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ON THE CONSISTENCY CONDITIONS FOR FORCE
SYSTEMS

REUVEN SEGEV and GAL DE BoTTON

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical
Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract—In analogy with the classical Cauchy conditions, this work presents conditions so that a
force system, the assignment of a force to each subbody of a given body, can be represented by a
stress. The setting in which the theory is formulated is more general than that of classical continuum
mechanics as stresses can be as irregular as measures, equilibrium is not assumed, it applies to
continuum mechanics of order higher than one and it may be extended to the case where the body
and space are modelled by general differentiable manifolds. The consistency conditions presented
are that of additivity of the force system on pairs of disjoint subbodies, continuity and boundedness.

1. INTRODUCTION

The present paper is concerned with the conditions so that a force system on a body can be
represented by a stress. Here, by a force system, we mean an assignment of a force to each
subbody of a given body. In the classical formulation of continuum mechanics, it is assumed
that force systems on bodies satisfy the following conditions: (i) The force f, on any subbody
P is given in terms of a body force field b, and a continuous surface force field ¢, in the form
fr = [pbpdv + {,ptpda. (ii) The body force on a subbody is independent of the subbody and
the surface force on a subbody depends on the subbody only through its unit normal n to
the boundary. It is also assumed that the surface force depends on the normal continuously.
(iii) The total force on each subbody vanishes. On the basis of these conditions it is proven
that there is a unique tensor field o over the body, called the stress, so that the forces on the
various bodies are given by b = — div ¢ and t, = o(n). Thus, we may say that the stress ¢
represents the force system { fp} with these two equations and that the aforementioned
conditions are consistency conditions for the existence of a stress representing the given
force system.

Modern formulations of stress theory replace some of these assumptions by other, more
general assumptions. In [1], which summarizes the works of Noll, Gurtin, Williams and
others (see references therein), the relevant structure is as follows. Forces are defined as
interactions for pairs of subbodies so that f(P, C) represents the force, a vector in some
inner product space, that the subbody C exerts on the subbody P. The consistency
conditions in this formulation are shown to be the following: (i) f(P,C,uC;)=
f(P,C)+f(P,C,) for separate C,, C,, and f(P,uP,,C)=f(P,C)+f(P,,C) for
separate P,, P,. (ii) The force f (P, C) for separate P and C is bounded by both the volume of
P and the area of the common boundary of P and C. (iii) The total force on each subbody
vanishes. (iv) Proving the existence of a surface force field on the basis of the previous
assumptions it is assumed that it is continuous. :

In previous works (see [2, 3]), an alternative framework for the theory of forces in
continuum mechanics was suggested. A force on a body was defined as a continuous linear
functional on a tangent space to an appropriate configuration Banach manifold. Assuming
that bodies are compact submanifolds with boundary of space, and using the axiom of
impenetrability of continuum mechanics as a guideline, it was shown that it is natural to
take the collection of differentiable embeddings of the body in space equipped with the C”
topology as the configuration manifold. Restricting ourselves for simplicity to the case
where the space is modelled by %23 and a body B is a 3-dimensional submanifold of #3, it
follows that the various tangent spaces can be identified with C'(B, #*) and that forces can



be identified with elements of the dual space C'(B, #3)*. It is shown that such forces can be
represented in the form
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where p = 1,2,3, a,, a,, a, are non-negative integers with a; + o, + a3 < r,and 6,,4,4, are
Borel measures to which we will refer as stress measures. From the construction it follows
that the collection of stress measures that represent the force f is not unique. The
representation presented in the previous equations corresponds to high-order stresses, those
appearing in rth order continuum mechanics. For the simplest case r = 1 the equation can
be rewritten as 4

Ou,

f(u)=ZJuPdUP+ Z ox dapq’
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where here, o, are measures corresponding to the components of the usual stress tensor

and o,, which are not present in usual formulations, appear in the equation because no

equilibrium hypothesis was made (i.e. if one assumes that the total force on each subbody

vanishes it follows that o, = 0). If these stress measures are given by differentiable densities

in terms of the volume measure in &, it can be easily shown that forces can be represented
_by body forces and surface forces. Since, unlike forces, stress measures can be restricted, a

given collection of Stresses ¢ ,,q,, induces a force system on B in which the force fp on a

subbody P is represented by

aa, +az+as up
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In addition to the fact that it does not require the assumption of equilibrium and permits

stresses that are irregular as Borel measures, this formulation of the theory of stresses in

continuum mechanics has the advantage that it applies in the general geometrical setting of

differentiable manifolds.

While the suggested formulation models the representation of a single force on a body by
nonunique stress measures, the aforementioned papers do not contain the appropriate
consistency conditions on a force system that guarantee that there is a collection of stress
measures that induce it in the form presented in the last equation. In this paper, it is shown
that the following conditions on the force system {fpe C"(P, #°)*; P is a subbody of B},
which are clearly necessary, imply that there is a unique collection of Borel stress measures
Oparazays P = 1,2, 3, &y + a + a3 <r, that represent it as in the last equation. (We use the
convention that the empty set is a subbody and the force on it is zero.)

