared for different values of α. The most evident
modification concerns the lowest band, which is isolated for
α�0.7453, so that a gap opens in the spectrum. Furthermore,
the band becomes increasingly deep and flat, leading to low
group velocities for the corresponding eigenstates. For |α|1
the MW and scatterers are weakly interacting, and as expected,
the band structure tends to the free-MW spectrum [dashed
(gray) curves in Fig. 7].

2. Finite-size effects

Up to now we have considered ideal periodic systems,
but for both theoretical and practical interests it is crucial
to investigate the robustness of the above-reported results for
realistic finite-size systems. In this case one cannot resort to
Bloch’s theorem and the use of the general approach presented
in Sec. II B is necessary. In a typical experimental setup, atomic
clouds can be manipulated in optical lattices extending over
∼60 sites per dimension. This means that 2D artificial atomic
lattices with ∼103 trapped B scatterers are experimentally
realizable. In Fig. 8 we thus present the DOS on the [α,E]
plane for a finite system of ∼2500 scatterers arranged in a
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FIG. 8. (Color online) Finite-sized square lattice: DOS per scat-
terer in the plane [α,E/ε] for a system of N =2551 scatterers arranged
in a square lattice inside a disk of radius R=26a. Energies are
discretized with a step of 0.01ε (ε=�

2/ma2). For a given E<0
all N solutions of Eqs. (9) are selected. For E>0 the sampled values
are used as starting points to find N complex poles of G according
to Eq. (20). Only quasi-Bloch bulk states are selected, as explained
in the text. The color map is applied to log10( Np

N

ε

δα δE
), where Np

is the number of selected poles of G within a rectangular bin of
area δα δE (δα=0.02 and δE=0.05ε). White circles indicate the
positions of band boundaries as expected from the analysis of an
infinite system (Figs. 6 and 7). Analogously the white plus symbol
marks the expected contact point between the lowest and the first
excited band, corresponding to the gap closure.

square lattice inside a circular region of radius R=26a. The
finite-size results are compared here with those of an ideal
infinite system and the agreement is excellent.

In the evaluation of the DOS in Fig. 8 it is computationally
convenient to fix E and, correspondingly, look for values of
α satisfying condition (9) or (10). For E<0 the N × N real
symmetric matrixMo(E) and its eigenvalues can be evaluated,
thus the values of α solving Eqs. (9) are immediately obtained.
For E>0 one can use Ẽ=E as the starting point to find an
approximate solution of the complex Eqs. (10) [15]. We write
z= Ẽ + δz and we assume the first-order expansion mo

i (z)=
mo

i (Ẽ) + δz mo
i
′(Ẽ) to be valid. By choosing α=−Re[mo

i (Ẽ)]
each equation reduces to iIm[mo

i (Ẽ)] + δz mo
i
′(Ẽ)=0, from

which δz can be directly derived. The energy E and bandwidth
� of the quasi-Bloch states follow from

z = E − i
�

2
� � Ẽ − i

Im
[
mo

i (Ẽ)
]

mo
i
′(Ẽ)

. (20)

Note that the derivative mo
i
′(Ẽ) can be evaluated by re-

sorting to the generalized Hellmann-Feynman theorem: for
the complex symmetric matrix Mo, one has dmo

i (z)/dz=
�ui · [dMo(z)/dz] �ui , where �ui is the right eigenvector of
eigenvalue mo

i (z), normalized as �ui · �ui =1 (instead of the
usual �ui · �u∗

i =1).
The first-order approximation (20) is sufficient if

Im[mo
i (Ẽ)] is small [15], and this is the case for most of the

solutions we find. In particular, for quasi-Bloch states one
expects a lifetime τ =1/��R/vg , where R is the radius of
the region containing the scatterers and vg the group velocity
of the state. To verify this behavior we selected a small
window on the [α,E] plane, studying the distributions of
τ when the system size varies. The results of this analysis
are presented in Fig. 9. We find that the distribution peak
follows the expected behavior, confirming that the first-order
approximation is sufficient to individuate quasi-Bloch states.

