
HAL Id: hal-01064940
https://hal.science/hal-01064940

Submitted on 17 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the consistency conditions for force systems
Reuven Segev, Gal de Botton

To cite this version:
Reuven Segev, Gal de Botton. On the consistency conditions for force systems. International Journal
of Non-Linear Mechanics, 1991, 26 (1), pp.47-59. �hal-01064940�

https://hal.science/hal-01064940
https://hal.archives-ouvertes.fr




48 R. SEGEV and G. DE BOTTON

be identified with elements of the dual space Cr(B, r:H,3)*. It is shown that such forces can be

represented in the form
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where p =1, 2, 3, IXl' IX2' IXJ are non-negative integers with IXl + IX2 + IXJ ~ r, and 0- P«I(12(1J are
Bore1 measures to which we will refer as stress measures. From the construction it follows
that the collection of stress measures that represent the force f is not unique. The
representation presented in the previous equations corresponds to high-order stresses, those
appearing in rth order continuum mechanics. For the simplest case r = 1 the equation can
be rewritten as .
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where here, 0" pq are measures corresponding to the components of the usual stress tensor
and 0" p' which are not present in usual formulations, appear in the equation because no
equilibrium hypothesis was made (i.e. if one assumes that the total force on each subbody
vanishes it follows that 0" p = 0). If these stress measures are given by differentiable densities
in terms of the volume measure in fH,3, it can be easily shown that forces can be represented

'. by body forces and surface forces. Since, unlike forces, stress measures can be restricted, a
given collection of stresses 0" P«1«2«3 induces a force system on B in which the force J p on a

subbody p is represented by
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In addition to the fact that it does not require the assumption of equilibrium and permits
stresses that are irregular as Borel measures, this formulation of the theory of stresses in
continuum mechanics has the advantage that it applies in the general geometrical setting of

differentiable manifolds.
While the suggested formulation models the representation of a single force on a body by

nonunique stress measures, the aforementioned papers do not contain the appropriate
consistency conditions on a force system that guarantee that there is a collection of stress
measures that induce it in the form presented in the last equation. In this paper, it is shown
that the following conditions on the force system {JpE cr(p, 9lJ)*; p is a subbody of B},
which are clearly necessary, imply that there is a unique collection of Borel stress measures
(1pa,«2«J' p = 1, 2, 3, IXl + IX2 + IXJ ~ r, that represent it as in the last equation. (We use the
convention that the empty set is a subbody and the force on it is zero.)
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(i) Additivity. If Pi and P2 are disjoint subbodies of B then for any u E cr(B, rR-3),
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(ii) Continuity. We recall that the set A is the limit of the sequence of sets ~ if and only if
for every element x in A there is an integer io so that x E ~ for every i ~ io, and every point
that is contained in an infinite number of sets in the sequence is contained in A. It is required
that if A E <I>, where <I> is the minimal field containing the open subsets of the body, and ~ is a
sequence of subbodies whose limit is A, then, for any u E Cr(B, f:R.3), the sequence !Pj(ulp,)
converges and its limit is independent of the particular sequence of subbodies ~.
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(iii) Roundedness. There is a finite bound K such that for any subbody p and any

u e Cr(R, ~3),
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We note that as the traditional consistency conditions hold only for continuum mech-
anics of order one, and while it is only very recently that No11 and Virga were able to present
consistency conditions for second order continuum mechanics [4], the consistency condi-
tions presented in this paper hold for continuum mechanics of any order.
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Consistency conditions for force systems 49

The reason why the representation of a force system by a stress is unique while the
representation of a force by stresses is not unique may be described roughly as follows.
In the expression for the representation of a given force by stress measures we know the
values of the integrals only for "compatible" collections of continuous functions Wp«I~2~] ,
p = 1, 2, 3, (Xi + (X2 + (X3 ~ r, i.e. collections for which there are differentiable functions Up
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Hence, the measures cannot be determined uniquely. However, we can approximate any
collection w Pa'~2~J by a family of compatible collections such that the members of the family
are defined on a family of disjoint subbodies. If we know the force on each subbody we can
approximate the integrals for "non-compatible" collections and determine the measures

uniquely.
Section 2 discusses the approximation by subbodies of sets that belong to the minimal

field of subsets containing the open subsets. For each set A in the minimal field, a sequence
of subbodies whose limit is A is constructed and some useful properties of this sequence are
presented. Section 3 uses the construction of Section 2 in order to give sufficient conditions
(which are also necessary conditions} so that a real valued set function defined on the
collection of subbodies can be extended to a Borel measure. In addition to its use as a tool
for the proof of the sufficiency of the consistency conditions, this result is of some interest as
it specifies the conditions under which quantities such as electric charge can be extended to
measures if they are given for the various sub bodies. Section 4 presents the consistency
conditions and proves that they are sufficient (again, these conditions are also necessary

conditions}.
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2. THE APPROXIMATIONS OF SETS BY BODIES

As was mentioned a body is defined as a three-dimensional compact submanifold with
boundary of ~3. We now add formally the empty set to the collection of bodies. Given a
body B, a subset D of B which is a body is a sub body of B. Clearly, the complement of a
subbody in the body is not a subbody and the same holds in general for the unions and
intersections of subbodies. In this section it will be shown that although our collection of
subbodies is small, any set in the smallest field of subsets containing the open subsets of B
can be approximated by a sequence of sub bodies of B. This approximation has some

additional properties that will be used in the following sections.
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(We use the Proposition 2.1. For any compact subset C of rN,3 and a bounded open subset U of pA-3

containing C, there is a body B which is contained in U whose interior contains C.

