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Vector Control Method Applied  
to a Traveling Wave in a Finite Beam

Frédéric Giraud, Member, IEEE, Christophe Giraud-Audine, Member, IEEE, Michel Amberg, 
and Betty Lemaire-Semail, Member, IEEE

Abstract—This paper presents the closed-loop control of 
exciters to produce a traveling wave in a finite beam. This 
control is based on a dynamical modeling of the system es-
tablished in a rotating reference frame. This method allows 
dynamic and independent control of the phase and amplitude 
of two vibration modes. The condition to obtain the traveling 
wave is written in this rotating frame, and requires having 
two vibration modes with the same amplitude, and imposing a 
phase shift of 90° between them. The advantage of the method 
is that it allows easy implementation of a closed loop control 
that can handle parameter drift of the system, after a tempera-
ture rise, for example.

The modeling is compared with measurement on an experi-
mental test bench which also implements real-time control. We 
managed to experimentally obtain a settling time of 250 ms for 
the traveling wave, and a standing wave ratio (SWR) of 1.3.

I. Introduction

Researchers have devised many applications for
high-frequency traveling waves. For example, they 

can convey a small carriage over a stator rail in a linear 
motor [1]–[3]. In that case, the elliptical motion of the vi-
brating stator drives the mechanical load directly, which is 
a simple solution compared with a rotary-to-linear move-
ment transformation stage. They also can be used in peri-
staltic pumps [4] because the traveling wave micropumps 
are then free of rubbing parts. A traveling wave in a small 
cylindrical tube can also be obtained, and Sun et al. [5] 
used a combination of radial and axial modes of the tube, 
with specific driving conditions.

In general, the mechanical arrangement of such sys-
tems is quite simple. In fact, two exciters are used, one 
produces the vibration and the other absorbs the reflected 
wave. By swapping the role of the two exciters, a traveling 
wave in the reverse direction is obtained. However, to real-
ize this, some conditions must be fulfilled, or no traveling 
wave propagates. These conditions have been studied in 
many papers. For example, Kuribayashi [6] described a 

methodology to design the system, to choose the beam 
length and where to place the exciters on the beam. He 
also connected a resistor to the second exciter to dissipate 
the energy of the propagated wave. However, the practi-
cal realization of this solution suffers from poor efficiency, 
because a large amount of energy is lost into the resistor.

Therefore, some authors prefer an active sink instead 
[7]. In that case, the tuning of the exciters—their supply 
voltage, frequency and phase shift—becomes complex to 
obtain the traveling wave. The analytical solutions for a 
traveling wave in a string, a beam, and a membrane are 
given in [8]; the authors calculate the analytical expression 
of the applied forces to obtain a pure traveling wave in an 
undamped medium. They also show that it is sufficient to 
excite ten modes only; the other modes’ contribution can 
be neglected. In [9], Dehez et al. proposed an optimization 
procedure. For their study, they first choose two neighbor-
ing vibration modes, which should be prominent. Then, 
they calculate the participation factors of a finite number 
of vibration modes above the chosen ones. They adjust 
their parameters through an optimization loop so as to 
make those factors as close as possible to those of the Fou-
rier series coefficients of a square wave. In [10], Minikes et 
al. developed methods for identification and tuning of the 
traveling wave, or for multiple traveling waves [11]. They 
used a sensor array to measure the deformation amplitude 
and phase at specific points, then, an ellipse is fitted to 
the graph in the complex plane. If a pure traveling wave 
is obtained, then the fitted ellipse becomes a circle. Once 
again, they adjust the values of the excitation parameters 
through an online optimization process to reach the ideal 
case.

These methods can be off-line [8], [9], which means that 
the excitation is calculated before the experimental runs, 
or on-line [10] and can thus adapt themselves to variation 
in the operating conditions. However, their tuning proce-
dure is based on steady states, and dynamic performances 
are not studied.

The method presented in this paper proposes to dy-
namically tune the two exciters to obtain a traveling wave 
in a slightly damped beam. The control algorithm relies 
on a model which is obtained from the theory of vibration 
in a beam, and which is detailed in the first section of this 
paper. After having verified this model through an experi-
mental study, we establish this model in a rotating refer-
ence frame, to obtain constant-state variables at steady 
state. A specific closed-loop control is then deduced for 
our application, the performances of which are experimen-
tally verified.



II. Beam Theory

A. Mode Shape

In this study, we consider the forced vibration of the 
finite beam shown in Fig. 1. The transverse vibration of 
a uniform elastic homogeneous isotropic Euler–Bernoulli 
beam is described by the following differential equation 
[12]:
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where E is the Young’s modulus of the beam, I is the 
quadratic momentum of the beam, A is the cross section 
and ρ is the mass per unit volume of the beam, ra is a 
coefficient of the external damping, w(x) is the beam’s 
deflection at point x and time t, and p(x, t) is the load per 
unit length.

