where p =1, 2, 3, IXl' IX2' IXJ are non-negative integers with IXl + IX2 + IXJ ~ r, and 0-P«I(12(1J are Bore1 measures to which we will refer as stress measures. From the construction it follows that the collection of stress measures that represent the force f is not unique. The representation presented in the previous equations corresponds to high-order stresses, those appearing in rth order continuum mechanics. For the simplest case r = 1 the equation can be rewritten as . where here, 0" pq are measures corresponding to the components of the usual stress tensor and 0" p' which are not present in usual formulations, appear in the equation because no equilibrium hypothesis was made (i.e. if one assumes that the total force on each subbody vanishes it follows that 0" p = 0). If these stress measures are given by differentiable densities in terms of the volume measure in fH,3, it can be easily shown that forces can be represented '. by body forces and surface forces. Since, unlike forces, stress measures can be restricted, a given collection of stresses 0" P«1«2«3 induces a force system on B in which the force J p on a subbody p is represented by In addition to the fact that it does not require the assumption of equilibrium and permits stresses that are irregular as Borel measures, this formulation of the theory of stresses in continuum mechanics has the advantage that it applies in the general geometrical setting of differentiable manifolds.

While the suggested formulation models the representation of a single force on a body by nonunique stress measures, the aforementioned papers do not contain the appropriate consistency conditions on a force system that guarantee that there is a collection of stress measures that induce it in the form presented in the last equation. In this paper, it is shown that the following conditions on the force system {JpE cr(p, 9lJ)*; p is a subbody of B}, which are clearly necessary, imply that there is a unique collection of Borel stress measures (1pa,«2«J' p = 1, 2, 3, IXl + IX2 + IXJ ~ r, that represent it as in the last equation. (We use the convention that the empty set is a subbody and the force on it is zero.) (ii) Continuity. We recall that the set A is the limit of the sequence of sets ~ if and only if for every element x in A there is an integer io so that x E ~ for every i ~ io, and every point that is contained in an infinite number of sets in the sequence is contained in A. It is required that if A E <I>, where <I> is the minimal field containing the open subsets of the body, and ~ is a sequence of subbodies whose limit is A, then, for any u E Cr(B, f:R.3), the sequence !Pj(ulp,) converges and its limit is independent of the particular sequence of subbodies ~.

(iii) Roundedness. There is a finite bound K such that for any subbody p and any u e Cr(R, ~3), Ifp(ulp)1 < KllulplI.

We note that as the traditional consistency conditions hold only for continuum mechanics of order one, and while it is only very recently that No11 and Virga were able to present consistency conditions for second order continuum mechanics [START_REF] Noli | On Edge Interactions[END_REF], the consistency conditions presented in this paper hold for continuum mechanics of any order.

The reason why the representation of a force system by a stress is unique while the representation of a force by stresses is not unique may be described roughly as follows.

In the expression for the representation of a given force by stress measures we know the values of the integrals only for "compatible" collections of continuous functions Wp«I~2~] , p = 1, 2, 3, (Xi + (X2 + (X3 ~ r, i.e. collections for which there are differentiable functions Up such that a «I...«JU W .p p~I~I«J .oxi' Ox21ox3J .

Hence, the measures cannot be determined uniquely. However, we can approximate any collection w Pa'~2~J by a family of compatible collections such that the members of the family are defined on a family of disjoint subbodies. If we know the force on each subbody we can approximate the integrals for "non-compatible" collections and determine the measures uniquely.

Section 2 discusses the approximation by subbodies of sets that belong to the minimal field of subsets containing the open subsets. For each set A in the minimal field, a sequence of subbodies whose limit is A is constructed and some useful properties of this sequence are presented. Section 3 uses the construction of Section 2 in order to give sufficient conditions (which are also necessary conditions} so that a real valued set function defined on the collection of subbodies can be extended to a Borel measure. In addition to its use as a tool for the proof of the sufficiency of the consistency conditions, this result is of some interest as it specifies the conditions under which quantities such as electric charge can be extended to measures if they are given for the various sub bodies. Section 4 presents the consistency conditions and proves that they are sufficient (again, these conditions are also necessary conditions}.

