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The Minimal Controllability Problem for structured systems

This paper considers the Minimal Controllability Problem (MCP), i.e. the problem of controlling a linear system with an input vector having as few non-zero entries as possible. We focus on structured systems which represent an interesting class of parameter dependent linear systems and look for structural controllability properties based on the sparsity pattern of the input vector. We show first that the MCP is solvable when a rank condition is satisfied and show that generically one non-zero entry in the input vector is sufficient to achieve controllability when there is no specific system structure. We give, according to the fixed zero/non-zero pattern of the state matrix entries, the minimum number and the possible location of non-zero entries in the input vector to ensure generic controllability. The analysis based on graph tools provides with a simple polynomial MCP solution and highlights the structural mechanisms that make it useful to act on some variables to ensure controllability.

I. INTRODUCTION

The contemporary science is faced to the emergence of very large scale complex systems such as power systems, traffic systems, networked systems, distributed systems, or biological systems. A major challenge is to control such systems while acting on them in a parsimonious way. This general problem may be declined into many variants which lead to numerous works in the recent literature, see for example [START_REF] Jafari | Leader localization in multiagent systems subject to failure: A graph-theoretic approach[END_REF], [START_REF] Rahmani | Controllability of multi-agent systems from a graph-theoretic perspective[END_REF], [START_REF] Sundaram | Distributed function calculation via linear iterative strategies in the presence of malicious agents[END_REF], [START_REF] Liu | Controllability of complex networks[END_REF], [START_REF] Yan | Controlling complex networks: how much energy is needed ?[END_REF]. When the system is represented by state space equations, we look for inputs which make the whole system controllable in the usual sense. Due to complexity and cost constraints it is of interest to look for control laws acting on a reasonably small number of state variables. Such input selection strategies have been reported for controlling large scale systems or for leader selection of multi-agent systems [START_REF] Jafari | Leader localization in multiagent systems subject to failure: A graph-theoretic approach[END_REF], [START_REF] Chapman | A strong structural controllability of networked sytems: a constrained matching approach[END_REF], [START_REF] Pequito | A structured systems appproach for optimal actuator-sensor placement in linear time-invariant systems[END_REF]. In [START_REF] Commault | Input addition and leader selection for the controllability of graph-based systems[END_REF], the authors analysed three variants for the problem of minimizing the number of control inputs:

• when each input acts on a single state,

• when each input acts on an arbitrary number of states,

• when inputs belong to a pre-specified set of control inputs (acting in a given way on some states). In this spirit, another interesting variant has been recently considered in [START_REF] Olshevsky | Minimal Controllability Problem[END_REF], i.e. the problem of controlling a linear system with an unique input vector having as few non-zero entries as possible. It is proved that this Minimal Controllability Problem (MCP) is NP-hard.

Here we address the solvability of this MCP focusing on the framework of structured systems which are linear parameterized systems with a given structure, i.e. the entries of the state space matrix are either free parameters or fixed zeroes [START_REF] Dion | Generic properties and control of linear structured systems: a survey[END_REF]. The structural controllability (controllability for structured systems) was introduced by Lin [START_REF] Lin | Structural controllability[END_REF], who proved that the system is structurally controllable if and only if a connection condition and a rank condition are both satisfied. We look first at the solvability condition of the MCP for linear systems (in the standard acceptance). It turns out that the problem is solvable when a cyclicity condition is satisfied. It happens that generically one non-zero entry in the input vector is sufficient to achieve controllability when there is no specific system structure, i.e. there is no fixed zero entry in the state matrix. Things are different when there is some structure, i.e. when there is some fixed zero/nonzero pattern for the state matrix entries. In the presence of structure, which usually comes from the physical nature of the process, we give the minimum number and the possible location of non-zero entries in the input vector to ensure generic controllability. The analysis based on graph tools provides with a simple polynomial MCP solution and highlights the structural mechanisms that make it useful to act on some variables to ensure controllability. The organization of the paper is as follows. We formulate in Section 2 the Minimal Controllability Problem (MCP) for usual linear systems and show that MCP is solvable generically with one non-zero entry in the input vector when there are no fixed zeroes in the state matrix. Section 3 introduces the linear structured systems and refines some results on structural controllability. The MCP for linear structured systems is investigated in Section 4, the solvability condition and the minimum number of non-zero entries in the input vector for structural controllability are given. Simple examples illustrate the approach. Some concluding remarks end the paper.

