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In the present work, applying the asymptotic homogenization method (AHM), the derivation of the
antiplane effective properties for three-phase magneto-electro-elastic fiber unidirectional reinforced
composite with parallelogram cell symmetry is reported. Closed analytical expressions for the antiplane
local problems on the periodic cell and the corresponding effective coefficients are provided. Matrix and
inclusions materials belong to symmetry class 6mm. Numerical results are reported and compared with
the eigenfunction expansion-variational method (EEVM) and other theoretical models. Good agreements
are found for these comparisons. In addition, with the herein implemented solution, it is possible to
reproduce the effective properties of the reduced cases such as piezoelectric or elastic composites obtain-

ing good agreements with previous reports.

1. Introduction

Nowadays, one of the technological challenges is to build up
better devices and structures that satisfy the new useful emergent
technologies for getting a higher development of the mankind. In
this sense, the creation of new materials is an important purpose
for researchers and scientists. In this line, composite materials
can potentially contribute to the search of novel materials by direct
engineering of their microstructure (Jiang et al., 2004).

Magnetoelectroelastic composites is a successful case of the
man-made materials, since Van Suchtelen (1972) proposed that
the combination of piezoelectric-piezomagnetic phases may
exhibit a new material property -the magnetoelectric coupling
effect- caused by “product properties”; that is, a polarization
response to an applied magnetic field, or conversely, a magnetiza-
tion response to an applied electric field, through the elastic strain,
(Landau and Lifshitz, 1960) showing a full coupling among
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magnetic, electric and mechanical fields. Because of the finding
of this coupling phenomenon in a variety of microstructures and
its relation to macroscopic properties several researchers have
focused their attentions on this topic (Bichurin et al., 2003a,b;
Lin et al., 2005; Petrov et al., 2007a,b; Singh et al., 2008, among
others). There are excellent candidates for using in memory
elements and smart sensor (Feng, 2009); four-state memories,
magnetic field sensors, and magnetically controlled opto-electric
devices (Kuo, 2011) and so on. Motivated by the above mentioned
interest, the prediction of the overall properties for ‘magneto-
electric-elastic’ (MEE) fiber composites by different micromechan-
ical methods have been an intensive research topic.

Appropriated description for coupled properties induced from
discontinuous reinforcement is still a topic of interest that have
been addressed by several authors: Bracke and Van Vliet (1981),
Nan (1994), Benveniste (1995), Fuentes et al. (2006), Petrov et al.
(2007a,b), Tong et al. (2008) and Dinzart and Sabar (2011). Overall
magneto-electro-elastic coupling properties are highly affected by
the inclusions array geometry of the cell (square, hexagonal, paral-
lelogram and randomly cell) and the interface between the constit-
uents. For instance, two-phase fiber-reinforced composites are
affected whether the phase contact is perfect or imperfect. Wang
and Pan (2007), Camacho-Montes et al. (2006, 2009), Bravo-
Castillero et al. (2009) and Espinosa-Almeyda et al. (2011) show



the strong dependence of the magneto-electric coefficients on the
inclusion interactions.

Considering a third phase between the matrix and the fiber can
be a good idealization of the complex phenomenon that occurs at
the interface. This third phase is considered as a thin layer that
describes the transition zone (interphase) between the fiber and
the matrix, Wang et al. (2005), Guinovart-Diaz (2008), Yan et al.
(2013), etc.

In many cases of interest, the perfect interface is not an ade-
quate model and it is necessary to include one or more interphases
separating the reinforcement inclusion phase from the host matrix
phase as part of the analytical model. This interphase can represent
chemical interactions between the constituents, or they can be
introduced by design in order to improve the properties of the
composite, Guinovart-Diaz (2008). Then, a better description for
imperfect bonded composites can be achieved including one or
more than one extra phase between the matrix and the fiber and
this proceeding transform the two phase MEE composite in a
new multiphase MEE composite.

Micromechanical models used in elastic and piezoelectric
problems have been extended to predict effective properties of
MEE composites: The dilute (Eshelby, 1957; Zhang and Soh,
2005), self-consistent (Budiansky, 1965; Nan, 1994; Srinivas and
Li, 2005), generalized self-consistent (Tong et al., 2008), differential
(Mclaughlin, 1977), Mori-Tanaka (Mori and Tanaka, 1973;
Benveniste, 1987; Li and Dunn, 1998; Srinivas et al., 2006; Wang
and Pan, 2007) and homogenization (Benveniste and Dvorak,
1992); methods that are so used to solve the two-phase microme-
chanics models.

A modified Mori-Tanaka method applied on the three-phase
model instead of the Eshelby’s problem was proposed by Luo and
Weng (1987). Also, based on the composite cylinder model and
the theory of exact connections of multi-fields, the predictions of
the ME coefficient was given by Benveniste (1995). The Mori-
Tanaka theorem and Nemat-Nasser and Hori’s multi-inclusion
model is generalized by Li (2000) to analyze the heterogeneous
electro-magneto-elastic solids. In those works, they take into
account an inclusion containing another inclusion, which is
embedded in an infinite matrix and they developed a numerical
algorithm to evaluate electro-magneto-elastic Eshelby tensors.

The homogenization micromechanical method was employed
to predict the effective moduli of electro-magneto-thermo-elastic
multi-phase composites (Aboudi, 2001). In this method, he
assumed that fields vary on multiple spatial scales due to the exis-
tence of a microstructure and the fact that the microstructure is
spatially periodic.

By the finite element method (FEM), Lee et al. (2005) has
investigated the effective properties of a three-phase electro-
magneto-elastic composite that is composed by an elastic matrix
reinforced with piezoelectric and piezomagnetic fibers. A non-zero
magneto-electro-elastic coefficient is reported. Dinzart and Sabar
(2011), applying the Mori-Tanaka’s model obtained the effective
magneto-electro-elastic properties of the composite containing
thin coated inclusions. Guinovart-Diaz et al. (2013) deduced the
in-plane effective properties for magneto-electro-elastic fiber
unidirectional reinforced three-phase composite with square and
hexagonal arrangement of cells by asymptotic homogenization
method. As a generalization of the classic Rayleigh’s work in
1892, Kuo (2011) developed the magnetoelectroelastic potential
in multicoated elliptic fibrous composites of piezoelectric and
piezomagnetic phases and performed a numerical computation
for two- and three-phase transversely isotropic composites:
BaTiO3/CoFe,04 (fibers/matrix) and BaTiOs/Terfenol-D/CoFe;04
(fiber/coated/matrix). They also reported that their results can be
beneficial as design tools for functionally graded tunable
composites.

Yan et al. (2013), extend the eigenfunction expansion-
variational method (EEVM) reported by Yan et al. (2011) to solve
the antiplane magnetoelectroelastic coupling problem for compos-
ites with a generally doubly periodic fibers array. In his work, he
showed the influences of the volume fraction, permutation and
the choice of the constituent phases, as well as the fiber distribu-
tion on the effective magnetoelectroelastic moduli. Besides, it is
shown that the periodic array of fibers is expected to exhibit spe-
cial magnetoelectric effect due to the overall anisotropy induced
by general fiber arrays.

The main aim of this paper is the determination of the anti-
plane effective properties for three-phase magneto-electro-elastic
fiber unidirectional reinforced composite with parallelogram cell
symmetry using the asymptotic homogenization method (AHM),
as an extension of works reported by Espinosa-Almeyda et al.
(2011) and Guinovart-Diaz et al. (2013) considering perfect or
imperfect conditions at the interfaces for a two-phase composite.
The effect of the interphase on effective properties is receiving
considerable attention in the literature and it is the motivation
for this work. In general, the application of this method to a
periodic medium leads necessarily to the solution of several
so-called local (or canonical) problems which take place on a
periodic unit cell. The present solution is mainly focused on
the estimation of analytical expressions for the effective coeffi-
cients taking into account the influences of the volume fraction,
permutation and the choice of the constituent phases, as well as,
the fiber distribution on the effective magnetoelectroelastic mod-
uli. In addition, the anisotropy of the composites induced by the
distribution of the fibers arrays in the matrix is discussed.
Numerical calculations are carried out and some comparisons
with the eigenfunction expansion-variational method (EEVM)
and others theoretical models are presented and good agree-
ments are obtained.

2. Governing equations and basic formulation

A three-phase periodic composite (fiber/interphase/matrix) is
considered here which consists of a parallelogram array of two
circular and concentric fibers of different materials embedded in
a homogeneous medium. The Cartesian coordinates system
{0; X1, X3, X3} is employed for geometrical description of the
composites defined in Q ¢ R>. The fibers are infinitely long in the
direction Ox3 and periodically distributed. Fig. 1(a) shows the rep-
resentative volume element in the plane normal Ox;x; to cylindri-
cal axis. The magnetoelectroelastic material properties of each
phase belong to the crystal symmetry class 6mm, where the axes
of material and geometric symmetry are parallel.

