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and the heat source, 4, may be nonuniform, that is, 
may depend on the location (x, y, or v). 

The concept behind the numerical method will be 
described using Figure 2, which shows an arbitrary 
distribution of points (shown as circles in Figure 2). 
Consider the point il and five neighboring points iz, 
. . . ) ih, which outline the boundaries of a local region 
around it. The following polynomial function T, is the 
approximated, or discretized, temperature distribution 
in the vicinity of i,: 

T(x,y), = al + b,x’ + c,y’ 

+ d,x’y’ + e,x’2 + f,y” (4) 

with 

x’ = X - X[ Y’=Y -Yl 

Note that for simplicity, r in the axisymmetric repre- 
sentation will be represented by x. Two other such 
regions are shown in this figure to demonstrate the 
overlapping of regions. In this particular example a 
polynomial function of order 2 is chosen. For the neigh- 
borhood of any point i the coefficients cl;, . . . , fj of 
the approximation T, are unknown and yet to be de- 
termined. There are no restrictions on the relative po- 
sition of the neighboring nodes; however, it is intui- 
tively clear that they should be selected from the nearest 
vicinity of the central node. In particular, points on 
the boundary should be selected for nodes that are 
located near the boundary. Now the process of deter- 
mining the unknown coefficients will be described. 
Substituting the polynomial function (4) into equations 
(I) and (2), differentiating, multiplying by k(T) (Tbeing 
represented by the polynomial), and finally setting xl 
and y,! to zero (stating that the polynomial function 
satisfies the differential equation at the central point i) 
will result in the equation 

w-7 

Xl X2 X3 XT 

Figure 1. Schematic drawing of nonconforming discretization 

each node. No other restrictions are present, and in 
principle the location and numbering order of neigh- 
boring nodes are not important. Moreover, as will be 
clarified in the next section, the computational effort 
is not influenced by the order of numbering of the 
nodes. 

The proposed method has many potential applica- 
tions beside the solution of partial differential equa- 
tions. For example, Yomdin and Elihai developed an 
algorithm for global motion planning5 based on the same 
basic scheme. This and other currently developed ai- 
gorithms are useful for computer-aided design and 
computer graphics. 

The closest method to the one proposed here is the 
polynomial fitting. The difference is clear: polynomial 
fitting has been used until now only with accurate fit- 
ting as a method of obtaining the finite difference equa- 
tion for each specific problem.h 

The scope of the present work is the application of 
the method to numerical solution of engineering field 
problems. The scheme developed and presented is cer- 
tainly not the only possible way to put the general ideas 
of Yomdin and Elihai into practical use. Further ap- 
plications of the general ideas and other methods of 
putting it to work will be examined in forthcoming 
work. As a first application to field problems, nonlinear 
heat conduction was designated. A Fortran computer 
code was written, and a test case of heat conduction 
in a cylindrical rod of temperature-dependent conduc- 
tivity was solved and compared with a known analyt- 
ical solution. 

The algorithm and application to nonlinear heat 
conduction 

Steady-state heat conduction is presented by a Poisson 
equation with boundary conditions of imposed tem- 
perature or heat fl~x.~ With two independent variables, 
two types of boundary value problems may be consid- 
ered, namely, the two-dimensional problem in carte- 
sian coordinates 

and the three-dimensional axisymmetric problem 

;;[k(T)(r+T)] +i(h(T)$) +Q=O (2) 

We consider the case in which the dependence of the 
conductivity on the temperature is given by 

k(T) = k,(l + (YT) (3) 

1,. 
-9+2e+2f= -$ 

\ 

-a h’+c’+2a 
[ ( 

.+s+l,h 
2r )I (3 

with I,. = 0 for the planar case and I,. = I for an 
axisymmetric case. In the above equation the left-hand 
side contains the linear terms and the right-hand side 
the nonlinear terms, multiplied by (Y. Obviously, in 

Figure 2. The discretization of the domain 
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case of constant conductivity (a = 0) the nonlinearity 
vanishes. Equation (5), named hereafter the localized 
equation, is the only one in this algorithm that is unique 
to the present application. From now on, the descrip- 
tion of the algorithm is generally applicable to any other 
field problem. 