FIG. 9. (Color online) Square lattice of finite size: normalized densities of lifetimes τ for E/ε=6.5 ± 0.5 and α=−0.75 ± 0.1 (ε=
�

2/ma2). Different panels correspond to different radii R of the scattering region. Dot-dashed vertical (red) lines in each panel indicate R/v̄g ,
where v̄g is the average group velocity in the selected region of the [α,E] plane.
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FIG. 10. (Color online) For the same finite-size square lattice
considered in Fig. 8: normalized density of bandwidths � for all
positive-energy poles of the Green function (ε=�

2/ma2). The dot-
dashed vertical (blue) line at �=�max marks the change in behavior
of the density ρ� . Solutions with �>�max have been rejected because
they are incompatible with the behavior of a quasi-Bloch bulk state.
Here we found �max �0.7ε/� (i.e., �max �2 kHz for a matter wave of
87Rb atoms in an AASL with a=500 nm).

Nevertheless, when the poles of G are evaluated by Eq. (20),
one can eventually find some results for which the first order
is insufficient. These solutions would present nonphysical
negative values of � and needs to be rejected (in the case
presented in Fig. 8 they constitute 10.6% of positive-energy
states). Furthermore, in a finite-size system, states other than
quasi-Bloch ones can appear (such as edge states) for which
the law ��vg/R is not valid. In order to tell them apart
one can look at the density of �, shown in Fig. 10 for
the same system considered in Fig. 8. A neat change in
the behavior is found in �max ∼vgmax/R, where vgmax is the
highest estimated group velocity in the range of E and α

considered. States with �>�max can in turn be rejected,
finally, leaving only solutions behaving as quasi-Bloch bulk
states (in the case of Fig. 8 this led to the exclusion of an
additional 8.4% of solutions). A natural question may arise
concerning the dependence of vgmax on α and E. It has been
verified that by considering a cutoff depending on α and E the
results are qualitatively the same as those obtained using the
aforementioned selection method.

3. Introduction and effects of disorder

A remarkable advantage of our atomic artificial lattices
with respect to other one-species models is the possibility
of naturally introducing disorder in the system. Loading the
B-atom optical lattice with nonunitary filling would result
in the presence of randomly unoccupied sites constituting
random defects in the artificial crystal [25]. Our general
theoretical approach, presented in Sec. II B, can be used to
investigate the effects of this kind of disorder. In particular,
we show in Fig. 11 the negative-energy DOS of an AASL
of radius R=32a at different filling factors, obtained fixing
α=−0.75. In Fig. 11(a), 100% of the sites are occupied and
finite-size effects can be investigated by comparing the DOS
with that of the periodic system (presented in Fig. 6). There
are no significant discrepancies between the two quantities,
confirming the robustness of the results with respect to the
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FIG. 11. (Color online) Disordered square lattice: normalized
negative-energy DOS at α=−0.75 for an AASL of radius R=32a,
corresponding to 3209 available lattice sites. Different panels refer
to different percentages of randomly occupied sites: (a) 100%,
(b) 95%, (c) 20%, and (d) 10%. Histograms are obtained with a
bin size δE=0.05ε in (a) and (b) and δE=0.025ε in (c) and (d).
Superimposed dotted histograms in (a) and (b) represent the DOS for
an infinite periodic system. Vertical lines in (c) and (d) indicate the
energies of few-body bound states: AB dimer (solid black line), AB2

trimer with B atoms separated by a [dashed (blue) line] and a
√

2
[dot-dashed (red) line]. Here ε=�

2/ma2.

system size. The DOS in the presence of 5% of vacant sites
[Fig. 11(b)] appears in turn to be compatible with the results for
an ideal periodic system, thus proving robustness also against a
small number of vacancies. For a large number of unoccupied
sites, instead, the periodicity of the lattice gets lost and the
MW interacts locally with few-body clusters of scatterers. As
shown in Figs. 11(c) and 11(d), this gives rise to a DOS which
is more and more peaked around the energies of few-body
ABn bound states. The energies of these bound states can
be derived from Eqs. (9), where the eigenvalues of Mo can be
analytically obtained for n�4. The explicit expressions can be
found in Eqs. (45) and (46) in Ref. [15], where the emergence
of disorder-localized states for low filling is investigated.