II. PROBLEM FORMULATION

In this paper, we consider the linear system Σ defined by ( 1)

Σ : ẋ(t) = Ax(t) + bu(t) , (1) 
where x(t) ∈ R n is the state vector and u(t) ∈ R the input signal.

We study the controllability of this system, i.e. the possibility to drive in finite time the state from the origin to any point in the state space.

Controllability is known to be equivalent to the fact that the Kalman matrix is full rank, i.e.:

rank(K) = n. (2) 
where K = [b, Ab, . . . , A n-1 b] Definition 1: The Minimal Controllability Problem (MCP) is defined as follows: given the n × n matrix A, find an n × 1 input vector b such that:

• the pair (A, b) is controllable,
• the number ν of non zero entries of b is minimum, this minimum number is denoted by ν * . We first look at the solvability of the MCP, i.e. the possibility of finding a b such that (A, b) is controllable. This is indeed a basic result of linear algebra [START_REF] Gantmacher | Theory of Matrices[END_REF]. Recall first that a n × n matrix Q is said to be cyclic if there exists a vector v such that rank[v, Qv, . . . , Q n-1 v] = n.

Lemma 1: The MCP of Definition 1 has a solution if and only if the matrix A is cyclic. The result follows from the definition of cyclicity. Notice that cyclicity of A is also characterized by the fact that its minimal polynomial is equal to its characteristic polynomial. It is also equivalent to the fact that identical eigenvalues of A belong to the same Jordan block. We give now a simple corollary of Lemma 1 which will be useful in the sequel.

Corollary 1: The MCP of Definition 1 has a solution only if rank(A) ≥ (n -1). If rank(A) < (n -1), since vectors Ab, . . . , A n-1 b belong to Image(A), then rank[Ab, . . . , A n-1 b] < n -1 and rank[b, Ab, . . . , A n-1 b] < n, therefore (A, b) is not controllable. Let us now state a result which is valid for almost any matrix A. Before, let us recall that a property depending on k parameters, is said to be generic (or structural), if it is true for all values of the parameters (i.e. any λ ∈ R k ) outside a proper algebraic variety of the parameter space, [START_REF] Wonham | Linear Multivariable Control: a geometric approach[END_REF] [START_REF] Murota | Systems Analysis by Graphs and Matroids, ser. Algorithms and Combinatorics[END_REF]. An algebraic variety is defined by the common zeroes of a finite set of polynomials. The variety is proper when it is not the whole parameter set.

Lemma 2: For a system of type (1), when considering as parameter set the n 2 entries of the matrix A, the pair (A, b) is generically

controllable with b =      1 0 . . . 0     
. Then ν * is generically one.

Proof: With this b vector, the matrix K is composed of the first columns of matrices In, A, A 2 , . . . , A n-1 and det(K) is a polynomial in the entries aij of A. Since (A, b) is controllable if and only if det(K) = 0, the aij's for which the system is not controllable belong to an algebraic variety. Moreover taking

A =        0 0 . . . 0 0 1 0 0 . . . 0 0 1 0 . . . 0 . . . . . . . . . 0 . . . 0 1 0       
, leads to K = In, which proves that the variety is proper and ends the proof. This result is somewhat puzzling since the main result of [START_REF] Olshevsky | Minimal Controllability Problem[END_REF] says that the Minimal Controllability Problem is NP-hard [START_REF] Garey | Computers and intractability: A guide to the theory of NP-Completeness[END_REF]. This means that, indeed the difficulties in solving the problem will result from very special structural properties of A. In the following we will prove that the problem remains easy to solve (i.e. in polynomial time) generically when the structure of A consists in the presence of zeros in fixed locations.