The above-mentioned localized equation provides 

one out of six conditions needed at each point to de- 
termine the six unknown coefficients of its polynomial 
function. The other five conditions come from com- 
patibility requirement 

Uj + b;h, + c;h,, + d;h,h,, + e;h~: + f,h: - Uj 
= 0 k E (6) 

or from boundary conditions 

a; + 6;h, + c;h> + d;h.,h,. + rib.: + f;h: = 7-; 2 E (7) 

6,cos y + c,sin y + d,(h, sin y + h,. cos y) + e,2h., cos y + f,2hy sin y = -& 2 E’ (8) 
I 

where the permissible errors are 

E = le0h31 E’ = EghZ (9) 

In equations (6)-(8). j is the index of any one of the 
neighboring nodes (such as i7, . . . , id, i is the index 
of any central node (such as i,), and h, and h? are the 
X- and y-components (respectively) of the relative po- 
sition vector, h, between i and j (see Figwe 2). The 
compatibility condition, equation (6), states that the 
expansion of 7’; at the neighboring point j should ap- 
proximately equal (within the permitted error) the value 
of T, at point j, which is in fact the first coefficient of 
Tj, namely, cfj. The same idea leads to equations (7), 
stating that the expansion of T, at a neighboring node 
j on the boundary should approximate the boundary 
prescribed temperature T,. For neighboring nodes on 
a boundary with prescribed flux, equation (8) should 
be used. It is the result of adding the X- and y-com- 
ponents of discretized heat flux aT,lk and aTJay, re- 
spectively, and comparing them to the prescribed (nor- 
mal to the boundary) flux (see Figure 2). The error 
permitted in the flux boundary condition is computed 
with an order of expansion that is I lower than the 
former continuity conditions, since the Taylor expan- 
sion was differentiated once. 

The positive real number E,, in equation (9) is a con- 
stant used to evaluate the order of the permissible error 
according to the well-known relation for the truncation 
error E = O(h’l+ ‘) (in our case the polynomial order n 
is equal to 2). One may take E,, as I initially. After the 
solution is completed, the error may be evaluated, as 
will be explained later, and a better estimation for E,, 
can be obtained. 

In principle, having six equations for each nodal 
point and N nodes arbitrarily distributed in the domain 
(not counting the nodes on the boundary, which are 
used only for boundary conditions), one may write a 
6N x 6N global system of equations and solve it for 
the 6N unknown coefficients. Although possible, this 
would be a very ineffective way of solving the problem 
because of the size of the matrix obtained. A more 
effective way to solve the equation is to first treat 
separately each set of six equations obtained for each 
central node, in the following manner. The six equa- 
tions may be written in matrix form as 

[W. {AI = VI * @I (10) 
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where [K] is of order 6 x I 1 and {A} is a column vector 
of dimension 1 I that contains the six unknown poly- 
nomial coefficients of point i and the five a’s of the 
neighboring points. {F} and {E} are column vectors of 
dimension 6 containing the right-hand sides of condi- 
tions (5)--(8). Equation (IO) is then segmented, divid- 
ing {A) to {A,} = {u,, u2, Q~, u4, us, ah> and {A21 = 
{b,, cl, d,, e,, f,}, and so (IO) breaks up into (ll)-(12): 

lK,,l .{A,) + lK,~l +U = F, 

which is the vector form of (5), and 

(11) 

[K2,1 . #,I + IK221 . {A21 = F’21 2 {&I (12) 

which is the matrix form of the five compatibility or 
boundary conditions from (6)-(8). The set of six equa- 
tions with eleven unknowns (10) can be replaced by 
one equation with six unknowns: 

11K121 .[K221V’.[K2,1 - lK,,ll .{A,1 

= bG2~~[&21~‘+‘21- F, 

* lK121. [KrzlV +%I (13) 