B. Triangular lattice

Another relevant example of an atomic artificial Bravais
lattice is the triangular one, whose analysis is also preliminary
to the study of intriguing non-Bravais structures, such as
graphene and the kagomé lattice. In this case the primitive
vectors are a1 =a(

√
3,1)

√
3/2 and a2 =a(

√
3,−1)

√
3/2, from

which the real and reciprocal lattices, illustrated in Fig. 4, are
defined.

1. Infinite system

To investigate the spectral properties of the atomic artificial
triangular lattice (AATL) we need, once again, to solve
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FIG. 12. (Color online) Artificial atomic triangular lattice: band
structure (left) and DOS (right) for α=−0.6. Left: Behavior of the
four lowest energy bands along the �-M-K-� path (see inset at right).
Dashed (gray) lines indicate the dispersion relation for a free matter
wave. Right: DOS, as defined in Eq. (19), obtained by evaluating
the energy of the bands in Ns =7600 points sampled inside the
aforementioned symmetry path. The bin size of the histogram is
δE=0.05ε (ε=�

2/ma2).

Eq. (15), now for C∞ �0.959 662. We can thus proceed as
in Sec. III A 1 for the square lattice.

In Fig. 12 we present a typical spectrum of the system,
evaluated in α=−0.6. The band structure, studied along the
�-M-K-� high-symmetry path (see inset), shows the presence
of a gap, which the DOS confirms to be omnidirectional. Also
in this case we verify the existence of a single solution of
Eq. (15) between two values of Efree. The versatility of this
artificial lattice emerges in Fig. 13, where we compare its
spectra for different values of the interaction parameter α. One
finds that there exists a gap of tunable width for α�3.853, and
again, the lowest, isolated band rapidly becomes thin and deep
in energy with decreasing α.

2. Finite-size and disorder effects

For the sake of completeness we again test our results
against finite-size effects. With the same method illustrated

FIG. 13. (Color online) Triangular lattice: comparison of the
band structure for different values of the interaction parameter α.
The spectrum evaluation path is the same as for Fig. 12. Dashed
(gray) lines correspond to the energy spectrum of a free matter wave.
Energies are normalized on ε=�

2/ma2.

FIG. 14. (Color online) Triangular lattice of finite size: DOS per
scatterer in the plane [α,E/ε] for a system of N =2125 scatterers
arranged in a triangular lattice inside a disk of radius R=42a. The
same method as for Fig. 8 was used, but discretizing E in steps of
0.005ε (ε=�

2/ma2). Positive-energy quasi-Bloch bulk states were
selected imposing �<�max �0.3ε/� (i.e., �max �880 Hz for a matter
wave of 87Rb atoms in an AATL with a=500 nm). The color map
is applied to the quantity log10( Np

N

ε

δα δE
), where Np is the number of

selected poles of G within a rectangular bin of area δα δE (δα=0.02
and δE=0.025ε). White circles indicate the expected positions of the
band boundaries as evaluated for the infinite system (Figs. 12 and 13).
Analogously, the white plus symbol marks the expected contact point
between the lowest and the first excited band.

in Sec. III A 2 we evaluated the DOS on the plane [α,E] for
an experimental-size system of ∼2100 scatterers arranged in a
triangular lattice inside a circular region of radius R=42a. The
results, shown in Fig. 14, are, once again, in good agreement
with predictions based on the analysis of an ideal AATL. We
also verified that, in analogy to the square-lattice case, the
results are robust if a small number of vacancies is randomly
introduced in the triangular structure, while few-body states
become dominant for low fillings.

