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points to elements of the organism. The material points in that case were
elements of a material manifold containing all the “virtual” material points.

In a second approach (see [7] and [5]), in order to model phenomena like
surface growth, body points are generated on known submanifolds so the body
structure is not conserved.

We note that it is possible to define generalized versions of the notions of
velocity fields, forces and stresses even if the material structure is not available.
This is done using a global formulation where the basic mathematical object
is the configuration space (e.g. [8]).

Here we try to motivate the notion of an organism. We do this by defining
the body elements without relating them to the notion of mass so they might
exist even if mass is added to a body or removed from it. To that end we
make use of an idea presented in [1] where “material elements” are defined as
integral lines of the velocity fields. This is modified in the present work by
considering body elements that are integral lines of the flow field associated
with any extensive property satisfying the Cauchy postulates. Actually, the
Cauchy postulates assumed are more general than the traditional in that we
assume production of the property rather than balance. The usual tetrahedron
argument will lead to the existence of a flow field that generalizes the velocity
field.

Further generalization is suggested after studying the variational version
of the balance law and replacing the Cauchy postulates by the requirement
that the growth is a continuous linear functional on the space of differentiable
functions. This requirement serves then as a formal definition of growth.

2 The General Balance Law for a Control Volume

Consider a fixed region R in the three dimensional Euclidean space <3 that
serves to model the physical space. The general balance law is concerned with
the balance of an extensive property. That is, we consider the situation where
for each subregion P of R there is a real number IP given by

IP =
∫
P

β dV +
∫

∂P

τ dA,

where β is a scalar field over P that is interpreted as the time rate of the
density of the property associated with I, τ is a scalar field over the boundary
of P interpreted as the flux of the property out of the subregion.

In general, the fields β and τ depend on the subregion P under considera-
tion. The Cauchy postulate assumes that in fact β does not depend on P and
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that the value τ(x) at x on the boundary of P , depends on P only through its
tangent plane, or equivalently the unit normal, to the boundary at x.

A second assumption made in the formulation of the general balance law
is that IP for every subregion P is bounded by its volume, i.e., there is a scalar
field s over R, such that

IP =
∫
P

s dV.

The field s is interpreted as the production rate of the of the property.
Cauchy’s theorem for the general balance law states that there is a vector

field u such
τ = u · n,

so that the dependence of the flux on the normal is linear. We will refer to u
as the flow of the property associated with I. This relation implies that if τ
(say as a part of IP ) is given for every subregion P , there is at most one vector
field u that satisfies τ = u · n for every the boundary of every P . Various
continuity assumptions imply the continuity of u. In addition, using Cauchy’s
theorem the balance of I assumes the form

Div u + β = s.

In general, the fields τ for the various subbodies are time dependent and so is
the vector field u.

3 Body Elements

The vector field u has integral lines by the existence theorem for the solutions
of time dependent ordinary differential equations. While this is not the usual
practice (as a body element is usually taken as a primitive notion), the situation
suggests that we make the following definitions. A body element is an integral
line of the flow u. The collection of body elements is the universal body and
will be denoted by B. A motion of the universal body is the mapping

φ:B × < → <3

induced by the flow. Since any integral line is associated with a unique point
in <3 that serves as an initial condition, we will often identify a body element
with its initial condition to which we will refer as the reference configuration of
that element. Indeed, the initial conditions may serve as to put a topological
and differentiable structure on B. We will use φt to denote the restriction of
φ to B × t. Such a mapping of the universal body into space will be referred
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to as a universal configuration. A compact three dimensional submanifold B
with boundary of B is a body and the restriction of the motion to a body is a
configuration of the body.

3.1 A Simple Example of Volumetric Growth

Consider a simple one dimensional situation where we can measure mass den-
sity, mass production and mass flow. We denote the mass density by ρ and
consider it as a function of position in the physical space and time. The mass
production, i.e., the density of the mass produced with respect to the volume
as a function of location in space and time, is denoted by p. We set

β =
ρ̇

ρ
, s =

ṗ

p
.

Assume in addition that the flow is given by u(x, t) = x so that x = x0e
t.

The described setting allows in this case the definition of body elements
although mass is not conserved. Note that for the case where s = 0 we get

ρ = ρ0e
−t.

For the other extreme situation where β = 0, we get

p = p0e
t.

4 The Variational Principle Associated with the General Balance
Law

If we multiply the differential version of the generalized balance law Div u +
β = s by a function w and integrate over the region R, we obtain (using the
divergence theorem and Cauchy’s theorem) the variational form of the balance
law. Specifically we deduce that for any function w we have∫

∂R

τw dA +
∫
R

βw dV =
∫
R

u · ∇w dV +
∫
R

sw dV.

We will refer to this equation as the variational principle associated with the
generalized balance law. Either side of this equation represents a linear func-
tional defined on the space of mappings on R. We denote this functional
by Φ and note that it is continuous if we use the C

1 metric on the space of
continuously differentiable mappings C

1(R). Thus we have

Φ(w) =
∫

∂R

τw dA +
∫
R

βw dV =
∫
R

u · ∇w dV +
∫
R

sw dV.
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Functionals on spaces of continuously differentiable functions and their
applications in continuum mechanics were considered in [2],[3] and [6]. The
results presented in these works may be applied to the situation discussed here
to conclude the following.