The transversal sections of the periodic cell are parallelograms
with two concentric circles of radius R; and R, (R, < R;), the phase
contacts between the matrix/interphase and the interphase/fiber
are considered as I's = {z: z =R, 0 < 0 < 271}, (s =1, 2) respec-
tively. It is also considered the cell with periodicity property on the
complex plane z = &; +1i & where w; and w, denote the principals
periods. The region occupied for the matrix (S;), interphase (S,)
and fiber (S;) are respectively denoted by S, (y = 1,2,3) respec-
tively, with Y = LyJS;, and QS.V = ¢, in such way X = (x1,X2,X3) is

the global variable and & = X/¢, § = (&1, &, &3) is the quick variable,
on the periodic cell Y that it is defined for a regular parallelogram
in the plane &,&,, where ¢ = [/L is a dimensionless parameter and
L(I) is a linear dimension of the body (inclusion). The angle of incli-
nation of the cell will be denoted by 0, see Fig. 1(b).

We consider magneto-electro-elastic media that exhibit linear
coupling among the magnetic, electric, and elastic fields. In this
case, the constitutive equations can be written in the forms, see
Nan (1994):



Gij = Cyjuén — exijEr — qijHx,
Bi = Qi + ok Ere + 14y H. (1)

D; = emén + KiEx + aiH,

Also, as we are considering the static case, the Cauchy’s rela-
tions as well as the relationship between the electric and magnetic
fields with their respective potentials takes the following form:

&j = (0u;/0x; + Ou;/0x;) /2, @

Ei= 00 /0% = —b; Hi=—0ujox =~ )

The equilibrium and Maxwell’s equations of the composites are
expressed by the mechanical displacement u and Maxwell’s quasi-
static equations for electric field E and magnetic field H. They
become coupled equations for u, E and H starting from the
equations:

0ij =0, Bj;=0, D;=0. (4)

In Egs. (1)-(4), Cyju, €k, i, %> Kij and y; are the material
properties, that denote the elastic stiffness tensor, piezoelectric,
piezomagnetic and magneto-electric coupling tensors, the dielec-
tric permittivities and the magnetic permeabilities, respectively.
oy, Di, Bi, €, Ex and H; denote the components of the stress,
electric displacement, magnetic induction, strain, electric and mag-
netic fields respectively, and we use u;, ¢ and y to represent the
displacement component, the electric and the magnetic potentials.
The summation convention over repeated Latin indices is under-
stood and i, j, k and [ run from 1 to 3 and the comma represents
the partial derivative respect to the correspondent variable. Also,
the material properties satisfy the following symmetries:
Cijr = Cjit = Cijik = Cuiijy  €kij = €xjii» - Quj = Qi Kik = Kiir  Clik = ki
Wi = 4 and the positivity conditions

3 ny > 0, V X e [Eg, C,‘jkl(X/S)XUXk] = 171)(,-,-)(;{1,

I, >0, VaeR’, ky(X/e)aay > 1,aa,

I1;>0, VbeR® w,(x/e)bby, = n;biby,

where 1, 7,, 15 are positive constants and E? is the space of sym-
metric 3 x 3 matrices.

Substituting (1)-(3) into (4) we obtain a system of partial
differential equations with rapidly oscillating coefficients on the
region Q,

(G ()t + € (V)P k + Qi V) ¥ 1) ; = 0,
(erij (V) tise — Ki(Y) b — e (V) ¥ i) ; = 0, (5)
(G (V) uik = %Y P i = e (V) ¥ ) ; = O,
which constitute the system of fundamental equations of the theory
of the linear magneto-electro-elasticity for a heterogeneous struc-

ture Q. The problem is to solve (5) subject to the boundary
conditions:

Ulgo =81(X), Plog =82(X), Voo = &5(), (6)

interphase

>
»

N

(b)

Fig. 1. (a) Cross section of a three-phase magnetoelectroelastic fiber composite with a doubly periodic microstructure and (b) extracted parallelogram periodic.

where g, (x), g,(x) and g;(x) are infinity differentiable functions on
Q.

In a two-dimensional situation, like the herein considered
geometry, it turns out that the above equations uncouple into
two independent systems under suitable boundary conditions. Just
like, the familiar plane- and anti-plane-strain deformation states in
linear elasticity, see Camacho-Montes et al. (2006, 2009) and
Lopez-Lopez et al. (2005). In the state of in-plane mechanical
deformation and out-of-plane electric and magnetic fields, the
mechanical displacements u;, u, and the fields E5, B; are involved.
The other state, which is of particular interest in this work, it is the
anti-plane mechanical deformation and in-plane electric and mag-
netic fields. Here, the mechanical displacement u; and the electric
and magnetic fields E;, E;, H; and H, are the involved variables,
see Chen (1993), Benveniste (1995) and Kuo (2011) by:

¢:¢(X7.V)7 ‘p:l//(xd})? (7)

where uy, U, us are the mechanical displacements along the
Oy, Oy and O; axes, ¢ and y are the electric and magnetic potentials,
respectively.

In addition to Egs. (1)-(6), we have to use interface conditions
between the two contiguous phases, occupied by S,, these interface
conditions are assumed to be in perfect contact along the interfaces
I's of each cylinder. The displacement, quasi-static electric and
magnetic potentials, traction, normal electric displacement and
normal magnetic induction are continuous across the interfaces
T's, between the phases. Therefore the perfect contact condition
can be written as:

Hui”s = 07 Hd)“s = 07 Hl//”.s‘ = 07 (8)

[IDini|l; =0,

U =u; =0, us3=usxyYy),

HUU nj”s = 07 HBI ni”s = 07 (9)

the double bar notation |f]|, is used to denote the jump of the rel-
evant function f across the interphase T, i.e. ||f|, =f® — f® and
IIfll, =f® — f®, whereas the indices (1)-(3) denotes the matrix,
the interphase and the fiber properties respectively. n; is the com-
ponent of the outward unit normal vector n to the interface I'.

3. Method of solution

By means of the well-known asymptotic homogenization
method reported by Rodriguez-Ramos et al. (2001) and Pobedrya
(1984), it is possible to obtain from (1)-(6) an asymptotic solution
of the above statement of the problem, the local problems on the
periodic cell and the effective coefficients analogous to those
reported in Espinosa-Almeyda et al. (2011), being this, the main
aim of this work. The solutions can be solved asymptotically posing
the ansatz:

U3(X) :WO(Xv.y) +8W1(X7y)+o(82)7 (10)

B(x) = do(X.y) + &y (X,y) + O(e), (11)



W(x) = o(x.y) + &v (x.Y) + O(e?) (12)

and stating the two scales. The functions wo, W1, ¢q, ¢1, Woand y,
are found to satisfy certain differential equations related to the ori-
ginal system in a unit cell (see Fig. 1) with periodic conditions, also
they are infinitely differentiable and Y-periodic with respect to the
fast variable ¢&. It is a well-known derivation whose details can be
found elsewhere (e.g., Parton and Kudryavtsev, 1993) and here is
omitted.

Of a greater interest are the so-called local (or canonical)
problems associated here with the correction terms w;, ¢; and
Y, to the mean variations wy, ¢, and , respectively, since they
appear in the formulae of the effective properties. Due to the line-
arity of the main equations on the antiplane case, the corrections
terms wi, ¢; and ¥, can be obtained as a linear combination of
some of such displacements and potentials. This, however, will
not be done here, since the main objective of this paper is the
characterization of the effective properties.