IV. NON-BRAVAIS LATTICES

This section is devoted to generalizing the formalism
introduced in Sec. III to the case in which B scatterers are
arranged in a non-Bravais lattice: an infinite periodic structure
in which a unit cell, now containing M atoms, is repeated
to cover the 2D plane. Such a structure can be equivalently
seen as a set of M identical Bravais lattices, the mth and
nth being displaced by tmn with respect to each other. The
structure will still be invariant if translated by R∈L, for
L={n1a1 + n2a2 : n1,n2 ∈ Z}, where a1,2 are the primitive
vectors of a sublattice [cf. Fig. 15(a)]. All the properties of a
Bravais lattice remain separately valid for each sublattice. If
we denote by Ri the central position of the ith unit cell, and by
ρm the position of the mth atom with respect to this reference,
the location of a scatterer in the non-Bravais lattice is given by
rim =Ri + ρm. The linear system (11) becomes

∞∑
i=1

M∑
m=1

Mjn,im Dim = 0 (21)
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FIG. 15. (Color online) (a) Representation of an M =2 non-
Bravais lattice. It can be seen as a triangular lattice (Fig. 4) with
two atoms per unit cell (shaded hexagon) whose relative position
is t12. Equivalently, it can be obtained as the superposition of two
interpenetrating triangular lattices (distinguished by colors) displaced
by t12 with respect to each other. The generating vectors a1,2 = 3a

2 (1,

± 1/
√

3) are also indicated. (b) Representation of the triangular lattice
as an example of a basic Bravais lattice, i.e., with one atom per unit
cell. The distance between nearest atoms is a

√
3. (c) Representation

of the hexagonal lattice of graphene, a two-atom non-Bravais lattice
based on the triangular one, obtained for t12 = (a1 + a2)/3= (a,0).
With these definitions, the side of the hexagons has length a. (d)
Representation of the kagomé lattice, a three-atom non-Bravais lattice
based on the triangular one, obtained for t12 =a1/2 and t13 =a2/2.
The nearest-neighbor distance is a

√
3/2.

for each j = 1,2, . . . ,∞ and n = 1,2, . . . ,M . Practically,
each index has been split with respect to previous notation
(i.e., j → jn and i → im) such that the first index runs on
the lattice cells, while the second indicates at which of the M

sublattices the scatterer belongs. Accordingly, the definition
of M given in Eq. (7) still holds. Bloch’s theorem is now
separately valid for each sublattice, so that

Dim = Djm eiq·(rjm−rim) = Djm eiq·(Rj −Ri ), (22)

while Dim and Djn stay independent for m �=n [24]. This
assumption makes the present treatment not valid in the few
accidental cases in which the non-Bravais lattice degenerates
into a Bravais one. For an arbitrary choice of j , all the equations
in system (21) take the form

M∑
m=1

Djm

∞∑
i=1

Mjn,im eiq·(Rj −Ri ) = 0, (23)

giving a homogeneous system of M equations in the M

unknown Djm’s, whose matrix T is defined by

Tnm =
∞∑
i=1

Mjn,im eiq·(Rj −Ri ). (24)

The matrix elements read explicitly

Tnm =
∑
R∈L

π�
2

m
g0(R + tnm) eiq·R for n �=m, (25)

Tnn = ln

(
eγ

2
kaeff

2D

)
− i

π

2
+

∑
R∈L∗

π�
2

m
g0(R) eiq·R, (26)

with tnm =ρn−ρm. The condition det(T)=0 has to be satisfied
so that system (23) has a solution, which, in turn, means that
this is the condition for the existence of an eigenstate of the
A-atom MW in the presence of a non-Bravais lattice of B

scatterers. Note that the diagonal terms are all the same and
that they correspond to the left-hand side of Eq. (13). This
naturally implies that for M =1 we get back to the case of a
Bravais lattice: det(T)=T11 =0 is exactly Eq. (13). It is again
convenient to rewrite the sums in terms of reciprocal-lattice
vectors. Following the procedure described in the Appendix,
we finally have