(i) Additivity. If P, and P, are disjoint subbodies of B then for any ue C'(B, #°),
Jeior,(Wlp,up,) = fr,(ulp,) + fp,(ulp,).

(ii) Continuity. We recall that the set A is the limit of the sequence of sets P, if and only if
for every element x in A there is an integer i, so that x € P, for every i > iy, and every point
that is contained in an infinite number of sets in the sequence is contained in A. It is required
that if 4 € ®, where @ is the minimal field containing the open subsets of the body, and F;is a
sequence of subbodies whose limit is 4, then, for any ue C"(B, #3), the sequence fp (ulp,)
converges and its limit is independent of the particular sequence of subbodies F.

(iii) Boundedness. There is a finite bound K such that for any subbody P and any
ue C"(B, #%),
| fo(ulp)l < Kllulpll.

We note that as the traditional consistency conditions hold only for continuum mech-
anics of order one, and while it is only very recently that Noll and Virga were able to present
consistency conditions for second order continuum mechanics [4], the consistency condi-
tions presented in this paper hold for continuum mechanics of any order.



The reason why the representation of a force system by a stress is unique while the
representation of a force by stresses is not unique may be described roughly as follows.
In the expression for the representation of a given force by stress measures we know the
values of the integrals only for “compatible” collections of continuous functions Wp,,azq5>
p=1,23,a, +a, + a3 <r,ie collections for which there are differentiable functions u,
such that
a¢| ‘flz"’ﬂ;up

Hence, the measures cannot be determined uniquely. However, we can approximate any
collection W, ,,q, by a family of compatible collections such that the members of the family
are defined on a family of disjoint subbodies. If we know the force on each subbody we can
approximate the integrals for “non-compatible” collections and determine the measures
uniquely.

Section 2 discusses the approximation by subbodies of sets that belong to the minimal
field of subsets containing the open subsets. For each set 4 in the minimal field, a sequence
of subbodies whose limit is A is constructed and some useful properties of this sequence are
presented. Section 3 uses the construction of Section 2 in order to give sufficient conditions
(which are also necessary conditions) so that a real valued set function defined on the
collection of subbodies can be extended to a Borel measure. In addition to its use as a tool
for the proof of the sufficiency of the consistency conditions, this result is of some interest as
it specifies the conditions under which quantities such as electric charge can be extended to
measures if they are given for the various subbodies. Section 4 presents the consistency
conditions and proves that they are sufficient (again, these conditions are also necessary
conditions).

2. THE APPROXIMATIONS OF SETS BY BODIES

As was mentioned a body is defined as a three-dimensional compact submanifold with
boundary of #°. We now add formally the empty set to the collection of bodies. Given a
body B, a subset D of B which is a body is a subbody of B. Clearly, the complement of a
subbody in the body is not a subbody and the same holds in general for the unions and
intersections of subbodies. In this section it will be shown that although our collection of
subbodies is small, any set in the smallest field of subsets containing the open subsets of B
can be approximated by a sequence of subbodies of B. This approximation has some
additional properties that will be used in the following sections.

Proposition 2.1. For any compact subset C of #° and a bounded open subset U of R3
containing C, there is a body B which is contained in U whose interior contains C.

Proof. By a standard theorem of differential topology (see [5, p. 12]) it is possible to
construct a smooth real function h: #° — 2 with the following properties: (i) its value at any
point in C is 1; (ii) its value at any point in the complement of U is 0; and (iii) its value at any
other point is in the interval [0, 1]. By Sard’s theorem (see [6, p. 204]) any neighborhood of
the value 1/2 contains a point x such that h is not singular at any point in the inverse image
of x. From the implicit function theorem it follows that h~'({x}) is a smooth submanifold
of #° that is clearly compact and which is the boundary of A™!([x, 1]). It follows that
h~'([x,1])is a body. W

Proposition 2.2. Let D be a body, U a bounded open subset of 2% and C a closed set
contained in U. There exists a body B contained in U whose interior contains C such that
Bu D and B D are bodies.

Proof. Let us construct a body B, contained in U whose interior contains C as in the
previous proposition. In the case where U n D is empty, or D> U it follows from the
construction that B, U D and B, n D are bodies. However, in general, when the boundaries
of B, and D interest, B, U D and B, n D will not be bodies. We will modify B, so that the
modified body will have the required properties.



We recall that if X and Y are submanifolds of the differentiable manifold Z, any C*
neighborhood, r > 1, of the inclusion of X in Z contains an embedding g: X — Z which is
transversal to the inclusion of Y in Z (see [7, p. 78]). It follows that we may modify B,
slightly to obtain a diffeomorphic body B, so that the properties guaranteed by the previous
proposition still hold, and in addition, 0B, is transversal to dD. Hence, the intersection
8B, N dD is a one-dimensional submanifold of both 0B, and aD.