Twelve local problems arise £, ,Z and P (x=1,2;
q = 1,2,3) over the periodic unit cell Y, defined bellow (see for
instance Parton and Kudryavtsev, 1993). Only six local problems
out of these twelve are defined as antiplane problem, see
Camacho-Montes et al. (2009) and Espinosa-Almeyda et al.
(2011), which are referred as 3£, »3L, 1Z, »Z, P and ,P. A
pre-index is used to distinguish similar constants and functions
such as displacements and potentials, which appear below. Consid-
ering also, that each homogeneous phase is a material with 6mm
symmetry, in connection with the antiplane local problems previ-
ously reported the corresponding effective coefficients are: Ci5,

Caaizs €13, €13 Girss Borss Kins Kips Ops 05q, Hip and 5.
4. Antiplane local problems L, (¢ =1, 2)

For simplicity, only the main results of the local problem ,; £, are
shown. The mathematical statement of local problems ,3£ is now
formulated and the fundamental problem consists in finding the
corresponding functions 3.2y, ,3.47 and ,3.4@ that satisfies
the Laplace equations, the perfect conditions at the interfaces T's
and the null average over the periodic cell, takes the following form:

(Cl%)m 3(3’1) + e;;)m3<///_(7) + quzaﬂ’ﬁf()]))‘j = - <C,(,’oz3> J
(ea ) —wilmtd]) — o) = —(el) . (13)

(a5} — ) — i) = —(a2) i Y,

laZslls =0, la-#|ls=0, [la3As=0, on Tj, (14)
3015 = =l Cijas 1,

3Dy nlls = — | €jos Iy, (15)
la3Binills = =l Gjus Iny, on T,

(3F3) = (i3l ) =
Where 913 O'(S) = Cl]31°‘3f(3$l + eh] 3 /// + th 9(3 /V 1 , 3D © — 1331 ffgsz—
KI] // ; o<3 V 1 , 13B' = q]31a3g31 - OC] ot3 //(S Aulj &3"V,IS) and

the angular bracket deﬁne the volume average per unit length over
the area V of the cell, that is,

F) =y [ Fod (17)

being ,3.%3, 3.4 and ,3.4" the local functions corresponding to the
mechanical displacements, the electric potentials and the magnetic
potentials associated to the present local problems with o = 1,2.
The subscripts before the local functions will be omitted for sim-
plicity of the expressions.

(3N =0, (16)

Thus, the functions .#3, .# and .4 are sought in such a way that
they also are doubly periodic harmonic functions of the complex
variable z=y, +iy, in the periodic cell Y, with the periods
w; =1 and w, =€ where 0= m/2 for square symmetry and
0 = /3 for hexagonal symmetry and another case for parallelo-
gram symmetry (see Fig. 1(b)). Now, the comma notation repre-
sents the partial derivate relative the local variable ¢,.

5. Solution of the local problems 32, (x =1,2)

Considering the mathematical statement of the present prob-
lems, doubly periodic harmonic functions .#5, .# and ./ are to
be found in terms of the following Laurent expansions of harmonic
functions over the region S;,

5 0 0 [
2V (z2) = Re{%-& Z ap Z Z ay wkp Rp}

% 0 (k1)
=Re %4’2 akR’{%(z)},

 (kep-1p R
= k=D)I(p-1)! ﬁskﬂl' 5k+p

m*+n>+#0,k+1>2andS, = 0.
By the sum of the power expansions over the region S,

where w; = mm; + nwy,) P,
h » m (k+p)

0 0
@) (o 2) Ky 2) <
a (@)= Re{z bfp zpP +Z bp RP}7
p=1 p=1
0 0
B 00 Rp 00 Zp
o el et S e 19)
p=1 p=1 2

k=1 2 k=1 2
3 x 0 7k
NP (z) =Req Y fk% ; (20)
k=1 2

where the symbols Re or Im are the real or imaginary part of the com-
plex number, respectively, R; and R; (R, < Rl) are the radiuses of the

fibers in the composites. ap, a, aéz, , bo, by, b bfp,eo, [
(2>, e(,zp), Ck, dy, f, are complex undetermmed coefficients which

depend on the local problems ,3£ to be solved and the superscript
“0” next to the summation symbol means that “k” runs only over
odd integers. { is the Zeta quasi periodic Weierstrass function defined
as {(2) =1+ Xl e+ 7} that satisfied the quasi periodic
conditions &, = {(z+ w,) — {(2), being B, = mw; + nw,, with w,
and w,, the principal periods and for m, n € Z the prime over the sum-
mation symbol means that the pair (m,n) = (0,0) is excluded.



Substituting the previous expansion (18)-(20) into the contact
conditions at the interface (Eq. (15)), after some algebraic manipu-
lations, we obtain an infinite systems that are transformed into
dimensionless equations to facilitate solution by means of the fol-
lowing relations defined in Appendix A, see Wang and Ding (2006):

Ap Bip Cip ap Azp Bap Cap Ey(a)

Aszp Bap Cap Bp +| Ap By Cyp Ey(b)

Asp Bsp Csp e Asp Bsp Cep E,(e)
Tip

= | Top |01p[0u1 —idx2], (21)
T3p

where the following notation is introduced E,(e) = (e)yd1p—

S0 %(e), kp"wkp, (e) = (a, b, e) and the complex unknown con-
stants ap, b, and e,, and their conjugate denoted by the over bar
are the solutions of the corresponding local problems ,3£. Here,
the sum by the repeated indices k and p are applied, with
k,p=1,3,5,..., 61p is the Kronecker’s delta and the constants
Aip, Bip, Cip, T1p, T2p and T3, are defined in Appendix B. The solu-
tions of the system of each local problem depend on the material
constants, geometry of the fibers and the different fields related
to the problem.

From the condition of double periodicity of the functions
%3, 4 and 4" the following relations we can concluded: ao =
—R%Izlza] — R%H]&], bo = —R%sz] — R%H]B], €y = —R%I:be]— R%H]é],
where I:Il = (510_)2 — 826_01)/(6016_02 — (,02(2)1) and I:Iz = (61 6)27
52@1)/((1)] Wy — C()zd)]).

Also, analogous to Guinovart-Diaz et al. (2011), introducing in
Eq. (21) the following set of variables is defined: a;=
(Xk -+ lyk)/\@, bk = (Zk + l.tk)/\/E, ey = (lk -+ lmk)/\/lz Wip = Wigp+
Worp, Hy = iy +ihy,, being Xy, Yy, zi, ti, lk, My, Wi, Warp, hig
and h,, real numbers, that represent the real or imaginary part of
the previously complex numbers and i = v—1. After some alge-
braic manipulations, the solution of above equation system (21)
can be rewritten in the following matrix form:

X = [(El +Rf]) —N1(11:+W)’1N2] B, (22)

where E;, J are square matrices of order 6, E and W are the order 6N
formed by six order blocks E, and W)y, respectively, defined in
Appendix C, here k and p are odd numbers. The matrix
N; = Wy, N, = Wy, are the order 6 x 6N and 6N x 6 respectively.
NeN is the truncate order of the system (21). Also,
X" = (x1,y1,21,t1, 1, M1, ..., X, Vi, Zk, t, Ik, Mg, ... is the transpose of
vector X and BT = (T110um, T110x2, T210u1, T21052, 731021, T31002,
0,0, 0,0, 0,0, ...)is the transpose of vector B, both infinite vectors.

From Eq. (22), a very important first approximation is obtained
if we consider x, =y, = zx = ty = [, = m, = 0 for k > 3, in this case
the unknowns with subscript p=k=1 remain no null. This
approximation is equivalent to truncate the equation system (21)
to an appropriate order N, which denotes the number of equations
considered in the solution of the infinite algebraic system of
equation, particularly to N =1 (short formulae). It is solved and
its solution is:

- ~ 191
Xy = [(E1 +R§]) —Ni(E,+ W) Nz} B, (23)
where X'=(xy y, z» t; I} my) and B =
(Tlléod 7-1159.2 7—2‘1 611 7—21512 73151‘1 7-31(5012 )

In general, using the solution of the equation system (23), we
can obtained the constant a; =x;+1iy,, by =2z; +it; and
e; =l +im;, that are essential for the effective coefficients

associate with these local problems ,3£. The same method used
for solving the local problem ,3£ (o = 1,2) may be developed to
solve the other antiplane shear local problems {Z, ,Z, ;P and
2P. These problems are very similar to ,3.C.

6. Effective coefficients

The main objective of this work is the characterization of the
effective properties for three-phase magneto-electro-elastic fiber
unidirectional reinforced composite with parallelogram cell. Then,
the corresponding effective coefficients related to the local prob-
lems ,3£ are shown.

Effective coefficients associate with the local problem 3£

Cizis = (Ciz13) + (Cisz1 L31) + (s A1) +(qy13 A1),
Ca13 = (Caz32 L32) + (€223 M 2) + (Qpo3 N 2),

13 = (en3) + (e131 L31) — (K11 A1) — (A1 N 1),
€313 = (113 L32) — (K11 M ) — (d1 N 2), (24)

G113 = (Gu1s) + (G131 L31) — (01 A1) — (g N 1),
Q13 = (G113 L32) — (01 M 2) — (lyy A 2).

Effective coefficients associate with the local problem ;3£

Clagz = (Cizz1 L31) + (€113 A1) + (G113 N 1),
Cans = (Ciz13) + (Ci313 L32) + (€113 M 2) + (qq13 N 2),

€93 = (€131 L31) — (K11 M 1) — (041 N 1),
€593 = (€223) + (€113 L32) — (K11 M 2) — (011 N 2), (25)

Qi3 = (G131 L31) — (01 A 1) = (fyy A1),
Q223 = (Gu13) + (G113 L32) — (1 A 2) — (fy; N 2).