Tnm = 2π

A
∑

K∈RL

ei(K−q)·tnm

k2 − |K − q|2 , (27)

Tnn = C∞ + ln

(
eγ

2

)
+ 2π

A
1

k2 − q2

+ 2π

A
∑

K∈RL∗

(
1

k2 − |K − q|2 + 1

K2

)
+ α. (28)

Besides, from the latter expressions the matrix T turns out to
be explicitly Hermitian.

A. Graphene

Considering the increasing interest in the intriguing prop-
erties of graphene and its artificial realizations [7–9], it seems
natural to apply our model to the investigation of the behavior
of AAG (cf. [16] for more details): a cold-atom quantum
simulator of graphene where, differently from pre-existing
models presented in the field [26,27], the periodic potential
felt by the MW is generated by other atoms. The honeycomb
structure is actually a non-Bravais lattice resulting from the
superposition of two interpenetrating triangular ones displaced
by t= (a,0), as illustrated in Fig. 15(c).

As usual, we begin by considering an ideal infinite system.
For a generic two-atom non-Bravais lattice the condition for
the existence of an eigenstate is det(T)=0, the matrix T being
a 2 × 2 Hermitian one. Once again, the diagonal interaction
term α can be isolated by writing T=To + Iα, where I is the
2×2 identity matrix and

To = T(α=0) =
(

f (q,E) ϕ(q,E)

ϕ∗(q,E) f (q,E)

)
, (29)

with f (q,E) defined as in Eq. (16) and

ϕ(q,E) = 2π

A
∑

K∈RL

ei(K−q)·t

k2 − |K − q|2 . (30)

It follows that condition det(T)=0 is equivalent to

to±(q,E) = f (q,E) ± |ϕ(q,E)| = −α, (31)
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FIG. 16. (Color online) Atomic artificial graphene. Top: Behav-

ior of to
+(q,E) [solid (purple) line] and to

−(q,E) [dashed (green) line]
as a function of E for q= 2π

3a
(0.8,0.3). Dashed vertical (gray) lines

indicate the lowest values of Efree for the selected q. Dot-dashed (blue)
curves show the behavior of f (q,E). Inset: Position of q within the
�-M-K-� symmetry path (Fig. 4). Bottom: Behavior of |ϕ(q,E)| for
the same q. Here ε=�

2/ma2.

where to± are the two real eigenvalues of To. It can be easily
proved that when f diverges, i.e., when E→Efree, the absolute
value of ϕ exactly cancels the divergence so that the left limit
of to+ is finite and equal to the right limit of to−:

lim
E→E∓

free

to±(q,E) = lim
E→Efree

f (q,E) − π�
2

mA
1

E − Efree
. (32)

A numerical example of this is given in Fig. 16, where the two
eigenvalues to±(q,E) and |ϕ(q,E)| are plotted as functions of E

for a fixed q. By virtue of the aforementioned properties, only
one solution of Eq. (31) exists between two solutions of the
corresponding Eq. (15). This practically means that a band of
a non-Bravais lattice with M =2 is always included between
two bands of the corresponding Bravais lattice (M =1).

An example of a spectrum for AAG is presented in Fig. 17
for α=−0.6. The band structure and DOS point out the
presence of a double gap, which can be manipulated and
eventually closed by acting on α. A key feature is the existence
of two nonequivalent Dirac points, situated in K,K′ = 2π