= 2. THE APPROXIMATIONS OF SETS BY BODIES

As was mentioned a body is defined as a three-dimensional compact submanifold with boundary of ~3. We now add formally the empty set to the collection of bodies. Given a body B, a subset D of B which is a body is a sub body of B. Clearly, the complement of a subbody in the body is not a subbody and the same holds in general for the unions and intersections of subbodies. In this section it will be shown that although our collection of subbodies is small, any set in the smallest field of subsets containing the open subsets of B can be approximated by a sequence of sub bodies of B. This approximation has some additional properties that will be used in the following sections. Proof Let us construct a body B2 contained in U whose interior contains C as in the previous proposition.

In the case where U n D is empty, or D => U it follows from the construction that B2 u D and B2 n D are bodies. However, in general, when the boundaries of B2 and D interest, B2 u D and B2 n D will not be bodies. We will modify B2 so that the modified body will have the required properties.

We recall that if X and Yare submanifolds of the differentiable manifold Z, any C' neighborhood, r ~ I, of the inclusion of X in Z contains an embedding g: X-+ Z which is transversal to the inclusion of Y in Z (see [7, p. 78]). It follows that we may modify B2 slightly to obtain a diffeomorphic body B 1 so that the properties guaranteed by the previous proposition still hold, and in addition, aBl is transversal to aD. Hence, the intersection aBl ("'I aD is a one-dimensional submanifold of both aBl and aD.

Next we modify B 1 to obtain a diffeomorphic body B so that the intersection between the boundary of B and the boundary of D contains an open subset. In other words, the two boundaries will overlap on an open set so that B u D and B ("'I D are bodies. This modification will take place in a small neighborhood of the intersection of the transversal sub manifolds aBl and aD.

In constructing the' neighborhood in which the modification will take place we use the following theorems of differential topology (see [7, pp. 109-115]).

(i) If Y is an orientable submanifold of the differentiable manifold Z of codimension one, then, there is an embedding g: Y x( -1, 1) -+ Z, called a tubular neighborhood of Y in Z having the following properties: (a) glr x {0} is the inclusion of Y in Z; and (b) the image of g is an open neighborhood of Y in Z. We will also use the term tubular neighborhood for the image of the mapping g, and we will identify a point in the image with the "coordinates" given to it by g.

(ii) If Y is a neat submanifold of Z, then, there is a tubular neighborhood of Y in Z.

(iii) If Yis a neat submanifold of Z, then, every tubular neighborhood of a Y in az is the intersection of az with a tubular neighborhood of Y in z.

We first construct tubular neighborhoods V 1 and V 2 of aBl ("'I aD in aBl and in aD, respectively, with the convention that the parameters in ( -1, 1) are positive in D and the complement of B 1 , respectively. Next, considering the neat submanifold aB 1 ("'I D in D, we can use theorem (iii) above to show that there is a tubular neighborhood V 3 of aB 1 ("'I D in D such that V 2 = V 3 ("'I aD, where we set the values of the parameter s e( -1, 1) to be positive outside B 1 .Let v= {p = (X,S);pE V3,XE V1,SE[0, 1)}.

By definition, every point in V has three coordinates (x, t, s) such that x E oB 1 n oD, t, S E [0, 1), where t = 0 for points on oD and s = 0 for points on oB 1. Since there is a finite positive distance between oB 1 and the complement of U, there is a number ~ > 0 such that a point in V is in U if the coordinate s is less than ~.

.Consider the following functions:

IX: IH -+ IH 11: [H -+ [H 0: rR--+ [0, 1t/2]
The function (} is smooth and has the following properties:

(i) (}(t) = 1t/2 if t ~ ~/4 (ii) O ~ (}(t) ~ 1t/2 if~/4 ~ t ~ 3~/4 (iii) (}(t) = 0 if t ~ 3~/4.
We will now modify the portion of iJBl that is a subset of V (which is clearly in D) as follows. Let g: V 1 -+ V be defined by