Next we modify B, to obtain a diffeomorphic body B so that the intersection between the
boundary of B and the boundary of D contains an open subset. In other words, the two
boundaries will overlap on an open set so that BuD and BnD are bodies. This
modification will take place in a small neighborhood of the intersection of the transversal
submanifolds dB, and dD.

In constructing the neighborhood in which the modification will take place we use the
following theorems of differential topology (see [7, pp. 109-115]).

(i) If Y is an orientable submanifold of the differentiable manifold Z of codimension one,
then, there is an embedding g: ¥ x (— 1, 1) = Z, called a tubular neighborhood of Y in Z
having the following properties: (2) gly x o) is the inclusion of Y in Z; and (b) the image of g is
an open neighborhood of ¥ in Z. We will also use the term tubular neighborhood for the
image of the mapping g, and we will identify a point in the image with the “coordinates”
given to it by g.

(ii) If Y is a neat submanifold of Z, then, there is a tubular neighborhood of Y in Z.

(iii) If Y is a neat submanifold of Z, then, every tubular neighborhood of Y in 0Z is the
intersection of Z with a tubular neighborhood of Y in Z.

We first construct tubular neighborhoods ¥, and ¥, of 8B, ndD in 0B, and in 0D,
respectively, with the convention that the parameters in ( — 1, 1) are positive in D and the
complement of B,, respectively. Next, considering the neat submanifold 0B, N D in D, we
can use theorem (iii) above to show that there is a tubular neighborhood ¥; of B, nDin D
such that ¥, = V3 n 8D, where we set the values of the parameter se( — 1, 1) to be positive
outside B,. Let

V={p=(x5s)peV, xe V,,sel0, 1)}

By definition, every point in ¥ has three coordinates (x,t,s) such that xedB; N oD,
t, se[0, 1), where t = 0 for points on 4D and s = 0 for points on 9B, . Since there is a finite
positive distance between 0B, and the complement of U, there is a number £ > Osuch thata
point in ¥ is in U if the coordinate s is less than &.

Consider the following functions:

wRo>R a(r)=0 forr<0
a(r) = exp(— 1/r) forr>0,
pR->R  B()=oalr —1&aG —r)

3/48
I B(r)dr
6 R—[0,m/2] O(t) ==

3 J‘314< B dr-

1/4¢

The function @ is smooth and has the following properties:

@) 8t = /2 ift <&/
(i) 0 < B(t) <m/2 /A<t <3Ed
(i) 8(t) =0 if t = 3¢/4.

We will now modify the portion of @B, that is a subset of V¥ (which is clearly in D) as
follows. Let g: V, — V be defined by

g(x,t) = (x,tcosB(t), tsinf(¢t)) f0<t< £,
g(x, t) =(x,1,0) otherwise.



Clearly, g is an embedding and has the following properties:

(i) Im(g)ndD = {p = g(x,t);0 < t < £/4} contains an open set of 3D,
(i) Im(g) " 0B, = {p = g(x, t); 3¢/4 < t < 1} contains an open set of 3B, ,
(iii) Im(g) is a subset of U and is disjoint from C.

In a similar way we will define a function h that will modify a neighborhood of B, N D
in 3B, N (D°)° whose image will be contained in a neighborhood of B, N 4D in B, N (D°).
(The superscript “c” denotes the complement of the corresponding set) This mapping will
have the analogous properties to those of g, i.e. it is an embedding, its image is contained in
U-C, Im(h) n 0D contains an open set of dD and Im(h) n 0B, contains an open set of 3B, .

We can define now the mapping y: 0B, — U-C by ¥(y) = g(y) i’ yedomain(g),
¥(y) = h(y) if yedomain(h) and ¥(y) = y otherwise. Clearly, ¥ is an embedding and its
image overlaps with 4D on an open set. By the Jordan-Brower Separation theorem (see [6,
p. 89]), Im(y) is a boundary of a body B and it follows from the construction that Bn D
and By D are bodies as their boundaries are smooth. M

We can now state the analog of proposition 2. for the case where both C and U are
subsets of the body B.

Proposition 2.3. If U is an open subset of the body D and C is a closed subset of D
contained in U, there is a subbody P of D contained in U whose interior contains C.

Proof. It is clear that C is closed in #° and that it is contained in an open subset V of %#°
such that "~ D = U. By proposition 2.2 we can construct a body B contained in ¥ whose
interior contains C such that BN D is a body, hence, a subbody of D which clearly has the
required properties. W

Henceforth, unless otherwise stated, we will refer by open and closed sets to open and
closed subsets of the body under consideration.

Proposition 2.4. Let ® be the smallest field of subsets containing the open subsets of a
body B. For each 4 in ® there is a sequence P, of subbodies of B such that P, — A.

