
HAL Id: hal-01064919
https://hal.science/hal-01064919

Submitted on 23 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Domain Ontology for Software Process Architecture
Description

Fadila Aoussat, Mourad Chabane Oussalah, Mohamed Ahmed-Nacer

To cite this version:
Fadila Aoussat, Mourad Chabane Oussalah, Mohamed Ahmed-Nacer. A Domain Ontology for Soft-
ware Process Architecture Description. 7th International Conference on Evaluation of Novel Software
Approaches to Software Engineering, Jun 2012, wroclaw, Poland. �hal-01064919�

https://hal.science/hal-01064919
https://hal.archives-ouvertes.fr

A Domain Ontology for Software Process Architecture Description

Fadila Aoussat1, Mourad Oussalah1 and Mohamed Ahmed-Nacer2

1LINA Laboratoy, University of Nantes, CNRS UMR 6241, 2, Rue de la Houssinière
BP 92208, 44322, Nantes, France.

2LSI Laboratory, Sciences and Technology Houari Boumediene
University, BP 32, Bab Ezzouar, Algeria.

Fadila.Aoussat, Mourad.Oussalah@univ-nantes.fr, Anacer@cerist.mail.dz

Keywords: software process reusing, software architectures principles, domain ontology, Software and Systems Process
Engineering Metamodel (SPEM), heterogeneous knowledge, ontology instantiation.

Abstract: This paper presents a part of an approach for software processes reuse based on software architectures. This
solution is proposed after the study of existing work on software process reuse field. Our study focuses on
approaches for reusing based on software architectures and domain ontology.
AoSP (Architecture oriented Software Process) approach exploits the progress of two research fields that
promote reusing for the Software process reusing: Ontology and software architectures.
This article details how the software process architectures are described and discusses the software process
ontology conceptualization and instantiation.

1 INTRODUCTION

The quality of the software product depends on the
quality of the software process models that is used for
the development and the maintenance of this software
product. Software Process (SP) models are complex
structures used to define the steps performed during
the software development. Many kinds of information
must be integrated to describe these steps (resources,
roles, input and output products...). Therefore, an im-
portant number of concepts, paradigms and languages
are developed to cover the different development as-
pects. However, there are always difficulties to model
SPs that deal with the software development preoccu-
pations such as understandability, flexibility and dy-
namicity.

Reuse SPs, is one of the practices used to improve
SPs. The objective is to exploit best practices and
know-how capitalized from the precedent SP model-
ing and execution experiments. However, the diver-
sity and the wide range of SP models make SP model
reusing very difficult. A number of studies are being
conducted nowadays in order to provide better sup-
port regarding SP reuse. Unfortunately, no reusing
method has emerged as reference in the SP reusing
domain.

In order to suggest a solution to cover engineer-
ing ”by” reusing SPs, we focus our researches on SP
reuse approaches based on software architectures. We

think that the reusability, flexibility and abstraction of
software architecture are relevant characteristics that
can be used to provide a pertinent reusing approach to
model high quality SP models.

Moreover, In order to cover the engineering ”for”
reusing SPs, we focus our researches on SP reuse ap-
proaches based on domain ontology. Our aim is to
share common understanding among Stakeholder by
capitalizing the best practices of the SP domain. We
think that using a domain ontology can manage not
only the heterogeneity of the used concepts, but also
the heterogeneity of the used terminology.

This paper presents a part of an approach for
reusing SPs: AoSP (Architecture oriented Software
Process); this approach focuses on the existing ap-
proaches insufficiencies and suggests a pertinent so-
lution to reuse SP models. AoSP exploits software
architectures principles to model reusable SPs. It de-
scribes and deploys SP architectures. On the other
hand, to reuse existing SP models, AoSP exploits a
domain ontology to capitalize the pertinent know-how
extracted from heterogeneous SP models. Our objec-
tive is to:

• Suggest a generic solution: that can be applied for
different kinds of SP models.

• Increase the SP quality: we aim to model SPs that
have the essential characteristics such as compre-
hension, modeling and analyzing facilities, agility

and execution control.

• Increase the SP reusing: by exploiting the prece-
dent SP modeling and enactment experiences.