With a pure harmonic and concentrated excitation, the 
load p is written as p(x, t) = F x x e j tδ ω( )1− , where δ(x) is
the Dirac’s delta function and j2 = −1. The deflection is 
then considered as purely harmonic, and if we introduce w  
such that w is the real part of w, we can write

w x t W t x e j t( , ) = ( ) ( )Φ ω . (2)

In (2), W  includes both amplitude and phase of the deflec-
tion of the vibration. We should note that although ω is 
constant in the study, W t( ) may vary with time. Thus, we 
not only consider the steady operation, but the transient 
as well. Moreover, w  is given for the deformation shape of 
the vibration Φ(x) which is normalized. Eq. (3) shows an 
example of a condition of normalization of the mode 
shape:

0

2( ) = 1
L
A x x∫ ρ Φ d . (3)

The solution of (1) can be found in [9], [12], and will not 
be discussed in this paper. We note however, that we can 
analytically calculate the deflection for a particular posi-
tion, as presented in Fig. 2. In this figure, we depict the 
deflection calculated at x = 0.29 m for an aluminum beam 
of 6 × 6 mm cross section and with L = 0.48 m. We also 

depict the experimental response of the beam, which is 
measured with a laser interferometer.

The analytical and experimental responses do not ex-
actly match, despite some parameter adaptation done for 
this figure. This is mainly due to the analytical model-
ing, which considers an Euler–Bernoulli beam, which is 
not completely verified. However, differences are accept-
able within the scope of this paper, because the proposed 
control doesn’t require accurate parameter estimation. 
Furthermore, we show that beam’s deflection has maxi-
mum values for particular excitation frequencies. These 
frequencies are known as eigenfrequencies, for which the 
beam has a specific shape, the so-called normal mode or 
modal shape. These deformation mode shapes refer to the 
function Φn(x), and they can be found either from analyti-
cal study, or more conveniently, from finite element model-
ing. Fig. 3 presents the deformation mode shapes for the 
two modes at 17 500 and 19 440 Hz (analytical).

Actually, under normal load excitation, every vibration 
mode is excited in the beam, but with different deflection, 
namely Wn. Eq. (2) is, in fact, an approximation of the 
beam’s deflection around the vibration modes, and must 
be changed to

w x t W x e
n

n n
j t( , ) = ( )

=1

∞

∑ Φ ω . (4)

The deflection W n  depends on frequency. For example, 
they are maximal for the eigenfrequency ω0n and the de-
formation which is then obtained corresponds to the func-

Fig. 1. The studied beam is supposed to be free at its ends and a sinu-
soidal load F t( ) is applied at x = x1.

Fig. 2. Deflection amplitude as a function of frequency at x = 0.29 m 
with x1 = 0.196 m and L = 0.48 m; comparison with experiment.

Fig. 3. Calculated deformation mode shape Φ(x) at 17 500 and 19 440 Hz.



tion Φn(x). Fig. 4 shows the deflection W n  for the mode at 
19 440 Hz. As can be seen, this deflection follows the fre-
quency response of a resonating low-pass filter: it is almost 
constant for ω < ω0n and then drops to 0 for ω > ω0n.

Hence, the participation of a mode to the deformation 
of a beam is dominant if the working frequency is close to 
the eigenfrequency of this mode (i.e., ω = ω0n), significant 
if the working frequency is lower than this eigenfrequen-
cy (i.e., ω < ω0n), and negligible for working frequencies 
above the eigenfrequency (i.e., ω > ω0n). This property is 
important and will be used later in this paper.

B. Conditions to Obtain a Traveling Wave

To produce a traveling wave, a second exciter is placed 
on the beam at distance x2. This configuration is described 
in Fig. 5.

Under certain supply conditions of the two exciters, it 
is possible to obtain a traveling wave. These conditions 
include adequately choosing the supply pulsation ω and 
the two forces F 1 and F 2.

In principle, the idea is to use two neighbor modes a 
and b and to excite these two modes simultaneously, but 
shifted in time by 90°. In fact, when we consider the two 
deformation shapes in Fig. 3, we observe that they are 
close to sinusoidal shapes, and that they are almost space 
shifted by 90°, roughly in the region 0.2 m to 0.3 m in the 
middle. This condition can lead to a traveling wave, as 
presented in [10]. To obtain the two modes, we choose ω 
between the two eigenfrequencies: the lower mode is not 
too attenuated, whereas the higher one is significant.