The local functions %3, .# and ./ are the solutions of the local
problems 3£, respectively. The expressions of the effective
coefficients (24) and (25) are transformed applying Green’s theorem
to the area integrals. Subsequently, substituting the previous
expansion (18)-(20) into the lineal integrals and using the orthog-
onality of the system of functions {cos(nx), sen(nx)},”___ in [0, 27]
and making the transformations shown in Appendix D, the analyt-
ical expressions of the dimensionless effective properties are
obtained as functions of the unknown constants a;, b; and ey,
associated to each local problems 3£ or 3£, as follows:

Cl313 —1Ch313=Ciziz + Y101 + Y3 b1 + Y38, + Ay,
€13 — i€y3 = ez + Yaly — Ysb; — Y€1 + Ay, inlocal problem 3£
Qi13 — G513 = Gyy3 + Y701 — Ysby — Yoey +As;,

(26)

Ci33 — iCy3p3 = —iCas23 + Y1 Gy + Yo by + Y38 —iAy,
€53 — 1€5y3 = —i€3 + Y4a; — Ysb; — Y& —iA,, inlocal problem 3£
Qo3 — iG55 = —iGyy3 + Y701 — Ygby — Yo &1 —iAs,

27)
with  Ciz13 = (Ci313),/Ci53, €ns = (e113),/(/Ciypskl) and g5 =
(@13)o/\/CB Y- Also,  (f), =fOVi +f@V; +fOVs,  where

Vi, V, and V3 are the volume fraction per unit length occupied by
the matrix, interphase and the fiber, respectively;
Vi+Vy+V3=1 and V = |w]| |w,|sin0 represent the volume of
periodic cell. The coefficients Y,, m=1,9, and A; (i=1, 2, 3) are
defined in Appendix D.



Analogously, the remaining dimensionless effective properties
from the antiplane local problems 1Z, ,Z, ;P and ,P can be calcu-
lated. They are listed as follows,

€13, €123, Kip, K3y, o and o, associated with {Z, (28)
€313, €593, Kip, Kby, 04, and o, associated with ,Z, (29)
Qi3> Qiazs %G1, Oy, M3, and w3, associated with 1P, (30)
Q513 Qo0 0oy 04y, Ui, and 5, associated with ,P. (31)

To have the remaining effective properties, it will be only nec-
essary to solve the associated local problems ,Z and ,P. The
unknowns a;, by and ¢, are different for each individual local prob-
lem and they are obtained from the system of equation (22) using
the corresponding independent terms related to each local prob-
lems. The dimensions can be retrieved in the inverse form using
the transformations of Appendix A.

7. Numerical results

In the present work, it is investigated the influences of the vol-
ume fraction, fiber distribution and phase permutation on the
effective magnetoelectroelastic moduli considering the volume cell
illustrated in Fig. 1. Two different cases: a two-phase Model (fiber/
matrix = BaTiO3/CoFe,04) and a three-phase Model (fiber/inter-
phase/matrix = BaTiOs/Terfenol-D/CoFe;0,4) are taking into consid-
eration for numerical simulations.

The analytical expressions of the effective properties (26) and
(27) are in function of the material properties, the volume fraction
and the residues a;, b; and e; of the functions (18). The system in
Eq. (23) is truncated to N order and solved for a;, b; and e;. This
procedure is repeated for different orders. For each N, new solu-
tions a;, b; and e; are obtained and compared to the ones of the
preceding step. Calculation stops when the difference between
these coefficients for subsequent steps reaches the desired preci-
sion. The coefficients a;, b; and e, are substituted into (26) and
(27) in order to finally obtain the overall properties. Only a few
iterations are needed to achieve the convergence.

An important result is that the approach in Eq. (23) for N=1
reproduces exactly the values that are determined by Mori-Tanaka

Table 1
Magneto-electro-elastic materials properties.

self-consistent method reported in Wang and Pan (2007), when
considering a three-phase model with very thin interphase.

From the present three-phase model, it can be obtained the
analytical expressions of the composite without interphase (two
phase composite) reported in previously works by Camacho-
Montes et al. (2009). In addition, limit cases can be verified and
the analytical expressions can be reduced to those reported for
transversally isotropic bi- or three-phase composites, with elastic
or piezoelectric constituents and square, hexagonal, parallelogram
cells, such as, Guinovart-Diaz et al. (2011, 2012), Rodriguez-Ramos
et al. (2011).

The aforementioned global properties of the antiplane behav-
ior of the two- or three-phase magneto-electro-elastic fibrous
composite as function of the cell’s constituents are calculated
considering the constitutive properties shows in Table 1 (see
Yan et al., 2013). For simplicity, the two index notation, in the
expression of the effective properties, is used in tables and
figures.

The numerical validity and efficient of the herein developed
analytical results by means of the asymptotic homogenization
method (AHM) are verified by comparing them with the other
ones published by Yan et al. (2013) (EEVM, i.e., eigenfunction
expansion-variational method) and by Kuo (2011), who com-
bined the methods of complex potentials with a re-expansion
formulae and the generalized Rayleigh’s formulation. The
parameter /. = V3 is defined as the fiber volume fraction for a
two-phase composite and /. =V, + V3 is the volume fraction of
the fiber and interphase together for a three-phase composite.
For both cases 1— 4 is the matrix volume fraction. In this
example, the concentric fibers radius relation is R,/R; = 4/5 for
the three-phase composite. Different periodic cell arrays are
being considered: square array if the fundamental periods
are w; =1 and w, =i, hexagonal array if w; =1 and w, = e™/3
and the general parallelogram array when fundamental periods
w; =1, w,; =€ and a vertex angle 6.

In Tables 2-5, the variation of the effective properties of MEE
composites with different truncate orders N for a two- or three-
phase composite are shown.

In Tables 2 and 3, some comparisons of the effective properties
between the AHM, EEVM (Yan et al., 2013) and Kuo (2011) are
shown for a three-phase composite (BaTiOs/Terfenol-D/CoFe;0,4)
with square and hexagonal periodic cell respectively and a

¢S (GPa) el (C/m?) ) (nF/m) g\ (N/Am) o? (10712 Ns/VC) W (1079 NjA?)
BaTiO3 43 116 11.2 0 0 5
CoFe,0, 45.3 0 0.08 550 0 590
Terfenol-D 13.6 0 0.05 108.3 0 5.4
Table 2

Variation of the effective MEE moduli obtained by AHM in term of order system N, for a three-phase composite with square periodic cell (0 = 90°) and a comparison with those

predicted EEVM (Yan et al., 2013) are shown.

BaTiOs/Terfenol-D/CoFe;04, 2 = V3 +V3 =0.6 Ro/R=4/5

N Ci5 (GPa) ejs (C/m?) 1, (nFjm) gis (N/Am) gy (10 °NJA?) ~t;, (10 12 Ns/VO)

AHM EEVM AHM EEVM AHM EEVM AHM EEVM AHM EEVM AHM EEVM
1 37.04 37.14 0.05807 0.06011 0.1436 0.1466 176.4 206.1 141.6 178.8 60.73 67.59
3 37.04 37.05 0.05807 0.05821 0.1436 0.1438 176.2 178.4 141.2 144.0 60.59 61.28
5 37.04 37.04 0.05807 0.05807 0.1436 0.1436 176.2 176.3 141.2 1414 60.59 60.63
7 37.04 37.04 0.05807 0.05807 0.1436 0.1436 176.2 176.2 141.3 141.3 60.59 60.59
9 37.04 37.04 0.05807 0.05807 0.1436 0.1436 176.2 176.2 141.3 141.2 60.59 60.59
Kuo 37.0 0.0599 0.147 175 140 63




Table 3

The effective MEE moduli obtained by MHA in term of order system N, for a three-phase composite with hexagonal periodic cell (¢ = 60°) and a comparison with those predicted

EEVM (Yan et al.,, 2013) and Kuo (2011) are shown.