• Increase the SP re-usability: by modeling reusable
SP models and handling SP models complexity.
Our article is organized as follows: section-2-

summarizes the insufficiencies of the studied reusing
approaches. Section-3- presents AoSP approach and
the steps to model reusable SPs. AoSP describes SP
architectures, thus, Section-4- provides the adopted
semantics to describe SP architectures. Section-5- de-
tails how our domain SP ontology is designed and
generated. To allow describing SP architectures, our
ontology must capitalize deferent kinds of knowl-
edge, section-6- details how heterogeneous SP knowl-
edge are capitalized. Section -7- concludes the article
and announces the future work.

2 INSUFFICIENCIES OF THE
APPROACHES FOR REUSING
SOFTWARE PROCESSES

2.1 Insufficiencies of the Reusing
Approaches Based on Software
Architectures

In most reusing approaches based on components
(Coulette et al., 2000) (Dai et al., 2008) the central
concept is the ”Process Component”. A SP compo-
nent in an activity (Works Unit) or an activities se-
quence. SP Component is explicit in most approaches
and can be adapted to be reused except for (Dai et al.,
2008) where the SP component is considered as black
box components and cannot be modified. In general
the SP component interface is the Work Product re-
quired or given by the SP component (OMG-SPEM,
2008).

The configuration is used in the approaches based
on software architectures (Alloui and Oquendo, 2001)
(Choi and Scacchi, 2001), however formal rules that
describe the assembling of the SP component are not
defined explicitly.

For the connector concept there is no consensus
on its interpretation (Aoussat et al., 2011), the idea
that emerges is that the connector is a dependency be-
tween activities, it can be a precedence link or a del-
egation link, which often depends on the used PML
(Process Modeling Language). Each approach de-
fines its own SP connector vision.

We resume the insufficiencies of these approaches
as follows:

• Limited reuse: The reusable elements such as SP
Component, SP connector are defined to the inter-
nal use.

• Under exploitation of architectural elements:
Configuration and assembling constraints are
not exploited; architectural styles and explicit
reusable connectors are not proposed.

• No general solution: Every approach deals with a
particular problem and uses a particular PML.

• No SP architecture deployment: No process de-
ployment is proposed.

2.2 Insufficiencies of the Reusing
Approaches Based on Domain
Ontlogy

Appoach objective Ontology
OnSSPKR
Framework
(He et al.,
2007)

Deal with
CMM, CMMI,
ISO/IEC15504,
ISO9001 models.

Three different
ontologies

SPO (Software
Process On-
tologie)(Liao
et al., 2005)

Mapping between
CMMI model
and the ISO/IEC
15504 model

SP basic con-
cepts

PCE based
ontology (To-
mohiko et al.,
1996)

Generate SP plans Two ontolo-
gies (artifacts
and activities)

Approach
based de-
scriptive logic
(Rilling et al.,
2007)

Framework for
software mainte-
nance

Concepts
that affect
the software
maintenance

Flexible PML
based ontology
(Shen and
Chen, 2006)

Flexible SP model Process ele-
ments

Table 1: Approaches for reusing SPs based on domain on-
tology.

To suggest a domain ontology one of the first steps
is to study the existing ones and consider there exten-
sion, fusion, adaptation or reuse.

Many SP modeling approach based on domain
ontology are defined (He et al., 2007)(Liao et al.,
2005)these approaches use one or many ontologies to
represent the SP model. However these solutions are
specific and deal with particular SP models and do not
suggest a general solution that can applied for a large
range of SPs.

Table- 1- resumes the objectives and the ontolo-
gies structures of the studied approaches.

3 AOSP APPROACH
DESCRIPTION

AoSP (Architecture oriented Software Process)
approach is an approach that gives a solution to in-
crease the SPs reuse. AoSP covers the engineering
for and by reusing:
• For reusing: By capitalizing the SP best practices

and know-how extracted from existing SP models.
• By reusing: By describing and deploying the ex-

tracted software processes knowledge as software
architectures.
According to software architectures specificities,

AoSP suggests a particular SP modeling approach:
SP modeling is decomposed of two steps:
• Pre modeling: Model the different SP preoccupa-

tions separately (structure, interaction and treat-
ment). This step increases SP model comprehen-
sion and has a direct impact on SP modeling, an-
alyzing and execution control facility.