III. LINEAR STRUCTURED SYSTEMS AND STRUCTURAL

CONTROLLABILITY

We consider a linear system with parameterized entries denoted by ΣΛ.

ΣΛ : ẋ(t) = AΛx(t) + bΛu(t) , (3) 
where x(t) ∈ R n is the state vector and u(t) ∈ R the input signal. AΛ and bΛ are matrices of appropriate dimensions. This system is called a linear structured system if the entries of the composite matrix JΛ = [AΛ, bΛ] are either fixed zeros or independent parameters (not related by algebraic equations), [START_REF] Dion | Generic properties and control of linear structured systems: a survey[END_REF].

For such systems, one can study generic properties in the sense of the previous section, i.e. properties which are true for almost any value of the parameters. A matrix QΛ with parameterized entries is called a structured matrix and its generic rank will be denoted g-rank(QΛ).

A directed graph G(ΣΛ) = (Z, W ) can be associated with the structured system ΣΛ of type (3):

• the vertex set is Z = X ∪ U where X and U are the state and input sets given by {x1, x2, . . . , xn} and {u} respectively,

• the edge set is W = {(xi, xj)|aΛji = 0} ∪ {(u, xj)|bΛj = 0},
where aΛji denotes the entry (j, i) of the matrix AΛ and bΛj the jth entry of bΛ.

Recall that a path in G(ΣΛ) from a vertex i0 to a vertex iq is a sequence of edges, (i0, i1), (i1, i2) , . . . , (iq-1, iq), such that it ∈ Z for t = 0, 1, . . . , q and (it-1, it) ∈ W for t = 1, 2, . . . , q. If i0 ∈ U and, iq ∈ X, the path is called an input-state path. The system ΣΛ is said to be input-connected if for any state vertex xi, there exists an input-state path with end vertex xi.

The structural controllability was introduced by Lin who proved the following result.

Theorem 1: [START_REF] Lin | Structural controllability[END_REF] Let ΣΛ be the linear structured system defined by (3) with associated graph G(ΣΛ). The system is structurally controllable if and only if:

1) The system ΣΛ is input-connected, 2) g-rank[AΛ, bΛ]=n. In the following, the conditions 1 and 2 of Theorem 1 will be referred to as the input connection condition and the rank condition, respectively.

A. Structural controllability: refined analysis 1) Input connection condition: Let ΣΛ be the linear structured system defined by (3) with its associated graph G(ΣΛ). Two vertices vi and vj of G(ΣΛ) are said to be equivalent if there exists a path from vi to vj and a path from vj to vi. In this context vi is assumed to be equivalent to itself. The equivalent classes corresponding with this equivalence relation are called the strongly connected components of G(ΣΛ). The input vertex u is a strongly connected component composed of a unique vertex. The strongly connected components can be endowed with a natural partial order. The strongly connected components Ci and Cj are such that Ci Cj if there exists an edge (vi, vj) where vi ∈ Ci and vj ∈ Cj. The infimal elements with this order are the strongly connected components with no ingoing edge. Notice that the input vertex is such an infimal element.

Definition 2: An infimal strongly connected component of G(ΣΛ) which is not an input vertex, is called a Critical Connection Component (CCC). The number of Critical Connection Components is called the connection defect of ΣΛ and denoted by dc(ΣΛ). One has the following result:

Proposition 1: [START_REF] Commault | Characterization of generic properties of linear structured systems for efficient computations[END_REF] Let ΣΛ be the linear structured system defined by (3) with associated graph G(ΣΛ). ΣΛ is input connected if and only if G(ΣΛ) has no Critical Connection Component, or equivalently dc(ΣΛ) = 0.