Proof By a standard theorem of differential topology (see [5, p. 12]) it is possible to

construct a smooth real function h: ~3 -+ ~ with the following properties: (i) its value at any

point in Cis 1; (ii) its value at any point in the complement of U is 0; and (iii) its value at any
other point is in the interval [0, 1]. By Sard's theorem (see [6, p. 204]) any neighborhood of

the value 1/2 contains a point x such that h is not singular at any point in the inverse image
of x. From the implicit function theorem it follows that h- 1 ( { x} ) is a smooth submanifold

of ~3 that is clearly compact and which is the boundary of h-1([x,I]). It follows that

h-1([x,'1]) is a body. .
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I every point
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Iy, and P; is a

encefpi(ulp,)
s Pio Proposition 2.2. Let V be a body, U a bounded open subset of £R3 and C a closed set

contained in U. There exists a body B contained in U whose interior contains C such that

BuD and BnD are bodies.
p and any

Proof Let us construct a body B2 contained in U whose interior contains C as in the

previous proposition. In the case where U n D is empty, or D => U it follows from the

construction that B2 u D and B2 n D are bodies. However, in general, when the boundaries
of B2 and D interest, B2 u D and B2 n D will not be bodies. We will modify B2 so that the

modified body will have the required properties.
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50 R. SEGEV and G. DE DOlTON

We recall that if X and Yare submanifolds of the differentiable manifold Z, any C'
neighborhood, r ~ I, of the inclusion of X in Z contains an embedding g: X-+ Z which is
transversal to the inclusion of Y in Z (see [7, p. 78]). It follows that we may modify B2
slightly to obtain a diffeomorphic body B 1 so that the properties guaranteed by the previous
proposition still hold, and in addition, aBl is transversal to aD. Hence, the intersection
aBl ("'I aD is a one-dimensional submanifold of both aBl and aD.

Next we modify B 1 to obtain a diffeomorphic body B so that the intersection between the
boundary of B and the boundary of D contains an open subset. In other words, the two
boundaries will overlap on an open set so that B u D and B ("'I D are bodies. This
modification will take place in a small neighborhood of the intersection of the transversal

sub manifolds aBl and aD.
In constructing the' neighborhood in which the modification will take place we use the

following theorems of differential topology (see [7, pp. 109-115]).

(i) If Y is an orientable submanifold of the differentiable manifold Z of codimension one,
then, there is an embedding g: Y x( -1, 1) -+ Z, called a tubular neighborhood of Y in Z
having the following properties: (a) glr x {0} is the inclusion of Y in Z; and (b) the image of g is
an open neighborhood of Y in Z. We will also use the term tubular neighborhood for the
image of the mapping g, and we will identify a point in the image with the "coordinates"

given to it by g.
(ii) If Y is a neat submanifold of Z, then, there is a tubular neighborhood of Y in Z.
(iii) If Yis a neat submanifold of Z, then, every tubular neighborhood of a Y in az is the

intersection of az with a tubular neighborhood of Y in z.

We first construct tubular neighborhoods V 1 and V 2 of aBl ("'I aD in aBl and in aD,
respectively, with the convention that the parameters in ( -1, 1) are positive in D and the
complement of B 1 , respectively. Next, considering the neat submanifold aB 1 ("'I D in D, we
can use theorem (iii) above to show that there is a tubular neighborhood V 3 of aB 1 ("'I D in D
such that V 2 = V 3 ("'I aD, where we set the values of the parameter s e( -1, 1) to be positive

outside B 1 .Let

v= {p = (X,S);pE V3,XE V1,SE[0, 1)}.

By definition, every point in V has three coordinates (x, t, s) such that x E oB 1 n oD,

t, S E [0, 1), where t = 0 for points on oD and s = 0 for points on oB 1. Since there is a finite

positive distance between oB 1 and the complement of U, there is a number ~ > 0 such that a

point in V is in U if the coordinate s is less than ~.

.Consider the following functions:

IX: IH -+ IH

11: [H -+ [H

0: rR- -+ [0, 1t/2]

The function (} is smooth and has the following properties:

(i) (}(t) = 1t/2 if t ~ ~/4
(ii) O ~ (}(t) ~ 1t/2 if~/4 ~ t ~ 3~/4

(iii) (}(t) = 0 if t ~ 3~/4.