Proof. 1t follows from a standard representation theorem for the members of the smallest
field containing a givcn collection of sets (see [8, p. 7]) that a subset 4 of B belongs to ® if

and only if 4 = U Ucn Cy, where U, and C, are open and closed sets, respectively, with

(UinC; )n(Ukn C,‘) = (J for j# k. Let A be a member of ® and assume that such a
representation of 4 is given.
For each k let C,; be defined by

Cu= comp( U B<-l:,X>>ﬁC;u
xeU; !

where B(d, x) denotes the open ball of radius d centered at x. Clearly, for a given i the sets
C,; are digjoint. In case all C,; = & we will set P, = ¥ and henceforth we may assume that
at least for one k, C;; # . In the case where there is only one C,; # &, we will set

= 1/2i. Otherwise, since for any given i the sets C,; are disjoint and compact there is a
number §; > 0 smaller than half the distance between any two of them and 1/2i. For each
Cu# I, let

' Us= | B, x).

x6Chi

Clearly, any U, is a subset of U,‘ and for a fixed i the sets U,; are disjoint. Using proposition
2.3 it is possible to construct for a fixed i and each k such that C. # I, a subbody PB;
contained in U,; whose interior contains C;. In case C,; = &J we just set B; = . Define

P = U Pkb Ei= U Cki'
k=1 k=1

Since the various B,; are disjoint, P, is a body.



Lemma 2.4. The sequence P, satisfies lim inf; P, = A.

Proof of lemma 2.4.1. We first note that for each k the limit of the increasing sequence C,;
is C, N U,. Clearly, each C,, is a subset of C, n U, hence their union is also a subset of
C, N Us. On the other hand, assuming that x&C, N U,, there is a minimal distance d >0
between x and U§. Choosing an i such that 1/i < d, we have

xecomp( U B(-Ii—,x ))nC,‘ =Cy

xeU;
and it follows that

We conclude that
UE|=U U Ch'= U Cank=A.
i i k=1 k=1
Since, P, o E, for each i we have lim inf, P, > lim inf,E; = A.
Lemma 2.4.2. The sequence P, satisfies A > lim sup; F.

Proof of lemma 2.4.2. Let us construct the sequence

‘ /1 \
Vei = kj ’
xeCk \* J
which is decreasing to C,. By our construction F,; is a subset of ¥, for each k and i, hence,
C, = lim sup; ¥, = lim sup; F;. On the other hand, U, o B, for each i and it follows that
U, n C; = lim sup; B;.
Assume that x ¢ A, then, for each k, x ¢ U, n C; and x ¢ lim sup; Py;. In other words, x€ F;

for a finite number of elements, say, N, elements of the sequence only. Thus, xe |} B, = P,
k=1

for a finite number of elements and hence, x ¢lim sup; F.
From lemma 2.4.1 and lemma 2.4.2, we have lim inf; P, > lim sup; B, and by the defini-
tions of the limit of the sets it follows that lim; P, = 4. W

_Corollary 2.5. Let A = \J U, Cy. Then for each k the sequence of subbodies B
k=1

constructed in the previous proposition converges to U,n C, and it has the following

property: for each & > 0 there is an N independent of k such that for each i > N and each

x€P,; there is a point in U, nC, N By whose distance from x is less than e.

Proof. This corollary follows immediately from the construction of the previous
proposition.

Proposition 2.6. If Ay, Ay,..., A, are disjoint members of ®, then, there are n
sequences of subbodies Py;, Py, . - -5 P, converging to A, Ay, ..., A, respectively, such
that for any i, Py;, Pais..., Py are mutually disjoint and the sequence of subbodies
P,= P,;uP,u...UP, converges to A,ud,u.. VA,

Proof. It is sufficient to prove the proposition for the case n = 2. Let A, and A4, be

7 JX
represented in the form 4, = U UjjnCijp Ax = U UyunCyasin proposition 2.4. We
ji=1 k=1

can represent A, U A4, in the form

J K
AU A, =[U1 Uy C,j]u[kul UunCn:'
i= =

so that we can apply to it proposition 2.4 and corollary 2.5. It follows that for each j and k
there are sequences P,; and P, of subbodies converging to U;;n Cy; and Uy N Cyy,



respectively, such that for any fixed i the various subbodies are disjoint. Hence, the
J K

sequences Py, = | J Py, Py = () Pau have the required properties. W
i=t k=1

K J
Proposition 2.7. Let A = | ) WinE,, A'= | ) ¥;n F; be members of ® represented as in
k=1

j=1
proposition 2.4 (ie. W, V; are open and E,, F; are closed) such that 4’ > 4. Then, it is
possible to represent A in the form 4 = U U; n C; such that the following conditions hold:
i=1

(i) The subsets U, are open, the subsets C; are closed and the various U; n C, are mutually
disjoint.

(i) For each i there is a unique j(i} such that Vj;, o U; and F, > C; so that

Vio 0 Figy 2 UnC,.