g(x, t) = (x, t cos(}(t), tsin(}(t» if 0 ~ t < ~, g(x, t) = (x, t, 0) otherwise.
Clearly, 9 is an embedding and has the following properties: In a similar way we will define a function h that will modify a neighborhood of aBl ("\ aD in aBl ("\ (DO)C whose image will ge contained in a neighborhood of aBl ("\ aD in B1 ("\ (DO)C. (The superscript "c" denotes the complement of the corresponding set.) This mapping will have the analogous properties to those of g, i.e. it is an embedding, its image is contained in U-C, Im Proof of lemma 2.4.1, We first note that for each k the limit or the increasing sequence c.i is C. n u.' Clearly, each Cki i~ a subset or c. n uk hence their union is also a subset or ck n uk, On the other hand, assuming that x E Ck n Uk, there is a minimal distance d > O between x and Ut. Choosing an i such that l/i < d, we have In case all Ckji = eJ we will set Pki = eJ and henceforth we may assume that at least for one j, Ckji ;C eJ. In the case where there is only one Ckji ;C eJ, we will set <5ki = 1/2i. Otherwise, since for any given i the sets Ckji are disjoint and compact there is a number <5ki > O smaller than lialf the distance between any two of them and 1/2i. For each Ckji ;C el let Ukji = interior(~k-l)nU)i) ("I u B«5kl' X). x eC.J/ Clearly, any Utji is a subset Utj and for a fixed i the sets Utji are disjoint. Using proposition 2.3 it is possible to construct for a fixed i and each j such that Ctji ~ e5, a subbody Ptji contained in Utji whose interior contains Ctji. In case Ctji = e5 we just set Ptji = e5. Define 

THE EXTENSION OF A SET FUNCTION DEFINED ON SUBBODIES TO A MEASURE

In the next section we will need a condition such that a set function defined over the collection of subbodies of a given body can be extended to a unique measure. Such a condition is of interest in general because it can be applied to various physical instances such as mass, electric charge, etc.

Just as we formally added the empty set as a subbody, we now set formally the value of the set function for the empty set to be zero. (ii) If A E <1> and P; -.A, then, the sequence }1.( P;) converges and its limit is independent of -the particular sequence Pi.

Then, there is a unique Borel measure v on B such that v(P) = }1.(P) for all subbodies P ofB.

We will refer to the first and second conditions as additivity and continuity conditions, respectively.

Proof. Define the real valued set function v on <1> by v(A) = limi}1.(p;), where P; is a sequence of subbodies whose limit is A. By proposition 2.4 v is well defined, and in addition, it follows from the continuity assumption that for any subbody P, v(P) = }1.(P). To show that v is additive, consider the disjoint sets A1 and A2 in <1>. We now construct two sequences P1i and P2i converging to A1 and A2, respectively, satisfying the properties guaranteed by proposition 2.6, so in particular, P1inP2i = eJ for a fixed i. Since Al uA2 = limi(P1i u P2i), we have

V(Al U A2) = limjJl(Plj u P2j) = V(Al) + v(A2).
So far, we obtained a finitely additive set function on a field. We next show that v is countably additive. We recall (see [9, p. 10]) that in order to prove that an additive set function v on a field is countably additive it is sufficient to show that v is continuous from above at the empty set, i.e. if the decreasing sequence A; converges to the empty set, then limjv(Aj) = 0. The set function v is continuous from above at the empty set.

Proof of lemma 3.1.1. Let Ak be a sequence of sets in <1> decreasing to the empty set and for each k let Pki be the sequence converging to Ak as in proposition 2.8, i.e. for a fixed i, Pki::) ~k+l)i. We now extract from the double sequence Pki a sequence Pk.i(k), k = 1,2, ..., as follows. For each k let Nk be the integer such that for any i ~ Nk, I V(Ak) -V(Pki)1 < l/k. We set i(l) = Nl and we construct the sequence inductively by choosing i(k + 1) = max{Nk+l' i(k) + 1}.

We first show that for each integer n, A" ::) lim SUPkPk,i(k) o Let x E lim SUPkPk,i(k), then, for each k ~ n there are some j, j > 1<; s.uch that x E ~,i(j). From the construction of the double sequence it follows that P",i(j) ::) ~,i(j)O Hence, x E P",i(j) for some j > k for each k so that xElim SUpjP",i(j)o Since P",i(j) is a subsequence of P"i it follows that xElim SUPiP"i = A"o We can conclude that lim SUPkPk,i(k) c: n A" = 0 since A" ::) lim SUPkPk,i(k) for any n.