We will now modify the portion of iJBl that is a subset of V (which is clearly in D) as

follows. Let g: V 1 -+ V be defined by

g(x, t) = (x, t cos(}(t), tsin(}(t» if 0 ~ t < ~,

g(x, t) = (x, t, 0) otherwise.
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Clearly, 9 is an embedding and has the following properties:

(i) Im(g) ("\ aD = {p = g(x, t); O ~ t ~ ~/4} contains an open set of aD,
(ii) Im(g) ("\ aBl = {p = g(x, t); 3~/4 ~ t ~ 1} contains an open set of aBl ,

(iii) Im(g) is a subset of U and is disjoint from C.

In a similar way we will define a function h that will modify a neighborhood of aBl ("\ aD
in aBl ("\ (DO)C whose image will ge contained in a neighborhood of aBl ("\ aD in B1 ("\ (DO)C.
(The superscript "c" denotes the complement of the corresponding set.) This mapping will
have the analogous properties to those of g, i.e. it is an embedding, its image is contained in
U-C, Im(h) ("\ aD contains an open set of aD and Im{h) ("\ aBl contains an open set of aB1.

We can define now the mapping 1/1: aBl -.u-c by l/I(y) = g(y) if' yEdomain(g),
l/I(y) = h(y) if yEdomain(h) and l/I(y) = y otherwise. Clearly, 1/1 is an embedding and its

image overlaps with aD on an open set. By the Jordan-Brower Separation theorem (see [6,
p. 89]), Im(l/l) is a boundary of a body B and it follows from the construction that B ("\ D
an,d B u D are bodies as their boundaries are smooth. .
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We can now state the analog of proposition 2.
subsets of the body B.

for the case where both C and U are

Proposition 2.3. If U is an open subset of the body D and C is a closed subset of D

contained in U, there is a subbody P of D contained in U whose interior contains C.

the

Proof. It is clear that C is closed in £Jl3 and that it is contained in an open subset V of ~3
such that V n D = U. By proposition 2.2 we can construct a body B contained in V whose

interior contains C such that B n D is a body, hence, a subbody of D which clearly has the

required properties. .

iJD,

the

we

I1D

live

Henceforth, unless otherwise stated, we will refer by open and closed sets to open and
closed subsets of the body under consideration.

Proposition 2.4. Let <1> be the smallest field of subsets containing the open subsets of a

body B. For each A in <1> there is a sequence P; of subbodies of B such that P; -+ A.

13D,

lite

it a

Proof It follows from a standard representation theorem for the members of the smallest
field containing a given collection of sets (see [8, p. 7] ) that a subset A of B belongs to <1> if

n
and only if A = U Ut ('1 Ct, where Ut and Ct are open and closed sets, respectively, with

t=l
(Uj ('1 C j) ('1 ( Ut ('1 Ct) = (25 for j # k.. Let A be a member of <1> and assume that such a

representation of A is given.
For each k let Cti be defined by

cki=comp ( U B(~,x.
x e Ut I. .

where B(d, x) denotes the open ball of radius d centered at x. Clearly, for a given; the sets

Cki are disjoint. In case all Cki = 0 we will set P; = 0 and henceforth we may assume that

at least for one k, Cki ~ 0. In the case where there is only one Cki ~ 0, we will set
15i = 1/2;. Otherwise, since for any given; the sets Cki are disjoint and compact there is a

number 15j > O smaller than half the distance between any two of them and 1/2;. For each

Cki ~ 0, let

) as

Uki = U B(Oi'X).
XeCk'

Clearly, any Uki is a subset of Ut and for a fixed i the sets Uti are disjoint. Using proposition
2.3 it is possible to construct for a fixed i and each k such that Cti # e5, a subbody Pki
contained in Uti whose interior contains Cki. In case Cki = e5 we just set Pki = e5. Define

II II
p = U P.k .E. = U Ck .II' II.

t=l t=l

Since the various Pki are disjoint, P; is a body.
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The sequence ~ satisfies lim infi~ ::> A.

52

respectively,

sequences p

Lemma 2.4.

Proof of lemma 2.4.1, We first note that for each k the limit or the increasing sequence c.i
is C. n u.' Clearly, each Cki i~ a subset or c. n uk hence their union is also a subset or

ck n uk, On the other hand, assuming that x E Ck n Uk, there is a minimal distance d > O

between x and Ut. Choosing an i such that l/i < d, we have

( ( 1 ' ,

xECOmp U B -;, x
xeU: I J

Propositi(

proposition

possible to I

(i) The s\:

disjoint.
(ii) For ,

V j(i) (") ~(i) =

) ) (") Ck = Cki

and it follows that
J Cki :J Ckn Uko

i

We conclude that

Proof D

A=UUkjl
k, j

constructio

that ~(k) n

by re-enuIr

..
u Ei = U U Cki = U Ck n Uk = A.
i i k=l k=l

Since, ~ ::> Ei for each i we have lim infiPi ::> lim infiEi = A.

Lemma 2.4.2. The sequence ~ satisfies A ~ tim SUPi~.