This single row, expressing the relation between six 
UI, ..., uh coefficients for each nodal point, is sub- 
stituted in a global matrix of the form (lo), relating the 
u coefficients of all the points inside the domain. From 
the definition of the polynomial function (4) it is clear 
that the value of the unknown dependent variable at 
any point i is ui. Hence, if in a linear case the values 
of T at the nodal points are needed only, the solution 
of global matrix equation (IO) provides the complete 
solution of the problem. This solution is done by Gauss- 
Seidel iteration method with successive overrelaxa- 
tion.‘j The condition of the allowable error {E} is ful- 
filled by allowing the respective error for each nodal 
relation (I 3) when solving the global matrix by itera- 
tions. 

In a nonlinear problem, or in the case in which val- 
ues of T between nodes are needed also, it is necessary 
to obtain the rest of the polynomial coefficients, bi, 
. . . ) fi. This is done by writing the relations between 
each node to its neighbors (equations (6)-(8)) again, 
this time with the coefficients a known. Thus for each 
node a 5 x 5 matrix relation is obtained and solved 
separately. A nonlinear problem is solved by first as- 
suming that bi, . . . , fi = 0; after a linear solution is 
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One more important advantage is that the overall 
matrix solution is performed when the index numbers 
of the neighboring nodes are known for each node. 
Therefore a minimum-operation solution is always pos- 
sible (in our case of five neighbors it is equivalent to 
a bandwidth of 6). The global numbering order of the 
nodes, or ordering of neighbours for each node, is of 
no importance. This is very important and effective in 
considering geometrical flexibility or using automatic 
mesh generation and refining. 

obtained, these coefficients are determined and are 
substituted into the right-hand side of (5). Then the 
whole process is performed iteratively until the suc- 
cessive values of coefficients ai differ in less than E,. 
Hence the nonlinear iterative procedure, as well as the 
whole solution, is performed until the local desired 
accuracy is achieved. 

The procedure described above is very efficient for 
nonlinear problems, since the number of Gauss-Seidel 
iterations needed for the matrix solution decreases with 
the nonlinear iteration steps. This is achieved by using 
the solution of the last iteration as an initial guess for 
the following Gauss-Seidel solution. The same prin- 
ciple may be used when mesh density is concerned; it 
is possible to solve a problem with a coarse grid, find- 
ing by trial and error the appropriate E() to be used in 
(9) and obtaining an approximate (but quick) solution. 
Then, better first-guess values may be used for a finer 
mesh for which the additional values for newly added 
points are interpolated from the coarse mesh solution. 
This procedure of refining the mesh may be automat- 
ically performed until the overall desired accuracy is 
obtained. The resulting discrepancy may be estimated 
by obtaining values for the solution at a node using the 
Taylor expansions about various neighboring nodes 
and comparing them. The solution is obtained with 
different values of E(, until the highest value, the one 
that does not increase the resulting discrepancy, is found. 
While this was done for a coarse mesh, it is appropriate 
to use the same value for finer meshes, ensuring op- 
timal computer effort versus accuracy, where the effort 
is really important. 

r 
F(r) = y 

I 
wo(RZ - r?) + y(R4 - r4) + 7 (Kh - rh) + 

Computer codes that compute the exact and general 
numerical solutions were written. The numerical so- 
lution is performed in two different ways, namely, planar 
and axisymmetric modes, to verify the algorithm in 
both cases. Also, the use of regular and irregular meshes 
is demonstrated with these cases. The boundary con- 
ditions of the problem in the planar and axisymmetric 
cases are schematically shown in Figure 3(a) and 3(b), 
respectively. Figure 4 shows the respective meshes 

\ 

Figure 3. Boundary conditions of conduction in a cylindrical 
rod: (a) in a planar coordinate system and (b) in an axisymmetric 
coordinate system 

A test case and results 

A nonlinear conduction test case in cylindrical coor- 
dinates, as described by (2)-(3), is considered. The 
conductivity is temperature dependent, and heat gen- 
eration, which depends on the radius, is expressed as 