Proof. Define the closed sets C,; j = E, N F;and the open sets Uy; = W, n ¥;. We note that
A= U U,; 0 C,; and that the various Uy;n C,; are mutually disjoint. In addmon by the

constructlon, for each pair j, k there is a unique j(k) such that ¥}, > Uj; and F; i) > C; 80
that ¥}y N Fiyy 2 U,; N C,;. Finally, we obtain the required representation A = U UncC;

i=t

by re-enumerating the subsets U;; and C;;. W

Proposition '2.8. Let A, be a decreasing sequence of members of ®. Then, there are
sequences P,; of subbodies such that B; — A4,, and for a fixed i, B; © P+ 1y-

Proof. We first construct the sequence Py; converging to A, as in proposition 2.4.
Inductively, we construct the sequence P; on the basis of the sequence P, _ . Hence, we
assume that the sequence P, ) — A,_, has the following properties as in proposition 2.4:

N

@ A1 = U U1 N Cie=tin-

n=1

(b) P(k l)l U P(k 1)ni-

(c) For each subbody Py, _ ), we have interior (Py - 1)n;) @ Cx-1)m Where

1
Cia-1mi = comp{U B(?’ X); XecomP(U(k-x)u)}ﬁ Cik—1)n-

(d) For each subbody Py - ), We have Uy yni @ F-1)n Where
Us-1mi = U {BOw-1)i> X); X€ Cpx— 1yni }-

Using the fact that 4, _, > A, and proposition 2.7 we can represent 4, in the form 4, =

J
U U Cy; such that the following hold:

i=1
(i) The subsets U,; are open, the subsets C,; are closed and the various Uy;n C,; are

mutually disjoint.
(ii) For each j there is a unique n(j) such that Uy _ 1)n 5 @ Ui;and Cy_ ) @ Cy;50 that
U= 1m0 0 Ci=1miy 2 Ugj 0 G-

We now construct the subbody P,; such that P, _,,; © ;. For each U;;n C;; let

{ .
Cji = comp{ U B<-i-, x); xecomp(U};) }
Lemma 2.8.1. For each j there is one n(j) such that interior (P - yyu(5i) @ Cuji-

Proof of lemma 2.8.1. By (i) above Uy - yyu(j 2 U, it follows that

o [ 3L secomtt s} 2coms (st} }



hence, C - ynjyi @ Cuji- By () above interior (P - 1yn(j5i) @ Cix~1yn(j Which completes the
proof of our Lemma.

In case all C,; = & we will set B; = (J and henceforth we may assume that at least for
one j, C,; # . In the case where there is only one C,; # &, we will set §,; = 1/2i.
Otherwise, since for any given i the sets C,; are disjoint and compact there is a number
0y > 0 smaller than half the distance between any two of them and 1/2i. For each C;; #
let

Ui = interior (Py - ynpi) 0 U B8y, X).

x €Cyy

Clearly, any U,; is a subset of U;; and for a fixed i the sets U ; are disjoint. Using proposition
2.3 it is possible to construct for a fixed i and each j such that C,; # &, a subbody B
contained in U, ;; whose interior contains C, ;. In case C,;; = (J we just set F; = . Define

J J
B = U ijn Ey;= U iji'
=1 =1

Since the various subbodies P, j; are disjoint, their union B,; is a body and in addition, as
interior ( Py — yynji) @ Usji 2 PBejiitis clear that P, _ ), © B;. The proof that B; — 4, follows
from lemma 2.4.1 and lemma 24.2. W

3. THE EXTENSION OF A SET FUNCTION DEFINED ON SUBBODIES
TO A MEASURE

In the next section we will need a condition such that a set function defined over the
collection of subbodies of a given body can be extended to a unique measure. Such a
condition is of interest in general because it can be applied to various physical instances
such as mass, electric charge, etc.

Just as we formally added the empty set as a subbody, we now set formally the value of
the set function for the empty set to be zero.

Proposition 3.1. Let u be a bounded real valued set function defined on the collection of
subbodies of a body B that satisfies the following conditions:

(i) If P, and P, are disjoint subbodies, then, u(P, U P,) = u(P,) + u(P,).
(ii) If Ae® and P, — A, then, the sequence u(P,) converges and its limit is independent of
‘the particular sequence P.

Then, there is a unique Borel measure v on B such that v(P) = u(P) for all subbodies
P of B.

We will refer to the first and second conditions as additivity and continuity conditions,
respectively.

Proof. Define the real valued set function v on ® by v(A) = lim,u(P), where P, is a
sequence of subbodies whose limit is A. By proposition 2.4 v is well defined, and in addition,
it follows from the continuity assumption that for any subbody P, v(P) = u(P). To show
that v is additive, consider the disjoint sets 4, and 4, in ®. We now construct two sequences
P,; and P,; converging to A, and A,, respectively, satisfying the properties guaranteed by
proposition 2.6, so in particular, P;;nP,;=(J for a fixed i Since 4, U4, =
lim;(P,; v Py;), we have

v(d, U A4y) = limp(Py; U Py) = v(4,) + v(4,).