Proof of lemma 2.4.2. Let us construct the sequence

( 1 '\
, B -:-,x

r j
Propositi

sequences

Proof v

lnductivel~

assume th~

(a) Ak-

~i = L;
XeCk \ .I

which is decreasing to Ct' By our construction Pti is a subset of ~i for each k and i, hence,
Ct = lim SUPi ~i => lim SUPiPti' On the other hand, Ut => Pti for each i and it follows that

Ut n Ct => lim SUpjPti'
Assume that x ~ A, then, for each k, x ~ Ut n Ct and x ~ lim SUPi Pti. In other words, x E Pti

"
for a finite number of elements, say, Nt elements of the sequence only, Thus, x E U Ptj = Pj

t=l

for a finite number of elements and hence, x ~ lim SUPi Pi.
From lemma 2.4.1 and lemma 2.4.2, we have lim infjp; => lim SUPiP;, and by the defini-

tions of the limit of the sets it follows that limi P; = A. .
(c) For

.
.Corollary 2.5. Let A = U Uk ("I Ck. Then for each k the sequence of subbodies Fu

k=l
constructed in the previous proposition converges to Uk ("I Ck and it has the following
property: for each & > O there is an N independent of k such that for each i > N and each

x E Fki there is a point in Uk ("I Ck ("I Fki whose distance from x is less than &.

(d) For

Using t
J

u Uti n
j= 1

Proof This corollary follows immediately from the construction of the previous

proposition.

Proposition 2.6. If A l' A2, ..0 , An are disjoint members of <1>, then, there are n

sequences of subbodies P1i' P2i' 00 0, Pni converging to A1, A2, 0. 0, An, respectively, such

that for any i, P1i' P2i' ..0, Pni are mutually disjoint and the sequence of subbodies

~ = P 1i u P2i u ...u Pni converges to A 1 u A2 u ° ° .u An°

(i) The

mutually
(ii) FoJ

U(k -1 )/I( j) ,

We noProof It is sufficient to prove the proposition for the case n = 2. Let Al and A2 be
J K

represented in the form Al = U U lj n Clj. A2 = U U 2k n C2k as in proposition 2.4. We
j=l k=l

can represent Al u A2 in the form
Lemm(

corn
so that we can apply to it proposition 2.4 and corollary 2.5. It follows that for eachj and k

there are sequences p 1)i and p lki of sub bodies converging to U 1) n C 1) and U lk n Clk.
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respectively, such that for any fixed i the various sub bodies are disjoint. Hence, the
J K

sequences Pli = U P1ii, P2i = U P2k.i have the required properties. .
i=l k.=l

K J
Proposition 2.7. Let A = U ~ ("'I Et, A' = U ~ ("'I ~ be members of <1> represented as in

t=l i=l
proposition 2.4 (i.e. ~, ~ are open and Et, ~ are closed) such that A' ~ A. Then, it is

1
possible to represent A in the form A = U Ui ("'I Ci such that the following conditions hold:

i= 1
(i) The subsets Uj are open, the subsets Ci are closed and the various Ui ("'I Ci are mutually

disjoint.
(ii) For each i there is a unique j(il such that ~(i) ~ Ui and ~(i) ~ Ci so that

~(i)("'1~(i) ~ Ui("'1Cj.

Proof Define the closed sets Cti = Et ("'I ~ and the open sets Uti = ~ ("'I ~. We note that
A = U Uti ("'I Cti and that the various Uti ("'I Cti are mutually disjoint. In addition, by the

t.i
construction, for each pair j, k there is a unique j(k) such that ~(t) ~ Uti and ~(t) ~ Cti so

1
that ~(t) ("'I ~(t) ~ Uti ("'I Cti. Finally, we obtain the required representation A = U U1 ("'I Ci

i=l
by re-enumerating the subsets Uti and Cti. .

\ .
Proposition 2.8. Let At be a decreasing sequence of members of <1>. Then, there are

sequences Pti of subbodies such that Pti -+ At, and for a fixed i, Pti ~ ~t + l)i .

Proof We first construct the sequence P1i converging to A1 as in proposition 2.4.
Inductively, we construct the sequence Pti on the basis of the sequence ~t-1)i .Hence, we
assume that the sequence ~t- 1)i -+ At -1 has the following properties as in proposition 2.4:

N
(a) At-1 = U U\t-1)lInC\t-1)1I.

11=1
N

(b) ~t-1)i= U ~t-1)lIi.
11=1

(c) For each sub body P(t-1)lIi we have interior (~t-1)lIi) => C(t-1)lIi where

C\t-1)lIi = comp { V B( }, x); x ecomp(U(t-1)1I) } n C\t-1)1I .

(d) For each subbody ~t-l)lIi we have U(t-l)lIi ~ ~t-l)lIi where

Vjt-ol)lIi = U {B(c5(t-l)i'x);xeC(t-l)lIi}.
x

Using the fact that At-l ~ At and proposition 2.7 we can represent At in the form At =
J
U Uti n Cti such that the following hold:
I-I 0

fi Cti .