" By the continuity assumption on 11. we have limkl1.(Pk,i(k» = 0. In addition, our construCtion implies that the sequence V(Ak) -I1.(Pk,i(k» converges to zero so that we conclude that limk v(Ak) = 0. Now, the proof of the proposition follows from the fact (see [8, p. 50]) that abounded countably additive set function on a field, such as v in our case, can be represented as the difference of two positive bounded countably additive set functions each of which caq be extended uniquely (see [9, po 13]) to a positive measure on the smallest q-field containing the original field. In our case this q-field is the collection of the Borel sets and the difference between the two positive measures gives us the required Borel measure. . (ii) If A e <I> and P; -+ A, then, for any u e Cr(B, £R;3) the sequencefp.(ulp.) converges and its limit is independent of the particular sequence of subbodies p;.

(iii) There is a finite bound K > O such that for any sub body p and any u e cr(B, £R;3), Ifp(ulp)1 < K lIulpll.

We will refer to these conditions as the additivity, continuity and boundedness conditions, respectively.

In the sequel we will use the following notation of multi-indices. Let (X = ((Xi , a2' a3), where ap is a positive integer. We will write x~ for X~'x~2xj3, lal for a1 + (X2 + a3' a! for a1!a2!a3!' and given the real function w, we use w,~ for al~lw oxi' OX220Xj3 .

We say that a function won p is a piecewise rth order polynomial over a subbody p if the restriction of w to any connected component is a polynomial of order r, i.e. if the restriction is of the form L a«x«, a«E~.

1«1 Sr In proving that a consistent force system can be represented by a unique stress, we will need the following proposition. < eo.

depending only on r that we will specify later. We define the index). = { ).pa; p = 1, 2, 3, lal ~ r, ).,.. = 0, ..., N -1 }. Clearly, for each component ).pa of). we have a ~ a + ).,..8 < b.

We also set x.~,p

We now examine the terms on the right hand side of this inequality.

(i) The functions up,«1 P, are uniformly continuous for each p and a. Hence, there is a <5 > O such that ix -yi < <5 implies that lup.«lp,(x) -up.«lp,(Y)1 < 6, for each p and a. We choose an integer it such that it > 1/<5 and it follows from corollary 2.5 that for each x e P AfJi' i > it , there is a zAfJ(x)eAAfJ n PA,/ with ix -zA,(x)1 < <5. Clearly, for i > it.

sup{lup.«(x) -up.«(zA,(x)I; X e PA,/, lal ~ r, p = 1,2,3} < 6, and from that corollary it is independent of the values of). and po ,2, 3} < e. and choosing an io which is greater than ii and i2. . 

  be identified with elements of the dual space Cr(B, r:H,3)*. It is shown that such forces can be represented in the form f

  (i) Additivity. If Pi and P2 are disjoint subbodies of B then for any u E cr(B, rR-3), !P,UP1(ulp.UP1) =!p.(ulp.) + !Pl(ulpl).

Proposition 2 .

 2 1. For any compact subset C of rN,3 and a bounded open subset U of pA-3 containing C, there is a body B which is contained in U whose interior contains C. Proof By a standard theorem of differential topology (see [5, p. 12]) it is possible to construct a smooth real function h: ~3 -+ ~ with the following properties: (i) its value at any point in Cis 1; (ii) its value at any point in the complement of U is 0; and (iii) its value at any other point is in the interval [0, 1]. By Sard's theorem (see [6, p. 204]) any neighborhood of the value 1/2 contains a point x such that h is not singular at any point in the inverse image of x. From the implicit function theorem it follows that h-1 ( { x} ) is a smooth submanifold of ~3 that is clearly compact and which is the boundary of h-1([x,I]). It follows that h-1([x,'1]) is a body. . Proposition 2.2. Let V be a body, U a bounded open subset of £R3 and C a closed set contained in U. There exists a body B contained in U whose interior contains C such that BuD and BnD are bodies.

  (i) Im(g) ("\ aD = {p = g(x, t); O ~ t ~ ~/4} contains an open set of aD, (ii) Im(g) ("\ aBl = {p = g(x, t); 3~/4 ~ t ~ 1} contains an open set of aBl , (iii) Im(g) is a subset of U and is disjoint from C.