Consider a subregion P of <3 that is a smooth three dimensional sub-
manifold with boundary and let Q be an open subset of C

1(P ). We regard Q
as a differentiable manifold whose tangent space TuQ = C

1(P ). We consider
elements of the cotangent bundle to Q. The basic result is that any element
of the cotangent bundle i.e., a linear continuous functional defined on C

1(P )∗

can be represented by measure µ0 over P and an <3 valued measure µ1 in the
form

Φ(w) =
∫
P

w dµ0 +
∫
P

∇w · dµ1,

for every element w of TuQ.
The measures µ0 and µ1 are not determined uniquely by Φ. However, if

we are given a functional ΦP for every subregion P of <3, the representing
measures are unique.

In case the representing measures µ0 and µ1 are given in terms of densi-
ties s and u with respect to the volume measure on <3, respectively, then the
procedure of obtaining the variational principle from the balance equation and
Cauchy’s postulate may be reversed in order to prove the balance differential
equation, the existence of β and τ , and Cauchy’s postulate. These are proved
only on the basis of the definition of Φ, the assumption of the differentiability
of the measures with respect to the volume measure, and the differentiability
of the density u. Thus, we may replace the differential balance law and ac-
companying assumptions by the definition of the functional Φ as an element
of C

1(P )∗.
Consider the role of the balance law in the definition of body elements as

discussed above. The possibility that the flow be a measure, so that integral
lines cannot be defined in the usual way, suggests a generalization of the notion
of a body element.

5 The Interpretation of the Variational Formulation of the General
Balance Law

The interpretation of the variational formulation of the general balance law in
the mechanical context is the traditional principle of virtual work. Here, Q is
the collection of configurations of the body in the physical space (embeddings
of P in <3), w is a generalized velocity vector field and Φ is the force functional
producing mechanical power Φ(w). The quantity β is a vector field which is
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interpreted as the body force, τ is the surface force, u is a tensor field—the
stress tensor—and s is the self force field present when equilibrium is not
assumed.

We wish to suggest an interpretation for the variational formulation of the
general balance law. While the basic variables u, and w are intuitively clear for
the force balance law, it is not immediately obvious how should these variables
be interpreted in the context of the general balance law.

We regard w as the distribution of a potential energy density in space
per unit of the property associated with I. Thus, the product sw is the power
density associated with the production term s. The gradient ∇w is interpreted
as a force and its contraction with the velocity of the material elements is the
associated power. Thus, Φ(w) is the power associated with generation and
motion of material.

One could also assign interpretation of the mathematical setting which is
outside the field of mechanics. For example, one can regard w as a benefit field
defined on space. Then, growth, regarded as the production and motion of
matter as given by s and u, produce the rate of income Φ(w).

This also suggests that the growth of the organism will follow a consti-
tutive relation giving the fields u and s as functions of the potential field w.
One would speculate that such constitutive laws can model various aspects of
ecology.

An interpretation in the field of thermodynamics is offered by identifying w
with the coldness (i.e., the reciprocal of the temperature field) and Φ(w) with
the contribution of heat to the entropy growth rate. Here, the fields u and
s are the heat flow and heat source distribution, respectively. A constitutive
relation will clearly relate the heat flow to the temperature field as expected.

6 A Formal Definition of Growth

One can turn the order of things around and start with a potential field over
space as a primitive notion. Thus, for every P of R we consider the Banach
space C

1(P ) of differentiable potential fields. We define a growth Φ as an ele-
ment of the dual space C

1(P )∗. It is noted that unlike the analogous continuum
theory of forces, the original space is a Banach space and there is no need to
go to the tangent bundle in order to define linear functionals.

Thus, the basic representation property of C
1 functionals implies that there

is a real valued measure µ0 and an <3 valued measure µ1 over P such that

Φ(w) =
∫
P

w dµ0 +
∫
P

∇w · dµ1,
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for every potential field w.
In case the measures µ0 and µ1 representing Φ can be represented by

densities s and u with respect to the volume measure on R, respectively, then

Φ(w) =
∫

∂P

τw dA +
∫
P

βw dV =
∫
P

u · ∇w dV +
∫
P

sw dV,

where
Div u + β = s, on P, and τ = u · n, on ∂P.

Thus for example, with the interpretation of w as the coldness distribution
and Φ(w) as the temperature related entropy production, this result implies
the existence of the heat “growth” by heat a flow vector field and a heat
production field without further assumptions.

In the case of representation by smooth densities, the growth may be
associated with a body containing the integral lines of u.

7 Conclusions

The foregoing formalism allows the definition of a body or an organism with
respect to any particular extensive property. Unlike the traditional approach
where the mass property is conserved, the extensive properties considered here
may grow due to a source term. In addition, depending on the structure of
the singularities of the flow field, material elements may be added or removed
from the organism. In the case where a number of such extensive properties are
measured, each will determine its own material structure. The various prop-
erties are compatible if they induce the same material structure. Otherwise,
diffusion occurs in the body.

Generalizations of the foregoing discussions may follow various directions.
One may consider functionals on spaces of “potential” distributions with de-
grees of differentiability different than 1. We note that if one chooses the C

0

space of potential fields, the flow vector fields would be missing and we would
have only the source term. If on the other hand we consider degree of differ-
entiability greater than 1 we could obtain more complex interactions in terms
of boundary terms and one could speculate that by integration of these higher
order fields we would obtain a structure for the body elements which is more
complex then merely points in <3.

Another way in which the theory could be generalized is by considering
“potential fields” valued in ranges more complex then <, e.g., vector potentials
and potentials valued on manifolds. This may allow the generalization of
the body element to body vector etc. as is the situation for materials with
microstructure.
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