• Final modeling: Deploy the SP architecture that
can be done with different PMLs specific to differ-
ent SP kinds. The deployment must be in an auto-
matic way by developing deployment programs.
This possibility gives to our approach a generic
aspect and increases the modeling facility.

4 SOFTWARE PROCESS
ARCHITECTURE
DESCRIPTION

Based on existing SP reusing approaches insuffi-
ciencies, combining with ADL (Architecture Descrip-
tion Language) approaches, AoSP approach suggests
a complete semantic to describe and deploy SP archi-
tectures.

Our objective is to describe the SP model as soft-
ware architecture and exploit the advantages offered
by the software architecture domain. The interac-
tions have a central place in the SP model (Alloui and
Oquendo, 2001), moreover, the SP is human centered;
thus, it is important to manage the different kinds of
the SP interactions. Our analysis is oriented to give
a solution to handle the different kinds of SP interac-
tions. Defining generic explicit reusable SP connec-
tors that can adapt and facilitate the SP interactions is
the adopted solution.

Software Process Concepts. SP architectural
concepts.

Activity that creates new prod-
ucts.

SP Component

Input or output flow of a cre-
ation Activity .

SP Port (given or
required)

Activity that adapts or con-
troles the flow.

SP Connector

Input or output flow of an adap-
tation Activity .

SP Connector
Role

Precedence link between a cre-
ation Activity and an adaptation
Activity.

Attachement

Delegation link between two ac-
tivities (adaptation or creation).

Binding

Process structure. SP Configuration
Recurrent structure or recurrent
execution policy.

SP style

Table 2: Adopted semantics for Architecture oriented Soft-
ware Process (AoSP) approach.

We define our SP connector as an activity (Work
Unit) that ”facilitate and control” data and control
transmissions between SP activities. SP Connec-
tors do not create new products, but adapt, evalu-
ate and control existing products. The distinction
between ”creation” activities (SP components) and
”adaptation and control” Activities (SP connectors) is
the basis of the SP architectural concepts interpreta-
tion. Table–2 resumes the architectural intrperation
for SPs.

5 SOFTWARE PROCESS
DOMAIN ONTOLOGY

To capitalize the SP knowledge we use a domain
ontology, in addition, our aim is to offer a tool to will
allow the reasoning and the emergence of new solu-
tions. Thus our ontology must:

• Be coherent, not ambiguous and commonly ac-
cepted.

• Offer a conceptualization to store and retrieve SP
architectures knowledge.

• Manage the heterogeneity of the conceptual of the
different SPs: offer a conceptualization that can
be exploited for different SP models, without fo-
cusing on a particular SP kind.

• Manage the heterogeneity at the instance level:
Capitalize knowledge from various SP models can

create ambiguities, indeed, even if there is consen-
sus on the used terminology for SP modeling, the
developers can use their own vocabulary.

• Restore a comprehensible knowledge A vocabu-
lary reference that represents the vocabulary of the
final user must be defined and stored.

5.1 Software Process Ontology
Conceptualization

Heterogeneity on the concept level is handled by ex-
ploiting the SPEM conceptualization. SPEM (System
and Software Process Engineering Metamodel) is a
UML profile adopted by the OMG to describe large
range system and software processes (OMG-SPEM,
2008). We adopt SPEM as basic conceptualization as
it is a standard metamodel accepted by the commu-
nity, it regroups all the important concepts used on the
SP engineering independently from the kind or a con-
cerned domain. The majority of the SP models are
conform to the SPEM, or at least, their metamodels
can be mapped with SPEM.

SPEM introduces the reusing based process com-
ponents through the Method Plugin profile; however,
to describe SP architectures, SPEM lacks important
architectural concepts. In fact, the lack of ”SP Con-
figuration”, ”SP Style” and ”explicit Connector” con-
cepts disallow describing and deploying SP architec-
tures (Aoussat et al., 2011). Having a complete se-
mantic to describe a SP architecture, we had extended
Method Plugin profile, for this purpose, we had intro-
duced new stereotypes to describe the architectural el-
ements of the SP architectures (Aoussat et al., 2011).

SPEM profile extension is not the subject of the ar-
ticle, we resumes only the architectural elements that
describe SP architectures integrated on SPEM. Thus,
two kinds of classes are added:

• Classes that describes the SP architecture: A SP
Configuration is composed from SP Components
and SP Connectors. the assembling is done via
attachments.