BaTiOs/Terfenol-D/CoFe;04, 2 =V, + V3 = 0.6 Ry /Ry =4/5

N Cis (GPa) ejs (C/m?) K;; (nF/m) q;s (N/Am) 1w, (107 N/A?) —aty; (10712 Ns/VC)
AHM EEVM AHM EEVM AHM EEVM AHM EEVM AHM EEVM AHM EEVM
1 37.05 37.07 0.05794 0.05838 0.1435 0.1441 184.8 191.2 152.4 160.4 63.81 64.67
3 37.05 37.05 0.05794 0.05794 0.1435 0.143 184 184 151.4 151.4 63.45 63.44
5 37.05 37.05 0.05794 0.05794 0.1435 0.143 184 184.1 151,4 151.4 63.45 63.46
7 37.05 37.05 0.05794 0.05794 0.1435 0.1435 184 184 151,4 151.4 63.45 63.45
9 37.05 37.05 0.05794 0.05794 0.1435 0.1435 184 184 151.4 151.4 63.45 63.45
Table 4
The effective MEE moduli obtained by AHM in term of order system N for a two-phase composite using the three-phase model.
BaTiO3/CoFe,0y4,
N Cis (GPa) e;s (C/m?) K4, (nF/m) q;s (N/Am) 1, (107° NJA?) —aj; (10712 Ns/VC)
AHM EEVM AHM EEVM AHM EEVM AHM EEVM AHM EEVM AHM EEVM
1 50.79 50.78 0.2579 0.2768 0.3362 0.3544 1284 163.4 1414 178.7 6.018 5.562
3 50.79 50.79 0.2588 0.2596 0.3371 0.3379 128.0 130.7 141.0 143.8 6.020 5.987
5 50.79 50.79 0.2588 0.2587 0.3371 0.337 128.0 128.1 141.0 1411 6.020 6.019
7 50.79 50.79 0.2588 0.2588 0.3371 0.3371 128.0 128.0 141.0 141.0 6.020 6.020
9 50.79 50.79 0.2588 0.2588 0.3371 0.3371 128.0 128.0 141.0 141.0 6.020 6.020
Kuo 50.8 0.255 0.337 128 140 6.03
good match between the approaches can be observed. In these Table 5

comparisons, the volume fraction are considered to be
2=V, +V;=0.6, V, = (9/16)V; because fibers radius relation is
Rz/R] = 4/5 and V1 =1 7V2 7V3.

It can be noticed the influence of the arrangement of the cells on
the properties of the composite and we can conclude that, for a
three-phase composite materials (BaTiOs/Terfenol-D/CoFe;0y),
where the periodic cell is square, the magnetoelectric, magnetic,
piezomagnetic and elastic properties are lower than those of the
hexagonal cell, being opposite for the piezoelectric and dielectric
properties. Also, it is observed that when the hexagonal fiber array
is considered the results converge more rapidly than those for a
square fiber array.

The effective properties of a bi-phase composite (BaTiOs/CoFe,
0,4), can be derived from the three-phase model when the thick-
ness of the interphase is very thin and the material properties
are BaTiO3; or CoFe,04. In Table 4, the numerical results using the
present model are compared with those reported by Yan et al.
(2013) and Kuo (2011) when the periodic cell is square. Here, the
volume fraction for each phase is considered as . =V;=0.6,
V, =10"% and V; =1 — V, — V3. It can be noticed that the result
of the effective magnetoelectroelastic moduli is a good estimation.
In addition, it was found that the interphase volume fraction has a
strong influence on the effective properties because the results
converge more rapidly when is considered the volume of the inter-
phase as V, < 1075, The obtained values are closer to those
reported by Yan et al. (2013).

An objective of making magnetoelectroelastic composites is to
maximize the magnetoelectric coefficient. The highest one is
obtained for the three-phase composite. This result is also
obtained by Yan et al. (2013) even if Terfenol-D is considered
instead of CoFe,04. Then, the intermediate or interphase plays
an important role in the mechanical interaction between the
piezoelectric and magnetostrictive constituents leading to an extra
improvement of the magnetoelectric coupling. In addition, for
three-phase composites where the fibers are aligned with square
periodicity, the magnetoelectric property is weaker than those of
the composites with hexagonal or parallelogram periodicity, see
Tables 2-4.

The effective magnetoelectric (ME) moduli obtained by AHM in term of order system
N for a three-phase composite (BaTiOs/Terfenol-D/CoFe,04) with Parallelogram
periodic cell ((0 = 75°) and the fraction of volume of the interphase V3 = 0.6.

Magnetoelectric coefficients (BaTiO3/Terfenol-D/CoFe,0,4)

N o, (1072Ns/VC) —a, (10712 Ns/VC) —aj, (10712 Ns/VC)
AHM EEVM AHM EEVM AHM EEVM
1 68.75 70.82 54.39 63.98 0.1528 —1.996
3 68.60 68.74 53.23 55.63 0.1512 0.2091
5 68.60 68.60 53.18 53.70 0.1520 0.1971
7 68.60 68.60 53.18 53.32 0.1520 0.1793
9 68.60 68.60 53.18 53.30 0.1520 0.1780
11 68.60 68.60 53.18 53.17 0.1520 0.1511
13 68.60 68.60 53.18 53.18 0.1520 0.1520

In Table 5, a comparison of the magnetoelectric (ME) effective
properties between the AHM and EEVM (Yan et al., 2013) is shown
for a three-phase composite with parallelogram periodic cell and a
good match between the approaches can be observed. Note that,
new coefficients ME appears for this parallelogram periodic cell,
i.e., the effective coefficients o, and o, are different of zero. For
this case, it can be observed the influence of the cell’s space fiber
distribution on the anisotropic symmetry.

Therefore, the overall magnetoelectric performance of the com-
posite with parallelogram periodic cell has less symmetry opera-
tions than hexagonal and square periodic cell, which exhibit a
transversely isotropic symmetry as was reported by the previous
work, Camacho-Montes et al. (2009), Espinosa-Almeyda et al.
(2011), Kuo (2011) and Kuo and Pan (2011) for a square periodic
cell and Espinosa-Almeyda et al. (2011) and Yan et al. (2013) for
a hexagonal periodic cell. In both types of cells, ME effective coef-
ficients satisfy that oj, = a3; = 0 and oj; = o3, # 0. When the peri-
odic cell is represented by parallelogram o3, =03, #0 and
o, # o5,. For this last case, it is also possible to observe that the
following effective properties are no null: Ci; # Cy,, €5 # €3,
Qis # Goa> Ky # Kip, iy # My and Cis = Csy, €35 = €1y, @35 = Gig
Kj, = K3, Wi, = W5,. Consequently, the composite with parallelo-
gram cell corresponds to a material behavior with a higher



Table 6

Variation of the effective MEE moduli obtained by MHA in term of order system N and volume fractions /4 = 0.2 and 4 = 0.85, for an idealized three-phase composite (BaTiOs/
Terfenol-D/CoFe,04) with hexagonal periodic cell and the contrast between the fiber and matrix is 120.

(BaTiOs /Terfenol — D/CoFe;04) V; = (1/16)Vs, Vi =1-V, — Vs

Vs N Cis (GPa) ejs (C/m?) K4, (nF/m) q;s (NJAm) —a; (10712 Ns/VC) i, (1075 NJA?)
0.2 1 64.246 0.0006 0.1182 594.59 4.2563 457.73
2 64.246 0.0006 0.1182 594.59 4.2563 457.73
7 64.246 0.0006 0.1182 594.59 4.2563 457.73
0.85 1 293.83 0.0368 0.8065 1778.7 220.67 170.88
7 304.62 0.0456 0.9248 1826.5 271.02 162.25
10 304.62 0.0456 0.9248 1826.2 271.00 162.06
15 304.62 0.0456 0.9248 1826.1 270.99 161.99
16 304.62 0.0456 0.9248 1826.1 270.90 161.98

anisotropic degree, as it was pointed out previously. For these
fibrous composites, the maximum value tolerable of the fiber vol-
ume fraction 4 is 0.785 for a square cell, 0.906 for a hexagonal cell
and 0.813 for parallelogram periodic cell with angle of 75° and 1
for an idealized even fiber distribution in the Mori-Tanaka estima-
tion (Wang and Pan, 2007), consequently with the results of Yan
et al. (2013).

We assert from comparisons in Tables 2-5 that both methods
AHM and EEVM are in a good concordance except the effective
properties qjs, (j; and o, for only N=1. Also, we analyze the
behavior of the analytical expression using N=1 (short formulae
see (23)) whose numerical computations are shown in the afore-
mentioned tables.

As it was mentioned previously, the solution to the infinite
order algebraic system (22) is achieved by means of truncation
to an infinite order and the Gauss’s method. A fast convergence
of successive truncations is ensured because the system is regular
(Rodriguez-Ramos et al. (2001)) so that successive approximations
can be applied. Besides, concerning the well convergence of the
AHM we can refer to Sixto-Camacho et al. (2013) and Bravo-
Castillero et al. (2008).