  (h) ("\ aD contains an open set of aD and Im{h) ("\ aBl contains an open set of aB1. We can define now the mapping 1/1: aBl -.u-c by l/I(y) = g(y) if' yEdomain(g), l/I(y) = h(y) if yEdomain(h) and l/I(y) = y otherwise. Clearly, 1/1 is an embedding and its image overlaps with aD on an open set. By the Jordan-Brower Separation theorem (see [6, p. 89]), Im(l/l) is a boundary of a body B and it follows from the construction that B ("\ D an,d B u D are bodies as their boundaries are smooth. . We can now state the analog of proposition 2. subsets of the body B. for the case where both C and U are Proposition 2.3. If U is an open subset of the body D and C is a closed subset of D contained in U, there is a subbody P of D contained in U whose interior contains C. Proof. It is clear that C is closed in £Jl3 and that it is contained in an open subset V of ~3 such that V n D = U. By proposition 2.2 we can construct a body B contained in V whose interior contains C such that B n D is a body, hence, a subbody of D which clearly has the required properties. . Henceforth, unless otherwise stated, we will refer by open and closed sets to open and closed subsets of the body under consideration. Proposition 2.4. Let <1> be the smallest field of subsets containing the open subsets of a body B. For each A in <1> there is a sequence P; of subbodies of B such that P; -+ A. Proof It follows from a standard representation theorem for the members of the smallest field containing a given collection of sets (see [8, p. 7] ) that a subset A of B belongs to <1> if n and only if A = U Ut ('1 Ct, where Ut and Ct are open and closed sets, respectively, with t=l (Uj ('1 C j) ('1 ( Ut ('1 Ct) = (25 for j # k.. Let A be a member of <1> and assume that such a representation of A is given. For each k let Cti be defined by cki=comp ( U B (~,x. x e Ut I. . where B(d, x) denotes the open ball of radius d centered at x. Clearly, for a given; the sets Cki are disjoint.In case all Cki = 0 we will set P; = 0 and henceforth we may assume that at least for one k, Cki ~ 0. In the case where there is only one Cki ~ 0, we will set 15i = 1/2;. Otherwise, since for any given; the sets Cki are disjoint and compact there is a number 15j > O smaller than half the distance between any two of them and 1/2;. For each Cki ~ 0, let Uki = U B(Oi'X). XeCk'Clearly, any Uki is a subset of Ut and for a fixed i the sets Uti are disjoint. Using proposition 2.3 it is possible to construct for a fixed i and each k such that Cti # e5, a subbody Pki contained in Uti whose interior contains Cki. In case Cki = e5 we just set Pki = e5.
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 67 U U Cki = U Ck n Uk = A. i i k=l k=l Since, ~ ::> Ei for each i we have lim infiPi ::> lim infiEi = A. Lemma 2.4.2. The sequence ~ satisfies A ~ tim SUPi~. Proof of lemma 2.4.2. Let us construct the is decreasing to Ct' By our construction Pti is a subset of ~i for each k and i, hence, Ct = lim SUPi ~i => lim SUPiPti' On the other hand, Ut => Pti for each i and it follows that Ut n Ct => lim SUpjPti' Assume that x ~ A, then, for each k, x ~ Ut n Ct and x ~ lim SUPi Pti. In other words, x E Pti " number of elements and hence, x ~ lim SUPi Pi. From lemma 2.4.1 and lemma 2.4.2, we have lim infjp; => lim SUPiP;, and by the definitions of the limit of the sets it follows that limi P; = A. . . .Corollary 2.5. Let A = U Uk ("I Ck. Then for each k the sequence of subbodies Fu k=l constructed in the previous proposition converges to Uk ("I Ck and it has the following property: for each & > O there is an N independent of k such that for each i > N and each x E Fki there is a point in Uk ("I Ck ("I Fki whose distance from x is less than &. If A l' A2, ..0 , An are disjoint members of <1>, then, there are n sequences of subbodies P1i' P2i' 00 0, Pni converging to A1, A2, 0. 