So far, we obtained a finitely additive set function on a field. We next show that v is
countably additive. We recall (see [9, p. 10]) that in order to prove that an additive set
function v on a field is countably additive it is sufficient to show that v is continuous from
above at the empty set, i.e. if the decreasing sequence A; converges to the empty set, then
lim;v(4;) = 0.

Lemma 3. The set function v is continuous from above at the empty set.



Proof of lemma 3.1.1. Let A4, be a sequence of sets in ® decreasing to the empty set and for
each k let B; be the sequence converging to 4, as in proposition 2.8, ie. for a fixed i,
P; © Py +1)- We now extract from the double sequence F,; a sequence P, ;) k=1,2,.. .,
as follows. For each k let N, be the integer such that for any i > N,, |v(4,) — v(B;)| < l/k.
We set i(1)= N, and we construct the sequence inductively by choosing i(k + 1) =
max{N,,,, i(k) + 1}.

We first show that for each integer n, A, o lim sup, B, ;. Let x €lim sup, B, ;4,, then, for
each k > n there are some j, j > k such that xe P, ; ;. From the construction of the double
sequence it follows that P, ;, P, ;. Hence, xeP, ;; for some j > k for each k so that
x€lim sup; P, ; ;. Since P, ;; is a subsequence of P,; it follows that x €lim sup; F,; = 4,. We
can conclude that lim sup, P, ;o) < [} 4, = & since 4, > lim sup, B, ;, for any n.

By the continuity assumption on u we have lim, u( P, ;4,) = 0. In addition, our construc-
tion implies that the sequence v(A4,) — u( B ;) converges to zero so that we conclude that
lim v(4,) = 0.

Now, the proof of the proposition follows from the fact (see [8, p. 50]) that a bounded
countably additive set function on a field, such as v in our case, can be represented as the
difference of two positive bounded countably additive set functions each of which can be
extended uniquely (see [9, p. 13]) to a positive measure on the smallest o-field containing
the original field. In our case this o-field is the collection of the Borel sets and the difference
between the two positive measures gives us the required Borel measure. MW

4. THE REPRESENTATION OF A FORCE SYSTEM BY A STRESS

Definition 4.1. A force system { fp; P is a subbody of B} is consistent if the following
conditions hold.

(@) If P, and P, are disjoint subbodies of B, then, for any ue C"(B, #3),

Sewr(ulp,op,) = fo (ulp) + fp,(ulp,).

(i) If Ae ® and P, — A, then, for any ue C"( B, #°) the sequence fp,(u|p,) converges and its
limit is independent of the particular sequence of subbodies P,.
(iii) There is a finite bound K > 0 such that for any subbody P and any ue C’"(B, #°),

| fe(ule)l < Klulpll.

We will refer to these conditions as the additivity, continuity and boundedness conditions,
respectively.

In the sequel we will use the following notation of multi-indices. Let a = («,, a,, o;),
where «, is a positive integer. We will write x* for x{'x3*x%*, |a| for o, + a; + a3, «! for
o, la,lay!, and given the real function w, we use w,, for

o“w
Ox3 Ox$0x3

We say that a function w on P is a piecewise rth order polynomial over a subbody P if the
restriction of w to any connected component is a polynomial of order r, i.e. if the restriction

is of the form Y a,x* a,eR.
_ lalsr ) ) .
In proving that a consistent force system can be represented by a unique stress, we will

need the following proposition.

Proposition 4.2. For each ue C"(B, #*) and ¢, > 0 there is a sequence of subbodies
P, — B, a sequence of piecewise rth order polynomials s;e C'(P, #3) and an integer iy such
that ifi > io, then, ||u|P‘ - S‘"pi < 80.

Proof. Let ueC'(B,#%) and &,>0 be given. Set |ufl*=u|+1, a=

min,  {inf, . g{u,.}} and b =max,  {sup, gl .}} + 1, where p=1, 2, 3, |[z] =r. We

i ; b—a & ;
choose the positive number £ and the integer V so thate = T < —2 where m is a constant
i m



depending only on r that we will specify later. We define the index A = {4,,; p=1, 2, 3,
lal <1 Ay =0,..., N—1}. Clearly, for each component 1,, of 1 we have asa+Ae<b
We also set

L = min,{g, inf, . 5{ |u|*x"}},
H' = max, {b, sup, . p{ u|I*x}},
H=L+ N

where N, is the smallest integer such that N, > (H’ — L)/e, and finally

ﬁ={ﬂuﬁ2a53}, ﬂp=0"",Nl—l-

With these definitions we have L < L + f,¢ < H.
Divide the body B into the subsets 4,, defined by
A= () {7 [a+ At a+ (A, + De)} A

r=12,3
lal<r

{x; L+ Be<full*x3r < L+(f,+ 1)e}.
By definition, if x€ A,, then for each p and a we have
a+ A8 Su,(x) <a+ (A, + g,
L+ Be<|lul*xzr <L+ (B, + 1.