In general, for the volume fraction of each phase, as it is consid-
ered in Table 4 where 4 = V; = 0.6, (Fiber) V, < 10°° (interphase)
and V; =1 -V, — V3 (matrix), the accuracy and convergence of
the results are good for smaller values of N (N < 3). More terms
are required to be included for high volume fraction of fibers as
well as for higher contrast between the fiber and matrix as it can
be observed in the next example.

An analysis of computational cost required to achieve pre-fixed
accuracy as a function of volume fraction 4 = V, + V3 and material
properties is shown in Table 6. Here, the effective properties
obtained by MHA are computed for a three-phase composite with
a BaTiOs; matrix, Terfenol-D interphase and idealized properties of
fiber. This combination is proposed to obtain a higher contrast
between the matrix and fiber. In this example, we used the fiber
properties of CoFe,0, multiplied by 120 with hexagonal periodic
cell (0 =60°) for two different volume fractions V3 =0.2 and
V3 =0.85 (case close to percolation), V,=(1/16)V; and
Vi=1-V, -V

It can be noticed from Table 6 that good accuracy is already
reached for low values of N for effective magnetoelectroelastic
properties when the fiber volume fraction (1 =0.2125) is small,
i.e., N < 2. For high fiber volume fraction (1 = 0.9031), it is needed
a higher truncation order N of equation systems (21) to get a better
accuracy. The solution (22) depends on powers of radius R; (see in
(18) expression of wy,), then more terms are required to assure the
convergence of the solution, for higher volume fraction. In addi-
tion, it is worthily to mention that computation of the result only
takes few seconds.

Fig. 2 illustrates the behavior of the effective magnetoelectric
coefficient «j, calculated by AHM, for two-phase composite
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Fig. 2. Effective magnetoelectric coefficient oj, for the two-phase composites
(Terfenol-D/BaTiOs) for different periodic cells versus the fiber volume fraction. A
comparison of the present model with EEVM approach (Yan et al., 2013), for square
and hexagonal fiber array are illustrated.

Terfenol-D/BaTiO5 with parallelogram periodic cell versus the fiber
volume fraction Vs, up to the percolation limit. The volume fraction
of the interphase is Vo = 107%. The numerical results derived by
AHM are compared with EEVM method (see Yan et al., 2013) for
square and hexagonal cells. Very close results can be seen between
the two models.

The effective properties of the composites shown in Fig 2 are
transversely isotropic at the angles 60° (hexagonal periodic cell)
and 90° (square periodic cell), the strongest anisotropy appear at
angle 45°. In the range between 60° and 90° the trend of the curves
of all coefficients are similar, being different for high fiber volume
fraction values. The difference between the coefficients is remark-
able for angles of the cell less than 60°. The explanation should be
given because of the fact that in the distance between the fibers is
small and it reinforces the properties of the composite in this
direction.

Also, from Fig. 2, it is possible to see that, for small fiber volume
fraction, this type of the cell distribution does not affect the value
of the effective property; it is the same value in both distributions
(square and hexagonal distribution cell). However, when the
Terfenol — D fiber volume fraction is growing, the fiber distribution
show to have a heavier role on the ME coefficients. When the fibers
are aligned with hexagonal distribution the property «;, is weaker
than square distribution properties. We can also see, that the prop-
erty oj, reaches local extreme maximum and minimum values,
and finally increases rapidly until the fiber volume fraction reach
the percolation limit.
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Fig. 3. Effective magnetoelectric coefficient oj; of the different three-phase
composites versus the total volume fraction of the fiber and interphase for a
hexagonal fiber array.
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Fig. 4. The normalized effective properties of the three-phase composite with
empty fibers versus the total volume fraction of the fiber and interphase for
different fiber array.

Table 7
Piezoelectric materials properties.
BaTiO3 Hollow Epoxy Glass PZT
Cl (GPa) 43.86 0 18 296 25.696
e%) (C/m?) 114 0 0 0 9.35
0.00886 0.0372 0.0566 4,065

K;‘q) (nF/m) 12.8

Table 8

The first maximum for the ME coupling has been previously
reported by Camacho-Montes et al. (2009) and Espinosa-Almeyda
et al. (2011). The ME coupling in the type of composite studied
herein, where there is no ME effect for either of the constituents
is a result of the mechanical interaction at the interphase between
piezoelectric and piezomagnetic constituents. In principle, the first
maximum can be expected for V3 = 0.5. However, depending on
the constituent properties this maximum can shift either to higher
or lower matrix volume fraction. It is worthily to observe that a
second tendency of the ME to increase toward fiber percolations.
This interesting fact is probably related to the interceptions of
the stress field of different matrix-fiber interphases as they are
closer near percolation. This effect can also be related to the
presence of the interphase as it is not observed by Camacho-
Montes et al. (2009).

In Fig. 3, the effective Magnetoelectric coefficient o, of the
three-phase composite ((Ry/R;)*> =1/2 <= V, =V;) versus the
total volume fraction of the fiber and interphase 4 =V, + V3, up
to the percolation limit for hexagonal periodic cell are shown. A
comparison for the present solutions by AHM with those predicted
by EEVM (Yan et al., 2013) for different kinds of three-phase com-
posites composed of CoFe,04,BaTiO; and Terfenol-D in different
permutations is also performed. Note that, good estimations can
be reported. We can verify that the biggest value for oj, is
—-512.2 x 10’”Ns/VC for CoFe,0,/BaTiOs/Terfenol-D composite
when the fiber volume fraction is 0.86 as it is reported by Yan
et al. (2013). It is important to note, besides the choice of the
phases, the influence of the permutation can also be significant
in the behavior of the new effective coefficient.

The effect of the shape of the cross-section of the empty
fibers obtained by AHM method for a three-phase composite
(Empty/Empty/BaTiO;) are shown here to illustrate the effect of
the empty-fibers cross-section shape on the antiplane properties
Cis. €15, (5, K7, and uj,, see Fig 4. The AHM-90° curve shows
total coincidence with the results reported by Bravo-Castillero
et al. (2009) for BaTiO3 porous material.

The Fig 4 shows that the universal relations C5/CSY = ;s /el =
qis/q\Y = s, /i) = iy /uly) are satisfied for a porous fiber com-
posite. It can also be observed, from this figure, that the curves
do not cross each other and that the ratios decrease monotonically
from the matrix value (normalized to 1) at zero fiber volume frac-
tion to the corresponding percolation limit. In addition, very closed
estimation between the curves for small values of the fiber volume
fraction are observed. The equalities shown previously are pub-
lished by Bravo-Castillero et al. (2009) for 1-3 piezoelectric com-
posites and they are extended for MEE composites in formula
(3.59) in Bravo-Castillero et al. (2012),

7.1. Piezoelectric composites

The effective coefficients (26) and (27) can be reduced to
piezoelectric, bi- or three-phase composites. These effective
properties are compared with those published by Yan et al.

The effective piezoelectric moduli in term of order system N for a three-phase composite with square periodic cell.

Glass/PZT/Epoxy, (Square cell)

Glass/PZT/Epoxy, (Hexagonal cell)

N Cis (GPa) ejs (C/m?) K}, (nF/m) Cis (GPa) ejs (C/m?) K}, (nF/m)

AHM EEVM AHM EEVM AHM EEVM AHM EEVM AHM EEVM AHM EEVM
1 6.452 6.755 0.0562 0.0613 0.1488 0.1563 6.116 6.231 0.0461 0.0486 0.1390 0.1420
3 6.462 6.477 0.0566 0.0568 0.1492 0.1495 6.144 6.141 0.0468 0.0468 0.1398 0.1397
5 6.462 6.462 0.0566 0.0566 0.1492 0.1492 6.144 6.144 0.0468 0.0468 0.1398 0.1398
7 6.462 6.462 0.0566 0.0566 0.1492 0.1492 6.144 6.144 0.0468 0.0468 0.1398 0.1398
9 6.462 6.462 0.0566 0.0566 0.1492 0.1492 6.144 6.144 0.0468 0.0468 0.1398 0.1398




(2011) by EEVM for different fibers arrays and different fibers
volume fraction. It will be shown in Table 8. In these cases, the
material properties are considered in the following Table 7; see
Yan et al. (2011).

In Table 8, the effective properties of a three-phase piezoelectric
composite (Glass/PZT/Epoxy), with square or hexagonal periodic
cell obtained by AHM are summarized, and compared with those
reported by EEVM (Yan et al.,, 2011). Here, the volume total of
the fiber (Glass) and interphase (PZT) is 4=V, + V3 = 0.6, the
relative radius of the fibers are given as Ry/R = 2/3 and the fraction
of volume of the phases are V, = (5/4)-V; and V; =1 -V, — V3.
From Table 8, a good agreement and rapid convergence of the
present results are observed.