2) Rank condition: We will characterize the rank condition, i.e. g-rank[AΛ, bΛ] = n. This generic rank will be computed using a bipartite graph associated with the system ΣΛ. Introduce now the bipartite graph V (ΣΛ) as follows. The bipartite graph associated with the system ΣΛ is V (ΣΛ) = (V + , V -; W ) where the sets V + and V -are two disjoint vertex sets and W is the edge set. The vertex set V + is given by X + ∪ U , the vertex set V -is given by X -, with X + = {x + 1 , . . . , x + n } the first set of state vertices, X -= {x - 1 , . . . , x - n } the second set of state vertices and U = {u} the input vertex. Notice that here we have split each state vertex xi of G(ΣΛ) into two vertices x + i and

x - i . The edge set W is described by WA ∪ W b with WA = {(x + j , x - i )|aΛij = 0} and W b = {(u, xi)|bΛi = 0}.
In the latter, for instance aΛij = 0 means that the (i, j)-th entry of the matrix AΛ is a parameter (structurally nonzero). A matching in a bipartite graph V = (V + , V -; W ) is an edge set M ⊆ W such that the edges in M have no common vertex. The cardinality of a matching, i.e. the number of edges it consists of, is also called its size. A matching M is called maximum if its cardinality is maximum. The maximum matching problem is the problem of finding such a matching of maximal cardinality. Recall the follwing proposition:

Proposition 2: [START_REF] Commault | Characterization of generic properties of linear structured systems for efficient computations[END_REF] Let ΣΛ be the linear structured system defined by (3) with associated bipartite graph V (ΣΛ). The generic rank of [AΛ, bΛ] is equal to the size of a maximal matching in V (ΣΛ). In particular, g-rank[AΛ, bΛ] = n if and only if there exists a size n matching in V (ΣΛ). A useful tool to parameterize all the maximal matchings in a bipartite graph is the Dulmage-Mendelsohn decomposition which will be presented now. The DM-Decomposition allows to decompose a bipartite graph V = (V + , V -; W ) into a uniquely defined family of bipartite subgraphs Vi = (V + i , V - i ; W i ), i = 0, 1, . . . , r, ∞ called the DM-components, where V + i (resp. V - i ; W i ) is a partition of V + (resp. V -; W ). V0 is called minimal inconsistent part, V∞ is called maximal inconsistent part and the rest consistent parts. These components have the following properties: Proposition 3: [START_REF] Murota | Systems Analysis by Graphs and Matroids, ser. Algorithms and Combinatorics[END_REF] Let V = (V + , V -; W ) be a bipartite graph and its DM-Decomposition with Vi = (V + i , V - i ; W i ), i = 0, 1, . . . , r, ∞ its DM-Components. One has the following properties: 1. A maximum matching on V is a union of maximum matchings on the DM-Components Vi, i = 0, 1, . . . , r, ∞.

2. A vertex v ∈ V - 0 (or V + i , V - i , i = 1, . . . , r or V + ∞
) is covered by any maximum matching on V . 3. A vertex v ∈ V + belongs to the minimal inconsistent part V + 0 if and only if there exists a maximum matching on V that does not cover v. 4. A vertex v ∈ V -belongs to V - ∞ if and only if there exists a maximum matching on V that does not cover v. The rank condition can then be expressed using only the maximal inconsistent part of the DM decomposition as follows:

Proposition 4: [START_REF] Commault | Observability recovering by additional sensor implementation in linear structured systems[END_REF] Let ΣΛ be the linear structured system defined by ( 3) with associated bipartite graph V (ΣΛ) and the corresponding DM-decomposition. One has n-g-rank

[AΛ, bΛ] = card(V - ∞ (ΣΛ))- card(V + ∞ (ΣΛ)).
In particular, g-rank[AΛ, bΛ] = n if and only if V∞(ΣΛ) = ∅. The result follows from point 4 of Proposition 3.

IV. APPLICATION TO THE MINIMAL CONTROLLABILITY PROBLEM

A. Structural effect of an input addition

We start with the structured matrix AΛ with associated graph G(AΛ) and associated bipartite graph V (AΛ). We will study the effect of adding an input u on the input connection and rank conditions. State now two technical propositions which are similar to results of [START_REF] Commault | Input addition and leader selection for the controllability of graph-based systems[END_REF].