These two modes are necessary, but not sufficient. In 
fact, we observe in the same Fig. 3 that the two modes are 
not phase shifted by 90° near the end of the beam. Conse-
quently, if they were alone, they would not produce any 
traveling wave in that region. However, experimental stud-
ies in literature reported a traveling wave between the two 
exciters, and not only in the middle of the beam. This 
consideration illustrates the effect of the modes above the 
two chosen ones. Dehez et al. [9] have shown that they 
have influence in the ends and not in the middle of the 
beam. In this paper, we will consider that if the two modes 
a and b have the same amplitude and are phase shifted by 
90° (Wa = jW b), a traveling wave in the beam results. 
However, Gabai and Bucher [8] point out that perfect 

traveling wave is obtained when a large number of modes 
is taken into account; then, we expect to have an imper-
fect traveling wave in our case. This point will be quanti-
fied by experimental tests.

Studies reported in the bibliography do not control the 
two modes a and b directly: F 1 and F 2 are tuned until a 
perfect traveling wave is obtained, through an optimiza-
tion algorithm, for instance. In this paper, we propose a 
method to directly control the two vibrations of the two 
modes a and b. This control relies on a model which is first 
presented, and then the control scheme is deduced and 
implemented on an experimental test bench.

III. Dynamic Modeling of the Beam

The purpose of this section is to propose a model which 
allows us to calculate the evolution of the vibration ampli-
tude of the modes a and b, and the phase shift between the 
two modes. In this section, we first apply beam theory to 
obtain a model which is confirmed by simulation results.

A. Modeling in a Fixed Reference Frame

This section deals with the evolution of the instanta-
neous vibration amplitude for the two modes. For that 
purpose, let w tk( ) = W t ek

j t( ) ω , with k = {a, b}. This is
equivalent to considering w tk( ) as a rotating vector in a 
fixed frame, as depicted in Fig. 6. The length of this vector 
is W k , and the projection on the real axis is the actual 
value which can be measured experimentally. Finally, the 
difference of the arguments of W tk( ) represents the phase 
shift between the modes.

Fig. 4. Calculated deformation Wn as a function of frequency for the 
mode at 19 440 Hz. Fig. 5. The beam and its exciters to produce a traveling wave.

Fig. 6. Representation in a fixed reference frame.



Projecting (4) onto each mode [13], we obtain
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For sake of simplification, we define:

•	the modal mass mk = ρA x x
L
k0
2( )∫ Φ d ,

•	the modal damping dsk = r x xa
L
k0
2( )∫ φ d , and

•	the modal stiffness ck = EI x x x x
L
k k0

4 4( ) ( )∫ Φ Φ(( ) ( )) .d / d d

The participation Ka1 and Ka2 of each force F1 and F2 for 
mode a are defined as
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Hence, the participation of F1 and F2 is equivalent to the 
participation of a virtual modal force F a = ( 1 1K Fa  + 
K Fa2 2). In the same way, we define F b = ( 1 1K Fb  + K Fb2 2). 
This shows the importance of localization of the actuators. 
Indeed, if they are placed in locations such that Φa(x1) = 
Φa(x2) = 0, it becomes impossible to excite the mode a. Of 
course, the same conclusion holds for mode b. Finally, we 
introduce the matrix Kab, defined by

F
F

x x
x x

F
F K F

F
a

b

a a

b b
ab( ) ( ) ( ) ( )= ( ) ( )

( ) ( )
. =1 2

1 2

1

2

1

2

Φ Φ
Φ Φ

.	 (7)

According to these definitions, (5) is then revised into

m w d w c w F ea a sa a a a a
j t�� �+ + = ω . (8)

In the same way, we obtain for the mode b

m w d w c w F eb b sb b b b b
j t�� �+ + = ω . (9)

Finally, the vibration amplitude for the two modes, and 
their phase shift, can be calculated using (8) and (9), by

W t w ek k
j t( ) = − ω . (10)

Hence, (6), (8), and (9) describe the evolution of the 
vibration amplitude for the two modes a and b. These 
equations yield a model which can be represented by way 
of a causal ordering graph (COG), as shown in Fig. 7. In 
principle, only equations using integral relations (ellipses 
with single arrow) or relations independent of time (el-
lipses with double arrow) can be used [14]. Hence, the 
equations are revised into 

