and the heat source, 4, may be nonuniform, that is, may depend on the location (x, y, or v).

The concept behind the numerical method will be using Figure 2, which shows an arbitrary distribution of points (shown as circles in Figure 2). Consider the point il and five neighboring points iz, . . . ) ih, which outline the boundaries of a local region around it. The following polynomial function T, is the approximated, or discretized, temperature distribution in the vicinity of i,:

T(x,y), = al + b,x' + c,y' + d,x'y' + e,x'2 + f,y" (4) with

x' = X -X[

Y'=Y -Yl

Note that for simplicity, r in the axisymmetric representation will be represented by x. Two other such regions are shown in this figure to demonstrate the overlapping of regions. In this particular example a polynomial function of order 2 is chosen. For the neighborhood of any point i the coefficients cl;, . . . , fj of the approximation T, are unknown and yet to be determined. There are no restrictions on the relative position of the neighboring nodes; however, it is intuitively clear that they should be selected from the nearest vicinity of the central node. In particular, points on the boundary should be selected for nodes that are located near the boundary. Now the process of determining the unknown coefficients will be described. Substituting the polynomial function (4) into equations (I) and ( 2 No other restrictions are present, and in principle the location and numbering order of neighboring nodes are not important. Moreover, as will be clarified in the next section, the computational effort is not influenced by the order of numbering of the nodes.

The proposed method has many potential applications beside the solution of partial differential equations. For example, Yomdin and Elihai developed an algorithm for global motion planning5 based on the same basic scheme. This and other currently developed aigorithms are useful for computer-aided design and computer graphics.

The closest method to the one proposed here is the polynomial fitting. The difference is clear: polynomial fitting has been used until now only with accurate fitting as a method of obtaining the finite difference equation for each specific problem.h

The scope of the present work is the application of the method to numerical solution of engineering field problems. The scheme developed and presented is certainly not the only possible way to put the general ideas of Yomdin and Elihai into practical use. Further applications of the general ideas and other methods of putting it to work will be examined in forthcoming work. As a first application to field problems, nonlinear heat conduction was designated. A Fortran computer code was written, and a test case of heat conduction in a cylindrical rod of temperature-dependent conductivity was solved and compared with a known analytical solution.

The algorithm and application to nonlinear heat conduction

Steady-state heat conduction is presented by a Poisson equation with boundary conditions of imposed temperature or heat fl~x.~ With two independent variables, two types of boundary value problems may be considered, namely, the two-dimensional problem in cartesian coordinates and the three-dimensional axisymmetric problem

;;[k(T)(r+T)] +i(h(T)$) +Q=O

(2)

We consider the case in which the dependence of the conductivity on the temperature is given by .+s+l,h 2r )I (3 with I,. = 0 for the planar case and I,. = I for an axisymmetric case. In the above equation the left-hand side contains the linear terms and the right-hand side the nonlinear terms, multiplied by (Y. Obviously, in where the permissible errors are

k(T) = k,(l + (YT) (3) 1,. -9+2e+2f= -$ \ -a h'+c'+2a [ (
E = le0h31 E' = EghZ (9)
In equations ( 6)-( 8). j is the index of any one of the neighboring nodes (such as i7, . . . , id, i is the index of any central node (such as i,), and h, and h? are the X-and y-components (respectively) of the relative position vector, h, between i and j (see Figwe 2). The compatibility condition, equation ( 6), states that the expansion of 7'; at the neighboring point j should approximately equal (within the permitted error) the value of T, at point j, which is in fact the first coefficient of Tj, namely, cfj. The same idea leads to equations ( 7), stating that the expansion of T, at a neighboring node j on the boundary should approximate the boundary prescribed temperature T,. For neighboring nodes on a boundary with prescribed flux, equation ( 8) should be used. It is the result of adding the X-and y-components of discretized heat flux aT,lk and aTJay, respectively, and comparing them to the prescribed (normal to the boundary) flux (see Figure 2). The error permitted in the flux boundary condition is computed with an order of expansion that is I lower than the former continuity conditions, since the Taylor expansion was differentiated once.

The positive real number E,, in equation ( 9) is a constant used to evaluate the order of the permissible error according to the well-known relation for the truncation error E = O(h'l+ ') (in our case the polynomial order n is equal to 2). One may take E,, as I initially. After the solution is completed, the error may be evaluated, as will be explained later, and a better estimation for E,, can be obtained.