Proposition 5: Concerning input connection, adding the input u will produce the following effect: The Critical Connection Components of G(ΣΛ) are the same as in G(AΛ) except those for which there exists an edge from u to this CCC, and dc(ΣΛ) = dc(AΛ) -α, where α is the number of CCC's of G(AΛ) such that there exists an edge (u, xi), where xi belongs to a CCC of G(AΛ). Proof: For any Critical Connection Component Cj such that there exists an edge (u, xi), where xi ∈ Cj, Cj is no longer a Critical Connection Component. The other Critical Connection Components are unchanged and the result follows.

Proposition 6: Concerning the rank condition, adding the input vertex u and the associated edges (u, xi) to G(AΛ), when grank(AΛ) = n -1, will produce the following effect: If there is an edge (u, xi) in G(AΛ), where xi is such that x - i belongs to the maximal inconsistent part V∞(AΛ) of the DM-decomposition of V (AΛ), then V∞(ΣΛ) = ∅ and g-rank[AΛ, bΛ] = n. If there is no such edge then g-rank[AΛ, bΛ] = n -1. Proof: Note first that adding input u and associated edges in V (AΛ) cannot decrease the rank. If there is an edge (u, xi), where xi is such that x - i belongs to the maximal inconsistent part V∞(AΛ) of the DM-decomposition of V (AΛ), from point 4 of Proposition 3 there exists a maximum matching on V (AΛ) that does not cover x - i . This matching together with (u, x - i ) provides with a matching of size n in V (AΛ, bΛ), then g-rank[AΛ, bΛ] = n. Suppose now that there exists a size n matching in V ([AΛ, bΛ]). This matching contains an edge (u, x - i ). Removing this edge induces a size n -1 (then maximal) matching in V (AΛ). From point 4 of Proposition 3 this implies that x - i belongs to the maximal inconsistent part V∞(AΛ). Therefore if there is no edge (u, xi), where xi is such that x - i belongs to the maximal inconsistent part V∞(AΛ) of the DM-decomposition, g-rank[AΛ, bΛ] = n -1. It follows from the Propositions 5 and 6 that the minimal number of non-zero entries of bΛ to ensure both input connection and rank conditions is less than or equal to dc(AΛ) + 1. Denote by V∞ the set of xi's such that x - i belongs to the maximal inconsistent part V∞(AΛ) of the DM-decomposition of V (AΛ) and C = ∪Cj for j = 1, . . . , dc the union of Critical Connection Components. We are now able to state the main result of this paper:

Theorem 2: Let AΛ be a n × n structured matrix with associated graph G(AΛ) and associated bipartite graph V (AΛ). The Minimal Controllability Problem is solvable for AΛ if and only if grank(AΛ) ≥ n -1. Moreover:

• when g-rank(AΛ) = n, then ν * = dc(AΛ), • when g-rank(AΛ) = n-1, if C ∩ V∞ = ∅ then ν * = dc(AΛ)+1
else ν * = dc(AΛ). Proof: From Corallary 1, g-rank(AΛ) ≥ (n -1) is a necessary condition for the solvability of the MCP. When g-rank(AΛ) = n, we have only to check the input connection condition. From Proposition 5, the minimal number of non-zero entries of bΛ is ν * = dc(AΛ). When g-rank(AΛ) = n -1, there are two cases. If there is no vertex xi of a Critical Connection Component of G(AΛ) such that x - i belongs to the maximal inconsistent part, V - ∞ (AΛ), the dc(AΛ) edges needed to satisfy the input connection condition will be of no use for the rank condition and another edge is needed for the rank condition, therefore the minimal number of non-zero entries of bΛ is ν * = dc(AΛ) + 1. In the other case, there is an edge (u, xi) such that x - i belongs to the maximal inconsistent part V∞(AΛ) of the DM-decomposition, and from Proposition 6 the rank condition is also satisfied, then ν * = dc(AΛ). Notice that this Theorem also gives the possible locations for the nonzero entries of bΛ to ensure the controllability in the MCP context. Solving the MCP mainly implies the computation of the Critical Connection Components of G(AΛ) and of the DM-decomposition of V (AΛ). The decomposition of a graph into strongly connected components is a standard combinatorial problem for which very efficient polynomial algorihms are available. The DM-decomposition essentially implies the determination of a particular maximal matching [START_REF] Hopcroft | An n 5/2 algorithm for maximum matchings in bipartite graphs[END_REF] completed by an alternate chain technique, see the details in [START_REF] Murota | Systems Analysis by Graphs and Matroids, ser. Algorithms and Combinatorics[END_REF]. It follows that solving the MCP for structured systems is a polynomial problem.