0, An, respectively, such that for any i, P1i' P2i' ..0, Pni are mutually disjoint and the sequence of subbodies ~ = P 1i u P2i u ...u Pni converges to A 1 u A2 u ° ° .u An° Proof It is sufficient to prove the proposition for the case n = 2. Let Al and A2 be J K represented in the form Al = U U lj n Clj. A2 = U U 2k n C2k as in proposition 2.4. We j=l k=l can represent Al u A2 in the form so that we can apply to it proposition 2.4 and corollary 2.5. It follows that for eachj and k there are sequences p 1)i and p lki of sub bodies converging to U 1) n C 1) and U lk n Clk. respectively, such that for any fixed i the various sub bodies are disjoint. Hence, the J K sequences Pli = U P1ii, P2i = U P2k.i have the required properties. Let A = U ~ ("'I Et, A' = U ~ ("'I ~ be members of <1> represented as in t=l i=l proposition 2.4 (i.e. ~, ~ are open and Et, ~ are closed) such that A' ~ A. Then, it is 1 possible to represent A in the form A = U Ui ("'I Ci such that the following conditions hold: i= 1 (i) The subsets Uj are open, the subsets Ci are closed and the various Ui ("'I Ci are mutually disjoint. (ii) For each i there is a unique j(il such that ~(i) ~ Ui and ~(i) ~ Ci so that ~(i)("'1~(i) ~ Ui("'1Cj. Proof Define the closed sets Cti = Et ("'I ~ and the open sets Uti = ~ ("'I ~. We note that A = U Uti ("'I Cti and that the various Uti ("'I Cti are mutually disjoint. In addition, by the t.i construction, for each pair j, k there is a unique j(k) such that ~(t) ~ Uti and ~(t) ~ Cti so 1 that ~(t) ("'I ~(t) ~ Uti ("'I Cti. Finally, we obtain the required representation A = U U1 ("'I Ci i=l by re-enumerating the subsets Uti and Cti. . \ . Proposition 2.8. Let At be a decreasing sequence of members of <1>. Then, there are sequences Pti of subbodies such that Pti -+ At, and for a fixed i, Pti ~ ~t + l)i .Proof We first construct the sequence P1i converging to A1 as in proposition 2.4. Inductively, we construct the sequence Pti on the basis of the sequence ~t-1)i .Hence, we assume that the sequence ~t-1)i -+ At -1 has the following properties as in proposition 2.4: N (a) At-1 = U U\t-1)lInC\t-1)1I. 11=1 N (b) ~t-1)i= U ~t-1)lIi. 11=1 (c) For each sub body P(t-1)lIi we have interior (~t-1)lIi) => C(t-1)lIi where C\t-1)lIi = comp { V B( }, x); x ecomp(U(t-1)1I) } n C\t-1)1I . (d) For each subbody ~t-l)lIi we have U(t-l)lIi ~ ~t-l)lIi where Vjt-ol)lIi = U {B(c5(t-l)i'x);xeC(t-l)lIi}. x Using the fact that At-l ~ At and proposition 2.7 we can represent At in the form At = J U Uti n Cti such that the following hold: The subsets Ukj are open, the subsets Ckj are closed and the various Ukj n Ckj are mutually disjoint. (ii) For eachj there is a unique nU) such that U(k-l),,(J1 ~ Ukj and C(k-l),,(J1 ~ Ckj so that U(k-l),,(J1nC(k-l),,(J1~ UkjnCkj. We now construct the subbody Pki such that ~k-l)i ~ Pki. For each Ukjn Ckj let Ckjl = comp{ V B( ~, x); xEcomp(UkJ Lemma 2.8.1. For each j there is one nU) such that interior (~k-l),,(J1i) ~ Ckjl. Proof of lemma 2.8.1. By (ii) above U(k-l),,(J1 ~ Ukj' it follows that 'U B (~,X ); xECOmp(U(k-l),,)-~ comp-U B (~, x' (k-l)n(j)i :) Ckji. By (C) above interior (~k-l)n(j)J :) C(k-l)n(J)i which completes the proof of our Lemma.