Clearly, the various A,, are disjoint and their union is B. Moreover, each A4,, belongs to ®
and can be represented as the intersection of an open set and a closed set.

Using the constructions of Section 2, for each pair of indices A and B there is a sequence of
subbodies Py — A so that for a fixed i the various P, are disjoint and their union is a
subbody that we denote by P.. We choose a point y,, in each of the sets 4, and define
s,5€ C"(B, #°) by its pth component as

1
(ag)p(x) = Y ;(0 + Apa)(x — yip)"
lajsr -
Set sl,,‘eC'(Pl,,,,.?? ) by S5 = 55l Pas and the piecewise rth order polynomial
5;€C"(P, #°) by s; = Z S Xp,,,» where x4 denotes the characteristic function of the
subset A4.

We recall that

||“|pw — Sl P = sup{|u,,o(X) = (Sapi)p.a(X)|; X € Pygis lal S7,p = 1,2,3}.

By adding and subtracting u, ,(z;5(x)), a + 4,,¢ and by using the triangle inequality we
obtain for any choice of a point z;5(x)€ A,

Nulp — sl P, < SUp {la,,qo(x) — u,,.‘.(zu(X))I}

gl

+ sup {lup,a(zlp(x)) - (a + }‘pcs)‘}

X, &, p

+ sup {l(a + A,.8) — (Sag)p.a(X)N}-

X, 2, p

We now examine the terms on the right hand side of this inequality.

(i) The functions u, .| p, are uniformly continuous for each p and a. Hence, thereisa é > 0
such that |x — y| < é implies that [u, ,|p,(x) — u, ,1p,(y)| <, for each p and a. We choose
an integer i, such that i, > 1/é and it follows from corollary 2.5 that for each x€ Py, i > iy,
there is a z,5(x)€ A5 N Py With |x — 2;4(x)| < 6. Clearly, for i > i,

Sup{l“p.u(x) - up,a(zlﬂ(x))l; xePlﬂii Ial < r, p = ls 21 3} <§g

and from that corollary i, is independent of the values of A and .



(i) Since z;4(x)€ 4,5 we have by our construction
sup{iup.a(zlﬂ(x)) - (a + 'lpas)lx xep).ﬂia lal < np= , 2; 3} <eE&.

Clearly, the last inequality holds for each 4 and 8.
(iii) Consider the term

+'1P7 y=u
6 + Ayet) = (il al)] = (a+)~p¢8)—|%r(—‘(1y—_—-ﬁ(x—yw) l
_ (a+ 4,¢) _ -
=X ey T m) I
where we used e
e goan®

;u‘ld where « <y means «, <7y, for p = 1, 2, 3. By the definition of |u[|* we have

(@ + Apa) — (Sapidp.a(X)| < lull* ”Z (X — yap) ™"
< luf* Ilz: (x — z(x) + z(x) — yw)v-ai

r>a

where z(x)€ A, will be specified later. The last sum contains a finite number of binomials
raised to powers smaller or equal to r in the variables x-z and z-y,,. Let us denote the
number of all such powers by m, (r). It follows that

Y (x —z(x) + z(x) — y) ¢

lvlsr
y>a

Now, if m,(r) is the maximal number of terms in the binomial expansion for powers smaller
or equal to r and my(r) is the largest binomial coefficient for such expansions we have

Hx — z(x)) + (2(x) — yap)"™°
< my(r)my(r)sup{lx — z(x)|; 0 < |n} < r} sup{|z(x) — ypl*; 0 < Y| <7}

We can choose by corollary 2.5 an integer i, independent of 1 and f§ such that for each
x€P,g, i > i, there is a z(x)€ A3 0 Py with [x — z(x)| < ¢/||u]|*. In addition, by our
construction, for any ¥, |¥| <, [2(x) — y ¥ < &/llull*. It follows that

sup {1(a + Apa8) = (S2:)p,a(X¥)|} < 2m, (r)my(r)ms(r)e.

X, &, p
Finally, the proof of the proposition is obtained by choosing m = 2m, (r)my(r)yms(r) + 2
and choosing an i, which is greater than i, and i,, H

Corollary 4.3. Let { f»} be a consistent force system on B, then, for each ue C"(B, #°) and
go > 0, there is a sequence of subbodies P; - B, a sequence of piecewise rth order poly-
nomials s,€ C"(P, #°) and an integer i, such that if i > i, then, | fg(u) — fp,(s:)] < &.

Proof. Let ue C'(B, #°) and ¢, > 0 be given. By proposition 4.2 there is a sequence of
subbodies P, — B, a sequence of piecewise rth order polynomials 5;€C'(P,, #°) and an

integer i, such that if i > i, then, |ulp, — s;llp, < 2_10(-’ where K is the bound in definition

4.1 (iii). Using the linearity of the forces and the boundedness property we have for each
i>i
0

o uln) = Fo(sl = i fule, = 501 < Kllulp, = sillp, <2



By the continuity of the force system there is an integer i, such that if i > i, then, | fz(u) —
Sr(ulp)l < £0/2. Now, if i, is greater than i, and i, we have for each i > i,

| fa(u) —fP.(si)I < | /faw) —fp.(“lp.)| + |fp.(“[r.) "fr,(si)l < &.