3a
(1,

± 1/
√

3) within the FBZ. Here the two lowest bands touch
each other, creating a cone-shaped energy-momentum dis-
persion. The MW obeys a Dirac-like equation for relativistic
massless fermions in which the role of the speed of light is
played by vg: the modulus of the group velocity of the wave
along the cone. Remarkably, the characteristics of the cones
can be manipulated by acting on α. At first, for α�0 the cone
lies at negative energies, so that relativistic physics is there
played by bound states. Furthermore, similarly to the Bravais
artificial lattices, the lowest bands get flat with decreasing
α, leading to a widening of the cones (cf. Fig. 18). This
results in a sensitive decrease in vg , even below 1 mm/s for
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FIG. 17. (Color online) Honeycomb lattice: band structure (left)
and DOS (right) for AAG at α=−0.6. Left: Behavior of the five
lowest energy bands along the �-M-K-� symmetry path (see inset
at right). Dashed (gray) curves show the band structure for the
corresponding triangular lattice. Right: DOS [defined in Eq. (19)]
obtained by sampling the band energy in Ns =7600 points within the
symmetry path. The histogram bin size is δE=0.05ε (ε=�

2/ma2).

typical experimental setups (i.e., up to 10−9 the corresponding
quantity for electrons in real graphene).

Another striking feature emerges at α=αflat �−1.631, a
value at which the third isolated band is topologically flat. As
shown in Fig. 18, for α>αflat the third-band maximum is in
� and the minimum in K, while these roles are exchanged
for α<αflat. Correspondingly, the band concavity changes at
the transition point, leaving the band completely flat around
E�2.924ε (ε=�

2/ma2). It may be argued that, also in the
case of Bravais artificial atomic lattices, quasiflat bands emerge
for large and negative values of α (see the lowest bands in
Figs. 7 and 13), but some important differences exist between
these bands and the one we find for AAG. At first, graphene’s
band is topologically flat, which means that vg =0 for every
value of q. The quasiflat bands instead keep their structure,
even though they are compressed into a small range of energies
(this phenomenon is clearly shown in Fig. 7). Moreover,
graphene’s flat band lies at positive energies, in the propagative
region of the MW. The interest in this kind of flat band arises

FIG. 18. (Color online) Atomic artificial graphene: comparison
of the band structures for different values of α evaluated along the
�-M-K-� symmetry path (see inset in Fig. 17). For α�−1.631 the
third, isolated band is topologically flat. Dashed (gray) curves show
the band structure for the corresponding triangular lattices. The unit
of energy is ε=�

2/ma2.
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from its nondispersivity: for noninteracting A atoms (the case
considered in this work), any MW state would be stationary
and localized, the group velocity on the band being strictly 0.
The effects of an eventual A-A interaction, even if extremely
small, would be enhanced, leading to the emergence of strongly
correlated phases [28]. Nonisolated flat bands have recently
been observed in honeycomb lattices for polaritons [29].

Finally, the use of an optical lattice allows us to manipulate
and distort the hexagonal structure, thanks to the precise
experimental control achievable on the potential landscape.
In one-component artificial graphenes such distortion of
the structure can lead to the motion and eventual merging
of the Dirac cones [30], a phenomenon recently observed
experimentally for a Fermi gas in a honeycomb optical
lattice [27]. Similarly, such a conductor-to-insulator transition
is expected to occur in our AAG. In conclusion, the analysis
of finite-size and disorder effects shows the robustness of the
aforementioned results against the system size. Dirac cones
and flat bands persist for up to 2% of vacant sites.

B. Kagomé lattice

As an example of an M =3 non-Bravais lattice we consider
the kagomé lattice, motivated by the increasing interest in this
peculiar structure in which several phenomena of geometric
frustration have been predicted [31]. As for graphene, the
kagomé lattice is based on the triangular one, but now with
three atoms per unit cell forming an equilateral triangle, as
depicted in Fig. 15(d).