(5(r) = q,,(w’,, + w,r + wzrz + w3r3) (14) 

where q,,, ~1; are constants. The boundary conditions 
for the problem are 

dT 
G I-=(, 

=0 TI,.zR = 0 

The exact solution for this problemX is 

(15) 

T(r) = - 
1 + d/1 + 2aF(r)/K, 

CY 

where 

(16) 

!$RX _ ,.X) 

1 
(17) 

plotted with lines connecting the central nodes to their 
preselected neighboring nodes. Of course, some of these 
lines represent connection in one direction, and some 
in two. This feature may be presented with different 
colors, but here only the genera1 structure is demon- 
strated. Both meshes were generated by means of spe- 
cial-purpose mesh-generator codes, which were writ- 
ten for each case. An algorithm for a more general 
mesh generator should be the scope of another work, 
but no special difficulties are expected, considering 

(a) (b) 

Figure 4. The computational meshes in (a) planar representa- 
tion and (b) axisymmetric representation 
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6-4 (b) 
Figure 5. Numerical results (asterisks) compared to exact solution (solid curve) (a) in a planar coordinate system and (b) in an 
axisymmetric coordinate system 

experience with similar mesh generators for finite ele- 
ment or finite difference use. 

The results obtained are shown in Figure S(a) and 
.5(b) for the planar and axisymmetric approaches, re- 
spectively. The exact solution (16)~( 17) is shown as a 
continuous curve; the numerical values of Tare plotted 
as asterisks, according to their value r (distance from 
the origin in the planar case and from the left boundary 
in the axisymmetric one). As may be seen, even with 
the best resolution on screen, the numerical data fall 
exactly on the exact solution. If not so, scattered data 
should have been expected, since the u-distribution of 
both meshes (especially in the axisymmetric case) is 
not regular. For the shown meshes, the error was on 
the order of a hundredth of a percent, in comparison 
to the exact solution. The reduction of the error by 
using a finer mesh has been checked, too, resulting in 
the expected behavior according to (9). For the range 
checked, the value of co that gave optimal results for 
different mesh sizes remained constant. 

Discussion 

Our aim in this work was to present the principles of 
the nonconforming Taylor discretization method and 
to demonstrate its application in solving a particular 
problem in practice. Nevertheless, the advantages and 
disadvantages of the method in comparison with other 
numerical methods are of interest, and this discussion 
will briefly describe some of them. We feel that the 
following remarks and the attempt to compare the re- 
sults with those obtained by the finite element method 
should be accepted with much care. They are based 
on preliminary and limited practice with the new scheme. 

The proposed scheme has some features that we 
find attractive. 

1. It is very easy to apply the scheme to new appli- 
cations. Once one has the basic code that solves a 
certain PDE with the present algorithm, all that is 
needed to apply it to a different equation is to change 
the subroutine that contains the localized equations 
(5). (It is a matter of minutes to obtain the localized 
equations for a particular PDE such as (l)-(3)). The 
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application to a different PDE is a more tedious and 
longer process when done in the finite element or 
the finite difference method. Moreover, in compar- 
ison with the other methods mentioned, there is 
much less need for special knowledge and practice 
with numerical methods for such an application to 
be performed. 
In solving the global equations an iterative method 
may be used. In this case we may wish to converge 
to the solution only within a known and finite error 
(which is related to the allowed discrepancy). This 
means that we do not attempt to converge to the 
solution of the set of equations to a better accuracy 
than the accuracy that we may expect for the given 
discretization. Therefore we may be able to save 
computer time and reduce round-off errors. This 
advantage depends on whether the matrix is of the 
kind that is solvable by iterative methods. In prac- 
tice it worked for the examples presented in the 
preceding section, but determination of the condi- 
tions that ensure diagonal dominance will be the 
scope of further work. 