In principle, having six equations for each nodal point and N nodes arbitrarily distributed in the domain (not counting the nodes on the boundary, which are used only for boundary conditions), one may write a 6N x 6N global system of equations and solve it for the 6N unknown coefficients. Although possible, this would be a very ineffective way of solving the problem because of the size of the matrix obtained. A more effective way to solve the equation is to first treat separately each set of six equations obtained for each central node, in the following manner. The six equations may be written in matrix form as In a nonlinear problem, or in the case in which values of T between nodes are needed also, it is necessary to obtain the rest of the polynomial coefficients, bi, . . . ) fi. This is done by writing the relations between each node to its neighbors (equations ( 6)-( 8)) again, this time with the coefficients a known. Thus for each node a 5 x 5 matrix relation is obtained and solved separately. A nonlinear problem is solved by first assuming that bi, . . . , fi = 0; after a linear solution is

One more important advantage is that the overall matrix solution is performed when the index numbers of the neighboring nodes are known for each node.

a minimum-operation solution is always possible (in our case of five neighbors it is equivalent to a bandwidth of 6). The global numbering order of the nodes, or ordering of neighbours for each node, is of no importance. This is very important and effective in considering geometrical flexibility or using automatic mesh generation and refining.

obtained, these coefficients are determined and are substituted into the right-hand side of (5). Then the whole process is performed iteratively until the successive values of coefficients ai differ in less than E,. Hence the nonlinear iterative procedure, as well as the whole solution, is performed until the local desired accuracy is achieved.

The procedure described above is very efficient for nonlinear problems, since the number of Gauss-Seidel iterations needed for the matrix solution decreases with the nonlinear iteration steps. This is achieved by using the solution of the last iteration as an initial guess for the following Gauss-Seidel solution. The same principle may be used when mesh density is concerned; it is possible to solve a problem with a coarse grid, finding by trial and error the appropriate E() to be used in (9) and obtaining an approximate (but quick) solution. Then, better first-guess values may be used for a finer mesh for which the additional values for newly added points are interpolated from the coarse mesh solution. This procedure of refining the mesh may be automatically performed until the overall desired accuracy is obtained. The resulting discrepancy may be estimated by obtaining values for the solution at a node using the Taylor expansions about various neighboring nodes and comparing them. The solution is obtained with different values of E(, until the highest value, the one that does not increase the resulting discrepancy, is found. While this was done for a coarse mesh, it is appropriate to use the same value for finer meshes, ensuring optimal computer effort versus accuracy, where the effort is really important. Computer codes that compute the exact and general numerical solutions were written. The numerical solution is performed in two different ways, namely, planar and axisymmetric modes, to verify the algorithm in both cases. Also, the use of regular and irregular meshes is demonstrated with these cases. The boundary conditions of the problem in the planar and axisymmetric cases are schematically shown in Figure 3 

A test case and results

A nonlinear conduction test case in cylindrical coordinates, as described by ( 2)-( 3), is considered. The conductivity is temperature dependent, and heat generation, which depends on the radius, is expressed as (5(r) = q,,(w',, + w,r + wzrz + w3r3) (14) where q,,, ~1; are constants. The boundary conditions for the problem are

dT G I-=(, =0 TI,.zR = 0

The exact solution for this problemX is plotted with lines connecting the central nodes to their preselected neighboring nodes. Of course, some of these lines represent connection in one direction, and some in two. This feature may be presented with different colors, but here only the genera1 structure is demonstrated. Both meshes were generated by means of special-purpose mesh-generator codes, which were written for each case. An algorithm for a more general mesh generator should be the scope of another work, but no special difficulties are expected, considering 16)~( 17) is shown as a continuous curve; the numerical values of Tare plotted as asterisks, according to their value r (distance from the origin in the planar case and from the left boundary in the axisymmetric one). As may be seen, even with the best resolution on screen, the numerical data fall exactly on the exact solution. If not so, scattered data should have been expected, since the u-distribution of both meshes (especially in the axisymmetric case) is not regular. For the shown meshes, the error was on the order of a hundredth of a percent, in comparison to the exact solution. The reduction of the error by using a finer mesh has been checked, too, resulting in the expected behavior according to (9). For the range checked, the value of co that gave optimal results for different mesh sizes remained constant.

Discussion

Our aim in this work was to present the principles of the nonconforming Taylor discretization method and to demonstrate its application in solving a particular problem in practice. Nevertheless, the advantages and disadvantages of the method in comparison with other numerical methods are of interest, and this discussion will briefly describe some of them. We feel that the following remarks and the attempt to compare the results with those obtained by the finite element method should be accepted with much care. They are based on preliminary and limited practice with the new scheme.

The proposed scheme has some features that we find attractive.