To study the periodic system, the condition det(T)=0 now
translates into looking for solutions of toi (q,E)=−α, with
i =1,2,3 and toi being the three eigenvalues of the matrix To,
defined in Eq. (29). Typical spectra for different values of α

are presented in Fig. 19. The two lowest bands again present
two Dirac cones for q=K,K′, but differently from the case
of graphene, in the artificial kagomé lattice the third band

FIG. 19. (Color online) Kagomé lattice: comparison of the band
structures of the artificial lattice for different values of α evaluated
along the �-M-K-� symmetry path within the FBZ (see inset). The
two lowest bands touch in q=K,K′, forming a Dirac cone. For α�
−1.98 the fourth, isolated band is topologically flat. For α<−1 the
three lowest bands lie entirely at E<6.5ε (ε=�

2/ma2) and are not
shown in the plot. Dashed (gray) lines correspond to the energy
spectrum of a free matter wave.

FIG. 20. (Color online) Finite-sized kagomé lattice: DOS per
scatterer in the plane [α,E/ε] for a system of N =2083 scatterers
arranged in a kagomé lattice inside a disk of radius R=24a.
Results were obtained with the same method as described for
Fig. 8, discretizing the energies with a step of 0.005ε (ε=�

2/ma2).
Quasi-Bloch bulk states were selected choosing �max �0.5ε/� (i.e.,
�max �1460 Hz for a matter wave of 87Rb atoms for a=500 nm). The
color map is applied to the quantity log10( Np

N

ε

δα δE
), where Np is the

number of selected poles of G within a rectangular bin of area δα δE

(δα=0.02 and δE=0.025ε). White X, circles, and arrows indicate,
respectively, the positions of Dirac cones, gap boundaries, and the
isolated flat band as expected from the analysis of an infinite system
(Fig. 19).

moves together with the lowest two. The fourth band is flat
and isolated for α�−2. We note again that for |α|1 the
band structure approaches that of the free MW, as expected
the A-B interaction being weak in this limit.

The persistence of the spectral features in systems of
experimental size have also been investigated. The density
of solutions of Eqs. (9) and (10) for a system with ∼2000
B scatterers is shown in Fig. 20. The agreement with
the predictions for an infinite system is extremely good,
demonstrating, once again, the robustness of our results against
finite-size effects.

V. CONCLUSIONS

In this work we have presented a model for the realization
of 2D arbitrary AACs based on the use of two indepen-
dently trapped atomic species. This system revealed itself
to be promising as a quantum simulator of bidimensional
condensed-matter systems. We have discussed how the in-
terplay between scattering length and trappings allows us
to widely tune the interspecies interaction: a key parameter
through which the system features can be manipulated. A
general theory for finite and infinite periodic systems has been
presented, specifying some illustrative examples for both Bra-
vais and non-Bravais lattices. We have proved the emergence of
single and multiple gaps, together with the eventual presence
of isolated nondispersive flat bands. Furthermore, we have
pointed out the existence of Dirac points in AAG and kagomé
lattices. The robustness of our results for experimentally
realizable systems has been tested against both finite size and
disorder. The adaptability of our model makes it suitable for
a number of future developments. New perspectives can be
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opened considering also the p-wave A-B interaction [19] or the
A-A one. The latter, together with the occurrence of flat bands,
would make atomic artificial lattices convenient simulators of
2D strongly correlated systems in which nontrivial effects due
to geometrical frustration may arise.

APPENDIX: REAL-TO-RECIPROCAL SPACE CHANGE

This Appendix is devoted to the transformation of sums over
real-lattice vectors, appearing in Eqs. (13), (25), and (26), in
sums over reciprocal-lattice vectors.