special case of the proposed scheme. For example, the 
equations for central differencing are obtained in the 
present examples by choosing neighbors around the 
center point in a rectangular mesh and allowing no 
discrepancy. Choosing the neighbors in one preferred 
direction would lead to a forward differencing. It is 
therefore expected that one may face some of the prob- 
lems occurring in the finite difference method and that 
some of the guidelines to overcoming them will apply 
here too. The above-mentioned advantages over finite 
differences have a price. It is the need for the computer 

Geometrical flexibility is another advantage of the 
suggested algorithm. Here, the flexibility of the in- 
put of the various nodes is even greater than the 
corresponding input in the finite element method. 
The reason is that the order of their numbering and 
connectivity to the neighbors has no impact on the 
validity and efficiency of the solution. However, 
one should bear in mind that no pre- and post-pro- 
cessors are available yet for the proposed scheme. 

The finite difference method can be regarded as a 



to repeat for each point the matrix manipulations (13) 
that are prepared, usually manually, to provide the 
algebraic Iinite difference equations. This disadvantage 
may be overcome by use of codes for symbolic ma- 
nipulations that, it is hoped, can provide general equa- 
tions that may be used readily. This feature of the 
algorithm may be regarded as a finite difference equa- 
tion generator. Using only this feature, one looses the 
first advantage mentioned; however, it may well be 
that the time saved by the second advantage will com- 
pensate for these additional manipulations. 

The objective of future works will be to prove and 
assess these and many other points. The authors feel 
that it is too early to make a thorough comparison at 
this stage. However, to give the reader a feeling for 
the efficiency of the algorithm, a comparison with the 
finite element method was performed. A finer grid for 
the former test case in an axisymmetric coordinate 
system was defined. To compare as fairly as possible 
the two methods, the order of interpolation and number 
of interpolation functions per typical length should be 
the same. Thus, for the present grid, 20 x 20 points 
were evenly distributed in the domain. With only 324 
internal points, the global matrix to solve is also of 
rank 324. The nonlinear problem was solved in 87 sec- 
onds. The code was in Fortran with single-precision 
variables. For the finite element method a commercial 
code was used that runs in double precision. The do- 
main was divided evenly into 20 x 20 eight-node ele- 
ments, with a total of 1281 nodes. In this case this is 
also the number of degrees of freedom and the rank of 
global matrix. The solution time for the finite element 
method was 175 seconds on the same computer. The 
results obtained by nonconforming Taylor discretiza- 
tion were accurate to within 0.2% at the most, while 
for finite elements they were within 1% of accuracy 
only. The comparison is still not completely fair, since 
in the finite element model, internal heat load is defined 
uniformly on each element. The values entered were 
calculated at the center of the elements, which is prob- 
ably the cause for the difference in results. However, 
this demonstrates a common situation in which the user 
is limited to the options available in a commercial code 
without being able to change them. Moreover, the com- 
parison is also unfair because the Iinite element code 
is not necessarily as efficient and accurate as it would 
be if it were written especially to solve the specific 
equation rather than being a general-purpose code. An- 
other difference is that the present code for noncon- 
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forming Taylor discretization does not necessarily use 
the most efficient solvers possible, and efficiency will 
probably be improved in future works. In general, con- 
sidering feature 1 above and the comparatively effi- 
cient and accurate solution obtained, the comparison 
with the finite element method is encouraging. 

Summary 

A first implementation of the nonconforming Taylor 
discretization method to the solution of field problems 
was presented. It was applied to a nonlinear conduc- 
tion problem, tested, and compared with the analytical 
solution. The results were very encouraging. The ef- 
ficiency, simplicity, and flexibility of this scheme were 
demonstrated. The ability to estimate the error and to 
reduce computer effort for the solution were also dem- 
onstrated through the example. Further implementa- 
tions for CFD and elasticity will probably be the scope 
of further works. Since the only part of the algorithm 
that deals with the specific application is that con- 
cerned with obtaining the localized equation (5), it is 
relatively easy to implement other applications once 
the code has been written. The authors feel that the 
great potential of the general idea of nonconforming 
Taylor approximations will develop in the future to 
many other applications and probably by different ap- 
proaches. 
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