Remark. We note that the sequences P, and s; depend only on u and B and do not depend
on the force system.

Proposition 44. Let { f,} and {g,} be two consistent force systems on B. Assume that
gp(s) = fp(s) for each subbody P and each piecewise rth order polynomial s on P, then,
gp = fp for each subbody P.

Proof. Assume that there is a subbody P and a ue C"(B, #°) such that gp(ulp) # fp(ulp)
and let g, = |gp(ulp) — fp(u]p)l. Since gp(s) = fp(s) for each subbody P and each piecewise
rth order polynomial s on P we have

1gp(ulp) — fe(ulp)l < |gp(ulp) —fp.(si)| + IfP.(si) — fe(ulp)l
= |gp(ulp) — gp,(s)| + [ fe.(s:) — fe(ulp)l.

Since the sequence s; is independent of the force system, by corollary 4.3 we may choose an i,
so that |gp(ulp) — gp,(s:)| < &/2 for i > i, and an i, so that lfp,(s) — folulp)l < €5/2 for
i>i;. A choice of an i, greater than both i, and i, will result in a contradiction. W

Proposition 4.5. A force system { fp} on B is consistent if and only if there is a unique
collection of bounded Borel measures {5}, p = 1, 2, 3, |a| < r that represents the force
system in the form

frw)= Y u,,do,,  ueC'(P,®%).

la|<r P
r=1,2,3

Proof. Itisclear that a force system which is represented by a collection of bounded stress
measures as in the previous representation equation is consistent. We now show that
consistency is indeed a sufficient condition for the representation. Define the functions
Uyeey € C"(B, #°) by their pth components as tg),(X) = 0,,%% p,q = 1,2,3,]a| < r, where §,,
denotes the Kronecker 8. For |a| = 0 we define the set functions u,, on the collection of
subbodies of B by p,,(P) = fp(4qlp). Clearly, the set functions u,, satisfy the conditions of
proposition 3.1 and it follows that they can be extended to Borel measures g,,, || = 0, on B.
Next we define inductively

1 1
P)=— -y —— | x*7*d
#qa( ) a!fl’(u(qa)l?) y;u (a _ y)! J; aqy
for 0 < |a| < r. Since the conditions of proposition 3.1 hold for both terms in the previous
equation, they hold for the set functions p,,, 0 < |a| < r as well, and hence, we can extend
them to the Borel measures g,,.
Construct the force system {gp} on B by

ge(w)= Y U, .do,,, ueC’(P, ®#3).
Ialsr P
p=1,2,3

It is obvious that {g,} is a consistent force system. We have

gp(Uigylp) = Z J' (t(ga))p,y 40 5y
P

lrisr
p=1,2,3

a! .
Y J.(a—y)’é‘"’x vdo,,

rsa
p=1,2,3

=alo,(P)+ )

y<e Jo (@ — y)! xa—'ddq,-



By using 0,,(P) = y,(P) and the definition of u,,, in the last line we obtain gp(uqle) =
fp(tigqp)- By the linearity of forces it follows that the force systems { fp} and {gp} have
equal values for any rth order polynomial, by the additivity of the force systems they have
equal values for any piecewise rth order polynomial and it follows from proposition 4.4 that
they are equal.

It remains to show that if {¢, ,,} and {g,,.}, P = 1,2, 3, || < r represent the force system
{fp}, then 0, ,, = 04, Let A be an arbitrary set in ® and let P, be a sequence of subbodies
converging to A. We have for |a| = 0, f5,(4p) = 01 pa( B) = 02,4 P;) for each i and p. Using
the continuity of the measures ¢, ,, and g, ,, we conclude that g, ,,(4) = 0;,,(A4) for|a| =0
and every A e ®. We recall that if two measures are equal on a field they are equal on the
minimal o-field containing it, hence, 6, ,, = 0,,, for |a| = 0. To use an induction process,
assume that o,,, = 0,,, for all |a| < ry. Again, for an arbitrary 4e®, F,—» 4 and y with
|7] = ro, we have by using the definition of u,,,

Je(tgy) = Z J; (Ugn)p.ad01pe = Z J;A (4gn)p.a 402 pa-

laf sro la| Sro
p=1,2, r=1.,2,3
Hence,
Z j (u(qv))p.adalm+ Z J (u(qy))p.rdaln
lal <ro_ JP; p=1,2,3 Jp;
»=1,2,3

= Z (4gy)p.a402pa + Z '[(u(qv))p.ydam
p=1,2,3 JpP;

|lal <ro JPi
r=1,2,3

and from the induction hypothesis it follows that o, ,,(P,) = 0,,,(P) for each i and p. Again,
the properties of measures imply that a,,, = 0,,,. H
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