  subbodies Ptji are disjoint, their union Pti is a body and in addition, as interior ( f(t-l)I1(j)i) ~ Utji ~ Ptji it is clear that f(t-l)i ~ Pti. The proof that Pti -.At follows from lemma 2.4.1 and lemma 2.4.2. .

Proposition 3 .

 3 1. Let}1. be a bounded real valued set function defined on the collection of subbodies of a body B that satisfies the following conditions: (i) If P1 and P2 are disjoint subbodies, then, }1.(P1 u P2) = }1.(P1) + }1.(P2).

  4. THE REPRESENTATION OF A FORCE SYSTEM BY A STRESSDefinition 4.1. A force system {fp; p is a subbody of B} is consistent if the following conditions hold. (i) If Pi and P2 are disjoint subbodies of B, then, for any u e cr(B, i:R3), fp,UP2(ulp,UP2) = fp,(ulp,) + fp2(ulp2).

Proposition 4 . 2 .

 42 For each u E C'(B, 9l3) and eo > O there is a sequence of subbodies Pi -+B, a sequence ofpiecewise rth order polynomials SjEC'(P;, 9l3) and an integer io such that ifi > io, then, lIulp. -sjllp.

L

  = mina{a, infxe B{ II U 11*xa} }, Hi = maxa{b,SUPxeB{Ilull*xa}}, H=L+N1e, where N 1 is the smallest integer such that N1 > (H' -L)/e, and finally P={P1'P2'P3}' Pp=O,...,N1-1. With these definItions we have L ~ L + ppe < H. Divide the body B into the subsets AJ.~ defined by AJ.~ = n { ( Up,«)-l [a + A.plle, a + (A.pII + l)e) } ("\ p= 1,2,3 1«1 Sr {x;L + ppe ~ Ilull.x~p < L + (Pp + l)e}. By definition, if x E AJ.~ then for each p and a we have a + A.p«e ~ up,«(x) < a + (A.pII + l)e, L + ppe ~ lIull.x~p < L + (Pp + l)e. Clearly, the various AJ.~ are disjoint and their union is B. Moreover, each AJ.~ belongs to <1> and can be represented as the intersection of an open set and a closed set. Using the constructions of Section 2, for each pair of indices A. and P there is a sequence of subbodies PJ.~I-+ AJ.~ so that for a fixed i the various PJ.~I are disjoint and their union is a subbody that we denote by Po. We choose a point YJ.~ in each of the sets AJ.~ and define SJ.~ECr(B,I!I-3) by its pth component as (SAP)p(X) = L -;(a + ).p~6)(X -YAP)~. I~I S r a. Set SAPieCr(pAPi'fR,3) by SAPi=SAPlp and the piece wise rth order polynomial SieCr(~, !:l3) by Si = L SAPXPA"' whe;~ XA denotes the characteristic function of the A.P subset A. We recall that I!u!p!" -SJ.p;llp!" = sup{lup.~(x) -(SJ.pJp.~(X)!; xePJ.p;, la! ~ r, p = 1, 2, 3}. By adding and subtracting up.~(zJ.p(x)), a + ).pa6 and by using the triangle inequality we obtain for any choice ofa point zJ.p(x)eAJ.p, lIulp, ." -SAPillpll' ~ Sup {lup,~(x) -Up,~(ZAP(x»I} X,~,p + Sup {IUp.~(ZAP(X» -(a + ).p«6)1} X,~,p + Sup {I(a + ).p~6) -(SAPi)P,~(x)I}.

(

  ii) Since zAP(x)eAAP we have by our construction sup{IUp,«(ZAP(X» -(a + ).pcze)l; xePAPi' lal :s; r, p = Clearly, the last inequality holds for each). and p. Jw.« (1'-!1),X and .where !1 ~ I' means !1p ~ I' p for p = I, 2, 3. By the definition of II u II * we have , ~ ml (r) max ix -z(x) + z(x) -YJ.pi7-« .