X E comp(Ukj)

(i) The subsets Ukj are open, the subsets Ckj are closed and the various Ukj n Ckj are

mutually disjoint.
(ii) For eachj there is a unique nU) such that U(k-l),,(J1 ~ Ukj and C(k-l),,(J1 ~ Ckj so that

U(k-l),,(J1nC(k-l),,(J1~ UkjnCkj.

We now construct the subbody Pki such that ~k-l)i ~ Pki. For each Ukjn Ckj let

Ckjl = comp{ V B( ~, x); xEcomp(UkJ ~

Lemma 2.8.1. For each j there is one nU) such that interior (~k-l),,(J1i) ~ Ckjl.

Proof of lemma 2.8.1. By (ii) above U(k-l),,(J1 ~ Ukj' it follows that

'U B (~,X ); xECOmp(U(k-l),,)- ~ comp- U B (~,x'
x I x I

camp
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hence, C(k-l)n(j)i :) Ckji. By (C) above interior (~k-l)n(j)J :) C(k-l)n(J)i which completes the

proof of our Lemma.

In case all Ckji = eJ we will set Pki = eJ and henceforth we may assume that at least for

one j, Ckji ;C eJ. In the case where there is only one Ckji ;C eJ, we will set <5ki = 1/2i.

Otherwise, since for any given i the sets Ckji are disjoint and compact there is a number

<5ki > O smaller than lialf the distance between any two of them and 1/2i. For each Ckji ;C el

let
Ukji = interior(~k-l)nU)i) ("I u B«5kl' X).

x eC.J/

Clearly, any Utji is a subset of Utj and for a fixed i the sets Utji are disjoint. Using proposition
2.3 it is possible to construct for a fixed i and each j such that Ctji ~ e5, a subbody Ptji
contained in Utji whose interior contains Ctji. In case Ctji = e5 we just set Ptji = e5. Define

J J
P.." = U P E..- = U C ~I ~JI , ~I ~JI .

j=l j=l

Since the various subbodies Ptji are disjoint, their union Pti is a body and in addition, as
interior ( f(t-l)I1(j)i) ~ Utji ~ Ptji it is clear that f(t-l)i ~ Pti. The proof that Pti -.At follows

from lemma 2.4.1 and lemma 2.4.2. .

Definition

condition

(i) If p

3. THE EXTENSION OF A SET FUNCTION DEFINED ON SUBBODIES
TO A MEASURE

In the next section we will need a condition such that a set function defined over the
collection of subbodies of a given body can be extended to a unique measure. Such a
condition is of interest in general because it can be applied to various physical instances
such as mass, electric charge, etc.

Just as we formally added the empty set as a subbody, we now set formally the value of
the set function for the empty set to be zero.

{ii) If f

limit is ir

{iii) Tt

Ifp{ulp)1

We will I

respectiv,
In the

where ap

IXl!a2!aJ

Proposition 3.1. Let}1. be a bounded real valued set function defined on the collection of
subbodies of a body B that satisfies the following conditions:

(i) If P1 and P2 are disjoint subbodies, then, }1.(P1 u P2) = }1.(P1) + }1.(P2).
(ii) If A E <1> and P; -.A, then, the sequence }1.( P;) converges and its limit is independent of

-the particular sequence Pi.

Then, there is a unique Borel measure v on B such that v(P) = }1.(P) for all subbodies

P ofB.
We will refer to the first and second conditions as additivity and continuity conditions,

respectively.

Proof. Define the real valued set function v on <1> by v(A) = limi}1.(p;), where P; is a
sequence of subbodies whose limit is A. By proposition 2.4 v is well defined, and in addition,
it follows from the continuity assumption that for any subbody P, v(P) = }1.(P). To show

that v is additive, consider the disjoint sets A1 and A2 in <1>. We now construct two sequences
P1i and P2i converging to A1 and A2, respectively, satisfying the properties guaranteed by
proposition 2.6, so in particular, P1inP2i = eJ for a fixed i. Since Al uA2 =

limi(P1i u P2i), we have

We say t

restrictio
is of the

In pro

need the

Propo:

Pi-+ B, a

that if i:

V(Al U A2) = limjJl(Plj u P2j) = V(Al) + v(A2).

So far, we obtained a finitely additive set function on a field. We next show that v is
countably additive. We recall (see [9, p. 10]) that in order to prove that an additive set
function v on a field is countably additive it is sufficient to show that v is continuous from
above at the empty set, i.e. if the decreasing sequence A; converges to the empty set, then
limjv(Aj) = 0.