• Classes that describes the SP style: the SP style is
composed of Activity Definitions. As SP compo-
nent and SP connector are activities, an Activity
Definition describes the type of the SP connector
and the SP component. In the same manner, Work
Product Definition describes the types of SP ports
and the types of SP connector roles.

5.2 SPEMOntology Structure

SPEMOntology is the result of successive ATL
transformations applyed on SPEM. It is consti-

tute from 56 concepts and an important number
of data and object properties. In order to facili-
tate its understanding, it is important to describe
its organization. SPEM is structured into seven
packages (OMG-SPEM, 2008). By analyzing the
SPEM packages (after the extension), we notice
that every SPEM package has its abstract class
that regroups the common behavior of the pack-
ages classes.

Figure 1: Main abstract SPEMOntology concepts.

After the ATL transformations we can identify
this organization (figure -2-). The SPEM pack-
ages view can be identified through the main ab-
stract concepts of SPEMOntology. The concepts
of our ontology have kept the same name as the
SPEM classes; however, we have added the pre-
fix ”pro” to identify the stereotyped elements.
This prefix is added during the execution of ”ap-
plySPEMprofile2SPEMmodel” module.

6 SPEMONTOLOGY
INSTANTIATION

The concepts heterogeneity finds solution by ex-
ploiting a standard metamodel. The heterogeneity
at instance level deals with separating every kind
of knowledge. Indeed, our ontology must store
four kinds of knowledge:

– The SP architecture knowledge: The knowl-
edge concerns SP configuration and SP styles.

– The used knowledge: The knowledge concerns
the know-how of existing SP models:

– The reference vocabulary: The knowledge con-
cerns the vocabulary used by the final stake-
holders.

– The instance heterogeneity management: our
ontology must manage the heterogeneous vo-
cabulary.

Our ontology respects SPEM metamodel concep-
tualization and has the same packages structure.
We exploit this structure to deal with the instance
heterogeneity. Every SPEM package is used to
store a kind of knowledge. We detail the adopted
solution in the next paragraphs.

6.1 The SP Architectures Knowledge
Capitalization

The SP expert stores the SP configurations and the
SP styles of the company. This step is very impor-
tant as it allows describing formally the company
development strategies and practices.
The instantiation is done on the Process Architec-
tural Element concepts that describe the SP con-
figuration behavior and the SP style knowledge is
capitalized by using the Method Content architec-
tural concepts (figure-3-).This step is done man-
ually by a SP expert of the company. However,
the advantage is that it is done once and it will be
reused independently from the SP expert interven-
tion.

Figure 2: SP architectural concepts of SPEMOntology.

6.2 The Used Knowledge
Capitalization

We instantiate the concepts of ”Process with
Method” and ”Process Structure” packages. We

use these concepts to capitalize the used knowhow
that are collected from the existing SP models.
This step is done automatically; we apply a re-
verse engineering on every SP model that will be
reused. For each PML we develop an instantiation
program that identifies the pertinent concepts and
allows the extraction of the pertinent knowledge.

6.3 The Reference Vocabulary
Capitalization

In SPEM the ”Method Content” package is dedi-
cated to describe development methods indepen-
dently from their use (OMG-SPEM, 2008). We
use these concepts, to describe the vocabulary ref-
erence.
The Method content concepts are solicited to de-
scribe many kinds of knowledge: Method Con-
tent Elements, Vocabulary Reference and Archi-
tectural Types. To distinguish between these kinds
of knowledge, for each Method Content concept
we add a data type property ”concept role” that
can have the next values: ”MC” for method con-
tent knowledge, ”VR” for vocabulary reference
and ”AT” for architectural type.
The weakness of this step is that the instantiation
is done manually.
However, the advantage of this manual step is
that allow to define ”formally” the glossary of the
company. It allows not only a better comprehen-
sion of the SP models, but also, constitutes a con-
tribution to capitalize company know-how, that
will be used and reused formally independently
from the SP experts and its tacit knowledge.

6.4 The Correspondence Between
the Vocabulary Reference and the
Used Knowledge

This correspondence is done by using existing as-
sociations between Method Content Concepts and
Process With Method concepts, these associations
are used to define the correspondence between the
Used Knowledge and the Reference Vocabulary.