  + A.pae) -(s..Pi)p,«(x)1 ~ lIull* I L (x -Y..p)Y-' z(x) + z(x) -Y..p)Y-' Iy\sr y>« I where z(x)eA..p will be specified later. The last sum contains a finite number of binomials raised to powers smaller or equal to r in the variables x-z and z-Y..p. Let us denote the number of all such powers by m1(r). It follows that I L (x-z(x) + z(x) -Y..p)Y-~ I Iyl sr y>« Now, ifm2(r) is the maximal number of terms in the binomial expansion for powers smaller or equal to r and m3(r) is the largest binomial coefficient for such expansions we have I(x -z(x)) + (z(x) -Y..p)IY-« ~ m2(r)m3(r)sup{lx -z(x)I"; 0 ~ 1111 ~ r} sup{lz(x) -Y..pl~; O ~ 11/11 ~ r}. We can choose by corollary 2.5 an integer i2 independent of A. and p such that for each xePAP" i> i2 there is a z(x)eA..pf"'lPAPj with ix -z(x)1 ~ e/llull*. In addition, by our construction, for any 1/1,11/11 ~ r,lz(x) -YAPI~ ~ e/llull*. It follows that sup {I(a + A.pae) -(s..Pi)p.«(x)l} ~ 2m1(r)m2(r)m3(r)e. x.«.p Finally, the proof of the proposition is obtained by choosing m = 2ml (r)m2(r)m3(r) + 2

Corollary 4 . 3 .

 43 Let {fp } be a consistent force system on B, then, for each u E cr(B, rR,3) and &0 > 0, there is a sequence of subbodies ~ -+ B, a sequence of piecewise rth order polynomials SiECr(Pj, rH.3) and an integer io such that if i> io, then, IfB(U) -fp,(sj)1 < &0. Proof Let ueCr(B,gl3) and eo > O be given. By proposition 4.2 there is a sequence of sub bodies ~ -+ B, a sequence of piecewise rth order polynomials Si e cr(Pj, ~3) and an integer i1 such that if i > i1 then, lIulp. -sjllp. < !!!-, where K is the bound in definition 2K 4.1 (iii). Using the linearity of the forces and the boundedness property we have for each i > i1 eo I!p.(ulp.) -!p.(Sj)1 = I!p.(ulp. -s.)1 < Kllulp. -sjllp. < 2.= I L (a + A.pye)
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By the continuity of the force system there is an integer i2 such that if i > i2 then, IfB(U)fp,(ulp,)1 < £0/2. Now, if io is greater than ii and i2 we have for each i > io Since the sequence Si is independent of the force system, by corollary 4.3 we may choose an i, so that Igp(ulp) -gp,(si)1 < eo/2 for i > i, and an if so that IJp.(Si) -Jp(ulp)1 < eo/2 for i > i f .A choice of an io greater than both i f and i, will result in a contradiction. . 1«I:sr Jp p=1.2.3 Proof It is clear that a force system which is represented by a collection of bounded stress measures as in the previous representation equation is consistent. We now show that consistency is indeed a sufficient condition for the representation. Define the functions u(q«J e cr(B, !N-3) by their pth components as u(q«)p(x) = 15qpx«, p, q = 1,2,3, lal < r, where 15qp denotes the Kronecker 15. For lal = ° we define the set functions Jlq« on the collection of subbodies of B by Jlq«(P) = fp(u(q«Jlp). Clearly, the set functions Jlq« satisfy the conditions of proposition 3.1 and it follows that they can be extended to Borel measures (Jq«, lal = 0, on B. It is obvious that. {g,. } is a consistent force system. We have g,.(u(q«)I,.) = L r (u(q«»)"ydO',y

Next we define inductively

Iyl ~r jp ,=1,2.3 By using aq«(P) = Jl.q«(P) and the definition of Jl.q«, in the last line we obtain gp(u(q«)lp) = fp(u(q«)Ip). By the linearity of forces it follows that the force systems {fp} and {gp} have equal values for any rth order polynomial, by the additivity of the force systems they have equal values for any piecewise rth order polynomial and it follows from proposition 4.4 that they are equal.

It remains to show that if { a tP«} and { a 2p1J }, p = 1, 2, 3,lal ~ r represent the force system {fp}, then alp« = a2p1J. Let A bea? arbitrary set in <1> and let P; be a sequence ofsubbodies converging to A. We have for lril ~ O,fp/(u(pIJ)) = alplJ(p;) = a2p1J(p;) for each i and p. Using the continuity of the measures a1plJ and a2p1J we conclude that alplJ(A) = a2p1J(A) for lal = °and every A e <I>. We recall that if two measures are equal on a field they are equal on the minimal a-field containing it, hence, alplJ = a2p1J for lal = 0. To use an induction process, assume that alplJ = a2p1J for alllal < ro. Again, for an arbitrary A E <I>, P; -+ A and y with Iyl = ro, we have by using the definition of u(p«),