Proof

miop,«{il

choose ti

Lemma 3. The set function v is continuous from above at the empty set.
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Proof of lemma 3.1.1. Let Ak be a sequence of sets in <1> decreasing to the empty set and for
each k let Pki be the sequence converging to Ak as in proposition 2.8, i.e. for a fixed i,
Pki::) ~k+l)i. We now extract from the double sequence Pki a sequence Pk.i(k), k = 1,2, ...,

as follows. For each k let Nk be the integer such that for any i ~ Nk, I V(Ak) -V(Pki)1 < l/k.
We set i(l) = Nl and we construct the sequence inductively by choosing i(k + 1) =

max{Nk+l' i(k) + 1}.
We first show that for each integer n, A" ::) lim SUPkPk,i(k) o Let x E lim SUPkPk,i(k), then, for

each k ~ n there are some j, j > 1<; s.uch that x E ~,i(j). From the construction of the double
sequence it follows that P",i(j) ::) ~,i(j)O Hence, x E P",i(j) for some j > k for each k so that
xElim SUpjP",i(j)o Since P",i(j) is a subsequence of P"i it follows that xElim SUPiP"i = A"o We
can conclude that lim SUPkPk,i(k) c: n A" = 0 since A" ::) lim SUPkPk,i(k) for any n.

"
By the continuity assumption on 11. we have limkl1.(Pk,i(k» = 0. In addition, our construC-

tion implies that the sequence V(Ak) -I1.(Pk,i(k» converges to zero so that we conclude that
limk v(Ak) = 0.

Now, the proof of the proposition follows from the fact (see [8, p. 50]) that abounded
countably additive set function on a field, such as v in our case, can be represented as the
difference of two positive bounded countably additive set functions each of which caq be
extended uniquely (see [9, po 13]) to a positive measure on the smallest q-field containing
the original field. In our case this q-field is the collection of the Borel sets and the difference
between the two positive measures gives us the required Borel measure. .
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4. THE REPRESENTATION OF A FORCE SYSTEM BY A STRESS

Definition 4.1. A force system {fp; p is a subbody of B} is consistent if the following
conditions hold.

(i) If Pi and P2 are disjoint subbodies of B, then, for any u e cr(B, i:R3),

fp,UP2(ulp,UP2) = fp,(ulp,) + fp2(ulp2).

(ii) If A e <I> and P; -+ A, then, for any u e Cr(B, £R;3) the sequencefp.(ulp.) converges and its
limit is independent of the particular sequence of subbodies p;.

(iii) There is a finite bound K > O such that for any sub body p and any u e cr(B, £R;3),
Ifp(ulp)1 < K lIulpll.

We will refer to these conditions as the additivity, continuity and boundedness conditions,

respectively.
In the sequel we will use the following notation of multi-indices. Let (X = ((Xi , a2' a3),

where ap is a positive integer. We will write x~ for X~'x~2xj3, lal for a1 + (X2 + a3' a! for
a1!a2!a3!' and given the real function w, we use w,~ for

al~lw

ies

ns,

; a

)n,

:>w

;es

by

oxi' OX220Xj3 .

We say that a function won p is a piecewise rth order polynomial over a subbody p if the

restriction of w to any connected component is a polynomial of order r, i.e. if the restriction

is of the form L a«x«, a«E~.
1«1 Sr

In proving that a consistent force system can be represented by a unique stress, we will

need the following proposition.

Proposition 4.2. For each u E C'(B, 9l3) and eo > O there is a sequence of subbodies

Pi -+B, a sequence ofpiecewise rth order polynomials SjEC'(P;, 9l3) and an integer io such

that ifi > io, then, lIulp. -sjllp. < eo.
IS

set

>m

en
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depending only on r that we will specify later. We define the index). = { ).pa; p = 1, 2, 3,
lal ~ r, ).,.. = 0, ..., N -1 }. Clearly, for each component ).pa of). we have a ~ a + ).,..8 < b.

We also set

CleL = mina{a, infxe B{ II U 11*xa} },

Hi = maxa{b,SUPxeB{Ilull*xa}},

H=L+N1e,

wh

anc

wh

ral

nu

where N 1 is the smallest integer such that N1 > (H' -L)/e, and finally

P={P1'P2'P3}' Pp=O,...,N1-1.

With these definItions we have L ~ L + ppe < H.

Divide the body B into the subsets AJ.~ defined by

AJ.~ = n { ( Up,«)-l [a + A.plle, a + (A.pII + l)e) } ("\

p= 1,2,3
1«1 Sr

{x;L + ppe ~ Ilull.x~p < L + (Pp + l)e}.

By definition, if x E AJ.~ then for each p and a we have

a + A.p«e ~ up,«(x) < a + (A.pII + l)e,

L + ppe ~ lIull.x~p < L + (Pp + l)e.

Clearly, the various AJ.~ are disjoint and their union is B. Moreover, each AJ.~ belongs to <1>

and can be represented as the intersection of an open set and a closed set.

Using the constructions of Section 2, for each pair of indices A. and P there is a sequence of

subbodies PJ.~I-+ AJ.~ so that for a fixed i the various PJ.~I are disjoint and their union is a

subbody that we denote by Po. We choose a point YJ.~ in each of the sets AJ.~ and define

SJ.~ECr(B,I!I-3) by its pth component as

N<

or

(SAP)p(X) = L -;(a + ).p~6)(X -YAP)~.
I~I S r a.

Set SAPieCr(pAPi'fR,3) by SAPi=SAPlp and the piece wise rth order polynomial
SieCr(~, !:l3) by Si = L SAPXPA"' whe;~ XA denotes the characteristic function of the

A.P
subset A.