Example 1: As mentioned above, Olshevsky has shown in [START_REF] Olshevsky | Minimal Controllability Problem[END_REF] that it is NP-hard to compute a sparsest b for the MCP of Definition 1. As an illustration, consider the example given by Olshevsky where the A matrix of system (1) is 

A =            
            .
A is full rank so the MCP has a solution. It is shown in [START_REF] Olshevsky | Minimal Controllability Problem[END_REF] that ν * = 3. There exist several minimal solutions for b that make the system controllable, they all have the b8 entry different from zero. Now look at a structured system of the form (3) which has the same zero/non-zero structure as the above matrix A. The corresponding graph G(AΛ) is depicted in Figure 1. The existing loops covering all state vertices imply the vacuity of the maximal inconsistent part of the DM decomposition of V (AΛ) and the full generic rank of AΛ, then ν * = dc(AΛ). There is only one Critical Connection Component {x8}, so dc(AΛ) = 1. The solution bΛ to the MCP for the structured matrix AΛ is then bΛ8 = 0 and bΛi = 0 for i = 1, . . . , 7. It follows that for almost any value of the parameters with the structure corresponding with AΛ, MCP is solvable in polynomial time in the strucured case with ν * = 1 and that state x8 must be impacted by the input. In the standard (non structured) case, to ensure the controllability, for some particular numerical values of the entries of A, two other entries of b must be non-zero. 

- i is in V - ∞ (AΛ) = {x - 3 , x - 4 
}, then by Theorem 2, ν * = dc(AΛ) + 1 = 2. The non-zero entries of bΛ to ensure structural controllability are bΛ1 for the input connection condition and either bΛ3 or bΛ4 for the rank condition. A MCP solution for this example is given in Figure 4.

Example 3: Consider now another example, illustrated in Figure 5, which differs from the previous one by the addition of the edge (x1, x4). It turns out that the Critical Connection Component {x1} is unchanged. The DM decomposition of V (AΛ) is shown in Figure 6. The maximal size of a matching in V (AΛ) is 3, then the MCP is solvable. The vertex x1 of the Critical Connection Component {x1} is such that x - 1 is in V - ∞ (AΛ) = {x - 1 , x - 3 , x - 4 }, then by Theorem 2, ν * = dc(AΛ) = 1 . In this case a unique non-zero entry bΛ1 of bΛ is sufficient to ensure both input connection and rank conditions.

V. CONCLUDING REMARKS

This paper presents a structural analysis of the Minimal Controllability Problem (MCP). This problem comes down to controlling a linear system with an input vector having as few non-zero entries as possible. We proved that MCP is solvable when a rank condition is satisfied and gave the minimum number and the possible location of non-zero entries in the input vector to ensure generic controllability. A simple polynomial MCP solution is given for structured systems. This contrasts with MCP for standard linear systems where the problem turns out to be NP-hard [START_REF] Olshevsky | Minimal Controllability Problem[END_REF] and where additional nonzero entries in the input vector may be necessary for controllability. The proposed graph approach allows to visualize the structural mechanisms that make it useful to act on some variables to ensure generic controllability. 
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