7 Conclusion

This paper presents a partial view of AoSP (Ar-
chitecture oriented software Process) approach to

reuse SP models. The objective of AoSP is to sug-
gest a standard solution to increase the reuse and
the reusability of the SP models.
AoSP offers an innovative vision of the SP mod-
eling by separating the SP modeling preoccupa-
tions: Work Product treatments (Components),
Work Product transmissions (Data Flow connec-
tors) and execution control (Control Flow con-
nectors). This new vision is possible by exploit-
ing software architectures characteristics; it al-
lows modeling more comprehensible, flexible and
controllable SP models.
On the other hand, AoSP exploits the prece-
dent good modeling and enactment experiments
to model high quality SP models. AoSP uses a
domain ontology to capitalize the best practices
of the software development domain. It exploits
the capitalized knowledge to retrieve and deploy
SP architectures.
The ontology conceptualization is discussed, it
is based on SPEM; however, SPEM architec-
tural concepts disallow describing SP architec-
tures,thus, we had extended SPEM metamodel by
introducing the required architectural concepts.
The ontology was generated by transformation
model techniques; to achieve this aim, we use
ATL (Atlantique Transformation Language).
SPEMOntology must store different kinds of
knowledge: The used know-how, the SP architec-
ture knowledge and a reference vocabulary, in ad-
dition, it must do a correspondence between these
kinds of knowledge. To this aim, we exploit the
SPEM structure (organized into packages) to store
separately these kinds of knowledge. We add ad-
equate properties to have to keep the knowledge
coherence.
Actually we are working on defining inference
rules to infer tow kinds of knowledge: ”equiva-
lent SP configuration” to identify the SP config-
urations that can replace the required configura-
tion and ”equivalent SP components” to identify
the components that can replace the required SP
component. We are also working on retrieving SP
architectures, the hole algorithm is defined, good
results are obtained but must refined before their
publishing.

REFERENCES

Alloui, I. and Oquendo, F. (2001). Supporting de-
centralised software-intensive processes us-
ing zeta component-based architecture de-

scription language. In ICEIS, pages 207–
215.

Aoussat, F., Oussalah, M., and Nacer, M. A.
(2011). Spem extension with software pro-
cess architectural concepts. Computer Soft-
ware and Applications Conference, 0:215–
223.

Choi, S. J. and Scacchi, W. (2001). Modeling
and simulating software acquisition process
architectures. Journal of Systems and Soft-
ware, 59(3):343–354.

Coulette, B., Thu, T. D., Crgut, X., and Thuy, D.
T. B. (2000). Rhodes, a process component
centered software engineering environment.
In ICEIS, pages 253–260.

Dai, F., Li, T., Zhao, N., Yu, Y., and Huang, B.
(2008). Evolution process component com-
position based on process architecture. In In-
ternational Symposium on Intelligent Infor-
mation Technology Application Workshops,
pages 1097–1100.

He, J., Yan, H., Liu, C., and Jin, M.
(2007). A framework of ontology-
supported knowledge representation in
software process. http://www.atlantis-
press.com/php/download paper.php?id=1180.

Liao, L., Qu, Y., and Leung, H. K. N. (2005).
A software process ontology and its applica-
tion. In Workshop on Semantic Web Enabled
Software Engineering(SWESE).

OMG-SPEM (2008). SPEM:Software
Systems Process Engineering Meta-
model, v2.0. http://www.omg.org/cgi-
bin/doc?Formal/2008-04-01.

Rilling, J., Zhang, Y., Meng, W. J., Witte, R.,
Haarslev, V., and Charland, P. (2007). A Uni-
fied Ontology-Based Process Model for Soft-
ware Maintenance and Comprehension. In
Models in Software Engineering: Workshops
at MoDELS, volume 4364, pages 56–65.

Shen, B. and Chen, C. (2006). The design of
a flexible software process language. In
SPW/ProSim, pages 186–194.

Tomohiko, K. M., Mori, K., and Shiozawa, T.
(1996). Process-centered software engineer-
ing environment using process and object on-
tologies. In the Second Joint Conference
on KnowledgeBased Software Engineering,
pages 226–229.