We recall that
w

XE

CO

I!u!p!" -SJ.p;llp!" = sup{lup.~(x) -(SJ.pJp.~(X)!; xePJ.p;, la! ~ r, p = 1, 2, 3}.

By adding and subtracting up.~(zJ.p(x)), a + ).pa6 and by using the triangle inequality we

obtain for any choice ofa point zJ.p(x)eAJ.p,

Fi

an
lIulp,." -SAPillpll' ~ Sup {lup,~(x) -Up,~(ZAP(x»I}

X,~,p

+ Sup {IUp.~(ZAP(X» -(a + ).p«6)1}
X,~,p

+ Sup {I(a + ).p~6) -(SAPi)P,~(x)I}.
x.~,p

60
nc

su

in'

4.

We now examine the terms on the right hand side of this inequality.

(i) The functions up,«1 P, are uniformly continuous for each p and a. Hence, there is a <5 > O
such that ix -yi < <5 implies that lup.«lp,(x) -up.«lp,(Y)1 < 6, for each p and a. We choose
an integer it such that it > 1/<5 and it follows from corollary 2.5 that for each x e P AfJi' i > it ,
there is a zAfJ(x)eAAfJ n PA,/ with ix -zA,(x)1 < <5. Clearly, for i > it.

sup{lup.«(x) -up.«(zA,(x)I; X e PA,/, lal ~ r, p = 1,2,3} < 6,

and from that corollary it is independent of the values of). and po
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1, 2, 3,
,e<b. ,2, 3} < e.
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(ii) Since zAP(x)eAAP we have by our construction

sup{IUp,«(ZAP(X» -(a + ).pcze)l; xePAPi' lal :s; r, p =

Clearly, the last inequality holds for each). and p.

(iii) Consider the tenn

}'!yY = , y-«
Jw.« (1'-!1),X

and .where !1 ~ I' means !1p ~ I' p for p = I, 2, 3. By the definition of II u II * we have

,

~s to <1>

~nce of

on IS a

define

~ ml (r) max ix -z(x) + z(x) -YJ.pi7-« .

171Sr
7>«

lomial

of the

.ity we

I(a + A.pae) -(s..Pi)p,«(x)1 ~ lIull* I L (x -Y..p)Y-'

Iylsr
y>«

~ lIull* I L (x -z(x) + z(x) -Y..p)Y-'
Iy\sry>« I

where z(x)eA..p will be specified later. The last sum contains a finite number of binomials
raised to powers smaller or equal to r in the variables x-z and z-Y..p. Let us denote the

number of all such powers by m1(r). It follows that

I L (x- z(x) + z(x) -Y..p)Y-~ I

Iyl sr
y>«

Now, ifm2(r) is the maximal number of terms in the binomial expansion for powers smaller

or equal to r and m3(r) is the largest binomial coefficient for such expansions we have

I(x -z(x)) + (z(x) -Y..p)IY-«

~ m2(r)m3(r)sup{lx -z(x)I"; 0 ~ 1111 ~ r} sup{lz(x) -Y..pl~; O ~ 11/11 ~ r}.

We can choose by corollary 2.5 an integer i2 independent of A. and p such that for each

xePAP" i> i2 there is a z(x)eA..pf"'lPAPj with ix -z(x)1 ~ e/llull*. In addition, by our

construction, for any 1/1,11/11 ~ r,lz(x) -YAPI~ ~ e/llull*. It follows that

sup {I(a + A.pae) -(s..Pi)p.«(x)l} ~ 2m1(r)m2(r)m3(r)e.
x.«.p

Finally, the proof of the proposition is obtained by choosing m = 2ml (r)m2(r)m3(r) + 2

and choosing an io which is greater than ii and i2. .

Corollary 4.3. Let {fp } be a consistent force system on B, then, for each u E cr(B, rR,3) and

&0 > 0, there is a sequence of subbodies ~ -+ B, a sequence of piecewise rth order poly-

nomials SiECr(Pj, rH.3) and an integer io such that if i> io, then, IfB(U) -fp,(sj)1 < &0.

t5>o

:boose

i > ill

Proof Let ueCr(B,gl3) and eo > O be given. By proposition 4.2 there is a sequence of
sub bodies ~ -+ B, a sequence of piecewise rth order polynomials Si e cr(Pj, ~3) and an

integer i1 such that if i > i1 then, lIulp. -sjllp. < !!!-, where K is the bound in definition
2K

4.1 (iii). Using the linearity of the forces and the boundedness property we have for each

i > i1
eoI!p.(ulp.) -!p.(Sj)1 = I!p.(ulp. -s.)1 < Kllulp. -sjllp. < 2.

= I L (a + A.pye)
where we used lylSr (1' -a)! (x -YAP)Y-'

y>«
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By the continuity of the force system there is an integer i2 such that if i > i2 then, IfB(U) -

fp,(ulp,)1 < £0/2. Now, if io is greater than ii and i2 we have for each i > io

IfB(U) -fp.(sJI ~ IfB(U) -fp.(ulp.)1 + Ifp.(ulp.) -fp,(sJI < £0°

Remark. We note that the sequences ~ and Si depend only on u and B and do not depend

on the force system.