1. It is very easy to apply the scheme to new applications. Once one has the basic code that solves a certain PDE with the present algorithm, all that is needed to apply it to a different equation is to change the subroutine that contains the localized equations ( 5). (It is a matter of minutes to obtain the localized equations for a particular PDE such as (l)-( 3)). The 156 Appl. Math. Modelling, 1991, Vol. 15, March application to a different PDE is a more tedious and longer process when done in the finite element or the finite difference method. Moreover, in comparison with the other methods mentioned, there is much less need for special knowledge and practice with numerical methods for such an application to be performed.

In solving the global equations an iterative method may be used. In this case we may wish to converge to the solution only within a known and finite error (which is related to the allowed discrepancy). This means that we do not attempt to converge to the solution of the set of equations to a better accuracy than the accuracy that we may expect for the given discretization. Therefore we may be able to save computer time and reduce round-off errors. This advantage depends on whether the matrix is of the kind that is solvable by iterative methods. In practice it worked for the examples presented in the preceding section, but determination of the conditions that ensure diagonal dominance will be the scope of further work.

special case of the proposed scheme. For example, the equations for central differencing are obtained in the present examples by choosing neighbors around the center point in a rectangular mesh and allowing no discrepancy. Choosing the neighbors in one preferred direction would lead to a forward differencing. It is therefore expected that one may face some of the problems occurring in the finite difference method and that some of the guidelines to overcoming them will apply here too. The above-mentioned advantages over finite differences have a price. It is the need for the computer Geometrical flexibility is another advantage of the suggested algorithm. Here, the flexibility of the input of the various nodes is even greater than the corresponding input in the finite element method. The reason is that the order of their numbering and connectivity to the neighbors has no impact on the validity and efficiency of the solution. However, one should bear in mind that no pre-and post-processors are available yet for the proposed scheme.

The finite difference method can be regarded as a to repeat for each point the matrix manipulations ( 13) that are prepared, usually manually, to provide the algebraic Iinite difference equations. This disadvantage may be overcome use of codes for symbolic manipulations that, it is hoped, can provide general equations that may be used readily. This feature of the algorithm may be regarded as a finite difference equation generator. Using only this feature, one looses the first advantage mentioned; however, it may well be that the time saved by the second advantage will compensate for these additional manipulations. The objective of future works will be to prove and assess these and many other points. The authors feel that it is too early to make a thorough comparison at this stage. However, to give the reader a feeling for the efficiency of the algorithm, a comparison with the finite element method was performed. A finer grid for the former test case in an axisymmetric coordinate system was defined. To compare as fairly as possible the two methods, the order of interpolation and number of interpolation functions per typical length should be the same. Thus, for the present grid, 20 x 20 points were evenly distributed in the domain. With only 324 internal points, the global matrix to solve is also of rank 324. The nonlinear problem was solved in 87 seconds. The code was in Fortran with single-precision variables. For the finite element method a commercial code was used that runs in double precision. The domain was divided evenly into 20 x 20 eight-node elements, with a total of 1281 nodes. In this case this is also the number of degrees of freedom and the rank of global matrix. The solution time for the finite element method was 175 seconds on the same computer. The results obtained by nonconforming Taylor discretization were accurate to within 0.2% at the most, while for finite elements they were within 1% of accuracy only. The comparison is still not completely fair, since in the finite element model, internal heat load is defined uniformly on each element. The values entered were calculated at the center of the elements, which is probably the cause for the difference in results. However, this demonstrates a common situation in which the user is limited to the options available in a commercial code without being able to change them. Moreover, the comparison is also unfair because the Iinite element code is not necessarily as efficient and accurate as it would be if it were written especially to solve the specific equation rather than being a general-purpose code. Another difference is that the present code for noncon-forming Taylor discretization does not necessarily use the most efficient solvers possible, and efficiency will probably be improved in future works. In general, considering feature 1 above and the comparatively efficient and accurate solution obtained, the comparison with the finite element method is encouraging.

Summary

A first implementation of the nonconforming Taylor discretization method to the solution of field problems was presented. It was applied to a nonlinear conduction problem, tested, and compared with the analytical solution. The results were very encouraging. The efficiency, simplicity, and flexibility of this scheme were demonstrated. The ability to estimate the error and to reduce computer effort for the solution were also demonstrated through the example. Further implementations for CFD and elasticity will probably be the scope of further works. Since the only part of the algorithm that deals with the specific application is that concerned with obtaining the localized equation ( 5), it is relatively easy to implement other applications once the code has been written. The authors feel that the great potential of the general idea of nonconforming Taylor approximations will develop in the future to many other applications and probably by different approaches.
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 1 Figure 1. Schematic drawing of nonconforming discretization
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 3 Figure 3. Boundary conditions of conduction in a cylindrical rod: (a) in a planar coordinate system and (b) in an axisymmetric coordinate system
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 45 Figure 4. The computational meshes in (a) planar representation and (b) axisymmetric representation
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