8. Conclusions

In this work, the analytical formulae derived for all effective
properties have a simple form. The computational implementa-
tion is easy. In addition to its theoretical importance, they can
be used for checking the implementation of experimental, numer-
ical and analytical models. The numerical analysis demonstrates
that the AHM model is very simple, accurate and efficient for
the analysis of fiber-reinforced composites with presence of the
interphase and for different arrangement of angular distribution
of the fibers. In addition, is remarkable the relation among the
contrasts of the phases properties, the order of truncation and
the volume fractions of the fiber and the interphase. Some com-
parisons with experimental results reported in the literature
revealed a good performance. The formulae are also valid for
two- or three-phase piezoelectric or elastic composite. For com-
posites with a parallelogram periodic array of fibers, the effective
magnetoelectric moduli can be anisotropic. There exist two new
coupling magnetoelectric coefficients besides the two main
coefficients.
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Appendix A

The local problems are transformed into dimensionless prob-
lems, making the following transformations (Wang and Ding,

2006).
) _ )
Q V Clhttyy = g, Al V K I = oy

O e 0 _ )
E/fs Ciizpa g = €pgm»

P = G ), C(13)130-1(3> = 01(3> C(13>13K(11)D(”) = Dg)v

Cis 45} i3) = Bg)v
I = B MO =\ N =\l
K = )
l’Pg") —./C 33213 /ngi)»pgv)7 10" = Q("x)7 IR = ’ug? /K%)'Rmv
1= ﬁ53+ﬁ]3 /C[B/B
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Appendix B

In order to realize the numerical calculations we present the
following algorithm which allows us to derive the system (21).
The relations defined in Wang and Ding (2006) (Appendix A) are
used, substituting the previous expansion (18)-(20) into contact
conditions (14) for s = 1,2 and considering that z = Re”” for differ-
ent powers of e’ we obtain the following equations:

~ 0
Qoo+ Oulliy + Gy | R = AR +a%RS
L k=1
Dodip+ > bily, + by | RS = \/W(bf)R'{ +b%R5), on Ty
k=1
eodip+ Y el +p [RS = /11 /1 (€ZRE +ELRD),
L k=1
(B.1)
(YR) + a®)RY = c,RE,
\/7* by R + bERY] = VK@ d,R, on T (B.2)

o] -

Now, the local functions are considered periodic harmonic
functions of the complex variable and they satisfy the Cauchy-
Riemann conditions, using the relations defined in Appendix A,
Ifi] = fi(2) — fi(z) and ny = —R '(dx,/d6), n; = R '(dx,/d6) on the
interfaces T, the equalities (15) can be written in terms of the
complex functions as:

[f] +EXIg] + QT + (1 = xM)ou(z - 2)
0161+ ERlg] + QRTRI) + (1 - x)isa(z+2) ||

2V (If2] + ERI8,] + QP Tha]] + (12 — xV*)ids(z +2)
= (1 = 7 V)om(z—2) + 1[I+ ERlgs] + QRIhs1] ||

D u@ [ 'R + e

(3-3)

ER - [81] AR+ (B - V2T R EY ) (2= 2)0m
= \/W{E@Uz[ - [gz}]fA(Z)[[hzj} +z( WE@) 7+42)02
(VI [ER 1] - [8:1- AR Tha1 ] + (VA R EE ~ mwdwé’) (2-2)om }

| = VAR (B ] - (81— AT hs1] +i( VI KOE — /7P K EY ) o2 (2+2)
(B.4)

QY (6u1(2—2) —i6a(z+2) + QAT - AY g1 - []
= Q0 (2-2) ~id,2(2+2) + /7T 1" [QR L] - AT 8] - [h]]

[V 1 [QR (0 (2~ 2) ~ ib2(2+2)) + QR ] - A 8] - [ha]]
= VAT R [QR (601 (2~ 2) ~ ba(2+2)) + QU Ifs] — AT 5]  [hs]]

(B.5)

Then substituting the expansion (18)-(20) into the previous equa-
tions (B.3)-(B.5) at the interface I's and analogous to the way for
obtaining (B.1) and (B.2), the following equations characterize the
contact conditions.



oo 0

{ [aoém + Z Aty —
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defRy =

eodip+ Y ey, —
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We have obtained a system (B.1), (B.2) and (B.6)- (B 8) of twelve
equations with the unknown constants @,, a’, , by, b
b, e, e, €%, c,, d, and f,. This system can be rewrltten into
a new matr1c1al system (21) in term of the conjugate of @,, b, and
ey, which can be solved by Gauss’s method. Once we have the
unknown constants, we can determine the effective coefficients
(24) and (25). The magnitudes that appear in system (21) corre-

sponding to the local problem ,3£ can be summarized as follows:
A cp= (1) +AnpDs)p + AzpDisp + AspDanp,

Bop=(-1)"EY +AxpDep +AspDaap +AspDep.  T=1,2,
Cop=(-1)""Q}5 +AnpDap +AspDusp + AzpDiop,

Azp= (-1)"EQ +BaypDes)p — BapDisyp — BispDanyp,

B%p: (—])T-"-B(])pD(G)p—BG)pD —B D]zp7 ‘f=3, 47
Cz p = (—1)°A}Y +B1;pDap — BapDioyp — BspDiaspp.

Azp= (-1)7'QY +Ca)pDisyp — C3pDisyp — CispDianyp,

B p=(=1)"AY + CapDieyp — C3pDioyp — CipDirzpp, T=5,6,

Cep= (=1)"+CapDap — CpDaop — CsjpDasp,

the independent term for the local problem ,;.% are
Tip=(1-7")Ri+ (V" = 226, R,
— (ApGap +AppGuap +AspGep) &, Ra,

Ty = (B - B2 )R
2 e _ F®) 22
i KE(];\/XU»MM E<15>\//C<2> ) )g;

—(BaywGap — BewGap — BepGep) €, } Ry,
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k=1

7\/}/(T515>RPR101;;[511 i022],

(B.7)
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Jr

k=1
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)RpH alp [(soc] iéaZL

.
Kw

( ut )R1
15\//(

— (CawGap — CapGap — CowGip) €, } R,
with,
1 * * * —
A =5 [ (17" + 22 el + (17 (1 = 1) 131,
i
Bon = | (B WW +E sz»)dp
+(=1) ( 15\ X Deged 15 VX @@ ) }
i
Con =1 (Qﬁ?\/x“)*u(”* Q) o

N N e YAl

1
Awp =5 KE%> 2D kD

783

(2)*/,{(2)* + E%)X(Z)*)[/

_E® Xu») d;l} 7

+

7Dy @ V) /1c(2)

Bop :% (\/X(Z) gl @ 1 \/X<2)*K(2)*>1/p
(-1 (\/X(zwmn*x(n*/mz)* _ \/X(z)*K(z)*>d;1]7
i

Ciap = 5 (AEZI) /X(Z)*K(l)*‘u(])*/K(Z)* JrA(ﬁl) /X(Z)*M(Z)*){/p
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Ay = M/ @+ 4 Q@X(z)*)d Appendix D

+<—1f(Qs? -2 ) 4.

K 11\/7 S HM Ve /@ 4 A \/X K )”/p
1)i (Aﬁ) /X(z)*’c(l)*#(l)*/#m* _A(]3]) /}(Q)*K(z)*)ll;]}

Coop :% K\/X@ D0 p@s 4 \/X@ H(Z)*>a’

1y° (\/xm 1 @*)14?]}

for &5 = (Rf” iR%”)/ZRﬁ’R‘; and «, = R} /R}; besides,

Djp = Di2jpDip — DaapDiayp,  Dixyp = Aaer2ipBayp + A2)pB

HICHE

Egs. (24) and (25) are easily transformed applying Green’s the-
orem to the area integrals. Therefore, considering the perfect con-
tact condition (14), the effective coefficients that appear in (24)
and (25) associate with the local problem ,3£ are connected by
the following matricial relations:

2
C, = Ky(0m1 —16,2) + Z ( K75 ’”difz+i/ 7Y ’”dé])
s=1 Ts Ts

( / WV, 1 / .,/zz<2”>d51>
Is

( / N ENde, +i / masf”dg)
S rS

M/ u@

[ Kolls

IK ls

1K

i

with the vectors

(2t4+2)p» . . C
Dy = Az-2pCep + A2jpCiaz-2)p, ) Cizss __IC23“3 B3
(Caa = | s —i€ss |, Kadsq=| €us |
Diisap = [3i = (AwpD1ip + AwpDito+ip) | /A Q103 — 1553 Qo3
Diis7p = (D2pFii-3p — DiappF ,)p)/ Do ~ €03 _ Qo3 -1
Kz = | Ko |, Ko)zyg = | Caa and  (Q)3y =| 1
Dii-10p = (DizpFiip — DiajpFiis3p) /Doy, Oy Uy
Fip =3By + SiAep, Farip = JiCap + JiAep, <3, 4 and ./ are the solutions of the local problems 3£, respec-
tively. Due to the orthogonality of the system of functions
G — B (1)« @\ _A (E(2> (e _ ES), /5 (2>*K(z)*> {e™} < _in [0, 27] and the Laurent’s expansions of the local func-
mp @p (/C X ) @ F1s VX 15V X ’ tions given in (18)-(20), the line integrals in (D1) are obtained anal-
Guyp = (D(Z)pG(Z)p —G<1)pD(4)p)/D(0)p7 ogous to Guinovart-Diaz et al., 2011 and the integrals sum are
represented by
G = Coon (7% — @) _ A @) [y y(1)x — OB, /@5 g2 o ¢
ep = Cap (1" = 1) = Aap | Qis /2 1" = Qi /A @ - ), / 2de, +1/ 20dé, = 7R, |ao *Z S

.,5//)3 déz-‘ri 33 dﬁ] :C1R27'E,
Gaw = [1"" = 2" = AupGuap — AepGep] [Acp " o
X(U* 0 0 B
with the vectors (3);,, = | EZ /D> |, MV dE; + i/ MV dEy = TRy | by + Z bty + b1 |,
Q%) /X(I)*’u(l)* I I k=1
. MO, + i / APdé, = diR D2
- _gﬁ;W 3 Q2< 1/4 //T(l) . &+ N & =diRym, (D2)
(D)3 = K (I3 = >\/
A(121) Ku)*#u)* 0 0
/ A Nde, +i / N Vdey = 7Ry &0+ ety + & |,
r r -
Appendix C 1 1 =
/ Odg, +i / AOdg, = fiRym,
The matrices defined in Eq. (21) are presented by the form: I I
—Az1(hy +hi2) —Azi(har — haa)  —Bai(hyr + hia)  —Bai(har — haa)  —Car(hiy + hi2)  —Ca1(hay — ha2)
Ani(hay +haz)  —Ax (b — h12) Byi(hay +haz)  —Bog(hin —hi2)  Car(har +ha2)  —Cor(hin — hy2)
= —Asq(hiy +hi2) —Asi(hor — hy2)  —Bai(hin + hiz)  —Ba(hay — hy)  —Car(hin + hi2)  —Car(hay — hy)
Aa1(ha1 + ha2) Agi(hi1 —hi2)  Bai(hor + h)  —Bai(hin — hi2)  Car(har + ) —Car(hin — hi2)
—Ag1 (M1 +hi2) —Asi1(ha1 — haa)  —Bgi(hi1 + hi2)  —Bei(hat — hz)  —Ce1(hi1 + hiz2)  —Ce1(h21 — ha2)
Asi(ha1 +ha2)  —Agi(hin —hiz)  Bei(hay + h)  —Bei(hin —hiz)  Cei(har + hye)  —Cer(hin — hia)
Ap 0 By 0 Cp O —ApWip  AppWakp  —BopWip  BypWary —CoypWiky  CopWarp
0 Ap 0 By 0 Cyp AppWaip  AopWirp  BypWaip  BopWip  CopWaip  CopWikp
Eo_ | A 0 By 0 G5 O Wi, = —ApWip  AgpWap —BaypWip  BaypWap  —CaypWikp  CapWap
P 0 -A3p 0 B3p 0 C3p ’ P -A4pw2kp A4pW1kp B4pW2kp B4pwlkp C4pW2kp C4pW1kp
ASp 0 BSp 0 CSp 0 _-AGPWlkp AGpWka _Bﬁpwlkp BGpWZRp Cﬁpwlkp CGpWka
0 ASp 0 BSp 0 CSp -A6pw2kp -AGpwlkp BGpWka BGpwlkp CGpWka CGpWIkp

12



The following equations (D2) are obtained setting in (21) for
p=1, a=1 and o = 2, respectively, according to the problem
«3L to be solved. They are necessary in order to obtain analytical
expressions for the effective coefficients.

R -R:
KR, 2(KinG1 + KiGs + KisGs),

where Fy;, Fy, F5; and A;, i =1,2,3 are constants denoted in this
form in order to simplify the notation. Moreover,

=V, 2

An G(3)1 X W+ _q E(ZS) [y (D e — Egls) Q(lzs) /X(l)*,u(l)* _ Q(lls)
(Agq = [ B |, G=|Gan |, (S)ia E&Z W Ejy rc“ 1 AR VKT - AR
Cn Gen QI -Qiy ARV —AY pr =1
X(z)* — ER) @+ — X<2>* $ D M /1@ QY @ — QP /7@ 5 0 @+
K= | EVo®e® E<2 VKD VP KK Vx KD AR @ @ - AP
Q%) X(z)*'u 15 \/X *,u Ve 2) \/X 2)*K(1)* ” \/X 'u(z)* \/X(z)*'u(l)* (1)*/#(2)* _ \/X<2)*u(2)*
[ x 0 | I 0 0  ° Hi1 = (A41B21 — A21Ba1), Hiz = (AaCo — AnCar),
Ao |a a By |b b Co |e e
21 o + kz kM | + D21 | Do + k; Mk | + C21 (€0 + ; k”/kl:| His = (Ag1Ba1 — A21Be1), His = (A61Ca1 — A21Ce1),

+ A @ + Bii by JrCn 81 = T11[0n — 1052,

Agr G0 + Z QMg | + Bar |bo + Z bk

k_
+A31 a1 + B3 bl +C31 81 = 7210 — 10a2],

+ Ca1

oS

k=1
(D3)

0 0
Ag1 |ag + Z At | + Be1 bo + Z ka]m
k=1 i L k=1

+ Asy @y + Bsy by + Cs1 81 = T31[0: — 1012],

+ Ce1

s 0
e+ ek']kl:|

k=1

then, by means of the relations defined in Wang and Ding (2006)
(Appendix A), substituting the expression of (D2) into (D1) and
using the corresponding solution of (D3), and the analytical solution
of ¢;, d; and f; obtained of (B.1), (B.2) and (B.6)-(B.8) system a sim-
ple analytical formulae for the effective properties are deduced
depending only the unknowns a,, b; and e, as it is represented in
(26) and (27). The magnitudes that appear in (26) and (27) corre-
sponding to the local problem ,3£ can be summarized as follows:

Yi =Fiy + ¢ Fi1Ai/ Az + G (Fa1 — FiiBa /Azr)
x [Hiiza — Hiolyipa /Jial/Hyy + G2 (Fs1 = FuuCar/Ao)Jvia /hhas

Yii3 = Fio + GiF12Ai/ Ax1 + G;(Faz + F12B821 /A1)
% [Hiira = HiaJyipr /J1l/Hin + Gi(Faz + Fr2Cor /Ao /J1ns

Yiis = Fizs + GF13.Ai/ A1 + ¢;(Fas + Fi3B21/ Ax1)
% [Hiira = HiaJyioq /J11] /Hun + Gi(Fas + Fi3Ca / Aan)Jvi1 /J1s

Ai = Ai + [FriHi1 — FiiBarAar — GiF2ida1 Ast) (T 11/ Az Hin)
+ [F1iB21 + GiF2iA21)(T21/Hi1)
+ [(B21H12 — C21H11) (Fii/ A21Hin)
+ GiFaiH12/Hit = GF3i](Jys/J11),

Fi =8u((V2+V3)/Ri) +
x (V3/Ra),

Fp = Sia((V2 +V3)/Ry) —
% (V3/Ra),

[Da+iyt 1C11 + D74iyt KCaz + Dirosip Kas)

CilD@+iyt Ka1 + Dz4iy1 Kaz + Dirosin Ca3)

Fiz = Si((V2+ V3)/Ry) -
x (V3/Rz),

GilD@asinn K31 + Diz1int K32 + Doyt KCss)

His = (Aa1 Azt — A Aar),
Hig = (A21B31 — A Bi),

Hig = (Az1As1 — A1 Ader),
Hi7 = (A21C31 — AaiCnr),

Hig = (A21Bs1 — Ae1B11),
Ji1 = (Hi2Hi3 — HirHya),

Hao = (A21Cs51 — A61C11),
J12 = (HisHi3 — HiHyg),

J13 = (HigHi3 —Hi1Hig),  Ji4 = (Hi7H13 — HirHao),
Jis = (Hi3(Aa1T11 — A21T21) — Hi(Ae1 711 — An731)).
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