Proposition 4.4. Let {fp} and {gp} be two consistent force systems on B. Assume that
gp(s} = fp(s} for each subbody P and each piecewise rth order polynomial s on P, then,
gp = fp for each subbody P.

Hence

Proof Assume that there is a subbody P and a u E C'(B, [R3) such that gp(ulp) ~ Jp(ulp)
and let eo = Igp(ulp) -Jp(ulp)l. Since gp(s) =Jp(s) for each sub body P and each piecewise

rth order polynomial s on P we have

Igp(ulp) -Jp(ulp)1 ~ Igp(ulp) -Jp,(Si)I + IJp,(Si) -Jp(ulp)1

= Igp(ulp) -gp,(sJI + IJp,(sJ -Jp(ulp)l.

Since the sequence Si is independent of the force system, by corollary 4.3 we may choose an i,

so that Igp(ulp) -gp,(si)1 < eo/2 for i > i, and an if so that IJp.(Si) -Jp(ulp)1 < eo/2 for

i > i f .A choice of an io greater than both i f and i, will result in a contradiction. .

Proposition 4.5. A force system {fp} on B is consistent if and only if there is a unique
collection of bounded Borel measures {apa}, p = 1, 2, 3, I(XI ~ r that represents the force

system in the form and fI

the P'

Ackno'

Sheva
author

fp(u) = L r up.«d(Jpa ueCr(p,9l3).

1«I:sr Jp
p=1.2.3

Proof It is clear that a force system which is represented by a collection of bounded stress
measures as in the previous representation equation is consistent. We now show that
consistency is indeed a sufficient condition for the representation. Define the functions
u(q«J e cr(B, !N-3) by their pth components as u(q«)p(x) = 15qpx«, p, q = 1,2,3, lal < r, where 15qp
denotes the Kronecker 15. For lal = ° we define the set functions Jlq« on the collection of
subbodies of B by Jlq«(P) = fp(u(q«Jlp). Clearly, the set functions Jlq« satisfy the conditions of
proposition 3.1 and it follows that they can be extended to Borel measures (Jq«, lal = 0, on B.

Next we define inductively

1. C. .

2. R.:

Th.

(19

3. R.

(19

4. W.

S. I. I

6. V.

7. W.

8. K.

9. R.

L
ys«

p~1.2.3

x«-YdO"qy.

i ~! =~!(]..(P)+ L -

( ~-1')!,<. p

for O < lal ~ r. Since the conditions of proposition 3.1 hold for both terms in the previous

equation, they hold for the set functions Jlq«, O < lal ~ r as well, and hence, we can extend

them to the Borel measures O'q«.
Construct the force system {gp} on B by

g,.(u) = L r u,.«dO'pa, ueCr(p,IH-3).

1«1 ~ r j,.
,=1,2.3

It is obvious that. {g,. } is a consistent force system. We have

g,.(u(q«)I,.) = L r (u(q«»)"ydO',y

Iyl ~r jp
,=1,2.3
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By using aq«(P) = Jl.q«(P) and the definition of Jl.q«, in the last line we obtain gp(u(q«)lp) =
fp(u(q«)Ip). By the linearity of forces it follows that the force systems {fp} and {gp} have
equal values for any rth order polynomial, by the additivity of the force systems they have
equal values for any piecewise rth order polynomial and it follows from proposition 4.4 that

they are equal.
It remains to show that if { a tP«} and { a 2p1J }, p = 1, 2, 3,lal ~ r represent the force system

{fp}, then alp« = a2p1J. Let A bea? arbitrary set in <1> and let P; be a sequence ofsubbodies
converging to A. We have for lril ~ O,fp/(u(pIJ)) = alplJ(p;) = a2p1J(p;) for each i and p. Using
the continuity of the measures a1plJ and a2p1J we conclude that alplJ(A) = a2p1J(A) for lal = °

and every A e <I>. We recall that if two measures are equal on a field they are equal on the
minimal a-field containing it, hence, alplJ = a2p1J for lal = 0. To use an induction process,
assume that alplJ = a2p1J for alllal < ro. Again, for an arbitrary A E <I>, P; -+ A and y with

Iyl = ro, we have by using the definition of u(p«),

, fp.(u(qyJ = L r (U(qy))p,«dalplJ = L r (u(qy))p,«da2p1J.
.1«lsro Jp, 1«lsro Jp/

, .p=1,2,3 p=1.2,3

(u) -

epend

e that

then,

~(ulp)

;ewise

Hence,

~ an ig

'2 for

.

L r (U(qy)P.« da lpa +

1«1 <ro jpl

p=l.2.3
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and from the induction hypothesis it follows that O"lPY(PJ = 0"2PY(P;) for each i and p. Again,
the properties of measures imply that O"lpy = 0"2py. .