1. Bravais terms

We manipulate here the left-hand side of Eq. (13) or,
equivalently, a diagonal element of the matrix T defined in
Eq. (26). In particular, we focus on the sum, rewriting g0(R),
introduced in Eq. (3), as

g0(R) =
∫

d2p
(2π )2

g̃0(p) eip·R (A1)

in terms of its Fourier transform,

g̃0(p) = 2m

�2

(
P 1

k2 − p2
− i

π

2k
δ(k − p)

)
, (A2)

where P denotes Cauchy’s principal value. Once the sum and
integral are exchanged we obtain∑

R∈L∗
g0(R) eiq·R =

∫
d2p

(2π )2
g̃0(p)

(∑
R∈L

ei(p+q)·R − 1

)
, (A3)

where, by adding and subtracting the R=0 term, we now
have a sum running over the entire L. For such a summation
Poisson’s identity holds, stating that∑

R∈L

F (R) = 1

A
∑

K∈RL

F̃ (K), (A4)

where A is the unit cell area in real space. In the case of
interest, F̃ (K)= (2π )2δ(2)(p + q − K) is the Fourier transform
of F (R)=exp[i(p + q)·R]. By integrating out terms involving
δ functions we obtain∑

R∈L∗

π�
2

m
g0(R) eiq·R = 2π

A
∑

K∈RL

1

k2 − |K − q|2

+ i
π

2
− P

∫
d2p
2π

1

k2 − p2
. (A5)

The principal-valued integral remains to be evaluated. For an
arbitrary choice of ρ such that 0<ρ <k, we have

P
∫

d2p
2π

1

k2 − p2
= P

∫
p>ρ

d2p
2π

1

k2 − p2
− 1

2
ln

(
1 − ρ2

k2

)
,

(A6)

and the Bravais-element Tnn becomes

Tnn = ln

(
eγ

2
kaeff

2D

)
+ 1

2
ln

(
1 − ρ2

k2

)
+ 2π

A
1

k2 − q2

+ 2π

A
∑

K∈RL∗

1

k2 − |K − q|2 − P
∫

p>ρ

d2p
2π

1

k2 − p2
.

(A7)

We now need to introduce two auxiliary quantities,

Sρ,uv = 2π

A
∑

K∈RL∗\uv

1

k2 − |K − q|2 − P
∫

p>ρ\uv

d2p
2π

1

k2 − p2

(A8)

and

Sρ,uv = 2π

A
∑

K∈RL∗\uv

1

K2
−

∫
p>ρ\uv

d2p
2π

1

p2
, (A9)

where an arbitrary ultraviolet cutoff (uv) is added in the
domains of sum and integration. Note that the second line
of Eq. (A7) is exactly Sρ,∞, which is Sρ,uv in the limit of
a cutoff boundary pushed to infinity. From definitions (A8)
and (A9) it follows that

Sρ,uv + Sρ,uv −−−→
uv→∞ −1

2
ln

(
k2

ρ2
− 1

)
+ 2π

A
∑

K∈RL∗

(
1

k2 − |K − q|2 + 1

K2

)
.

(A10)

We thus add and subtract Sρ,∞ in Eq. (A7), and after some
algebraic manipulation we obtain

Tnn = ln(ρa) − Sρ,∞ + ln

(
eγ

2

)
+ 2π

A
1

k2 − q2

+ 2π

A
∑

K∈RL∗

(
1

k2 − |K − q|2 + 1

K2

)
+ α, (A11)

where we have introduced the parameter α= ln(aeff
2D/a) and the

arbitrary unit of length a. From Eq. (A11) finally follows the
definition of

C∞ = lim
uv→∞ ln(ρa) − Sρ,uv, (A12)

which numerically converges to a ρ-independent quantity
determined only by the geometrical properties of the Bravais
lattice.

2. Non-Bravais terms

The transformation of the off-diagonal element of T
introduced in Eq. (25) follows straightforwardly from the
previous one. We again write g0(R) in terms of its Fourier
transform g̃0(p), obtaining∑

R∈L

g0(R + tnm) eiq·R =
∫

d2p
(2π )2

g̃0(p) eip·tnm

∑
R∈L

ei(p+q)·R

= 1

A
∑

K∈RL

g̃0(K − q) ei(K−q)·tnm ,

(A13)

where, in the last step, we have used Poisson’s identity as
introduced in Eq. (A4). Finally, Eq. (27) directly follows from
Eq. (A13) by writing explicitly g̃0(K − q).
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