•	RK: F K F K Fk k k= 1 1 2 2+ ,
•	Rθ : f F f Fe ea a b b

j t j t= =ω ω, ,

•	Rk1: �w m tf fk
k

k ek=
1
( )∫ − d ,

•	Rk2: f c w tek k k= ∫ � d ,
•	Rθ−1: W w ek k

j t= − ω ,

with k ∈ {a, b}.
To validate the model, we compare in Fig. 8 measure-

ments on the aluminum beam to the model. We compare 
the actual value of w(t), which is sinusoidal, and the simu-
lated value of the deflection amplitude W(t) which repre-
sents the amplitude of w(t) (see Appendix A for a descrip-
tion of the test bench). The measurements on the beam 
were made with a laser interferometer which measures the 
vibration speed instead of the deflection. We thus compare 
�w x t( , ) for the simulation and the experimental study when 
F2 = 0 and F1 is step varying. For the three runs, the ex-
perimental conditions were: 

•	case a: the frequency corresponds to the eigenfrequen-
cy of mode a and the step value for F1 = 1N,

Fig. 7. The causal ordering graph of the system. 

Fig. 8. Comparison between modeling and the experimental output at 
x = 0.29 m.



•	case c: the frequency corresponds to the eigenfrequen-
cy of mode b and the step value for F1 = 1N,
•	case b: the frequency is at the middle of modes a and
b, with a step value for F1 = 3N.

The other parameters of simulations are kept constant.
The simulation is found to be consistent with the ex-

perimental study, validating the approach. However, this 
modeling is established in a fixed frame, and state vari-
ables are sinusoidal functions of time. However, in this 
paper, we are interested in the evolution of the deflection 
amplitude and the phase shift of these variables. This is 
why, in the next section, the modeling is modified, and 
presented in a rotating reference frame.

B. Modeling in a Rotating Reference Frame

We have defined wk as two complex numbers. Conse-
quently, W k are the coordinates of wk in a rotating refer-
ence frame attached to ejωt. The rotating reference frame 
is named (d, q) and is attached to ejωt as shown in Fig. 6.

For steady-state operation, W k are constant; hence, the 
affixes of wk are along a circle in the fixed frame. However, 
for the most general case, W k depend on time and the 
positions of their affix vary in the rotating frame.

The purpose of this section is to obtain the dynamic of 
W k directly, without calculating wk for the general case. 
We first calculate each derivative of wk :

d
d
w
t j W W ek

k k
j t= ( )ω ω+ � , (11)

and

d
d

2

2
2= ( 2 )

w
t

W j W W ek
k k k

j t− + +ω ω ω� �� .	 (12)

Substituting (11) and (12) into (8) leads to

m W d m j W

c m j d W K F
a a sa a a

a a sa a a a

�� �+ +

+ − +

( 2 )

[( ) ] =2

ω

ω ω ,
	 (13)

where we also simplified left and right by ejωt. This equa-
tion is linear and can be solved, because ω is constant. 
However, for the sake of simplification, we make the as-
sumption that �Wa  ≪ ωWa  and ��Wa  ≪ ω �Wa ; this can
be acceptable if the dynamic of Wa is limited by ω. Then, 
the terms d Wsa a

�  and m Wa a
��  can be neglected, compared

with d Wsa aω  and m Wa aω � , respectively. One consequence is
that the closed-loop dynamic proposed in this paper will 
have to be tempered to fulfill this condition. Finally, (13) 
can be simplified into

2 [( ) ] =2m j W c m j d W K Fa a a a sa a a aω ω ω� + − + .	 (14)

We now project (14) onto axes d and q of the rotating 
frame. For that purpose, we define Wa = Wad + jWaq, and 
F a = Fad + jFaq, as illustrated in Fig. 9.

Moreover, we separate the imaginary part and the real 
part of this equation, leading to two new equations:

− − − −2 = ( )2m W d W F c m Wa aq sa aq ad a a adω ω ω� 	 (15)

2 = ( )2m W d W F c m Wa ad sa ad aq a a aqω ω ω� + − − .	 (16)

As can be seen, this model can be explained as follows:

•	Fad controls Waq, and Wad produces a perturbation,
•	Faq controls Wad, and Waq produces a perturbation.

Moreover, for steady state operations, �Waq = 0 and �Wad  = 
0, and hence, Fad and Faq are constant over time.

A new COG is drawn in Fig. 10, where Rad refers to 
(15) and Raq to (16). We also represented the equation 
for mode b, Rbd and Rbq being given for similar equations.

This model is then compared with simulation in Fig. 
11 for a step variation of F1 from 0 N to 3 N. We have 
chosen the frequency corresponding to mode a, and then 
to mode b; indeed, for these frequencies, the cross-cou-
pling between axes d and q is removed, yielding a first-
order type response to step variation of the forces. This is 
clearly confirmed by the experimental test, which shows 
responses close to the model.

The advantage of this model is to use variables which 
are constant at steady state, and not sinusoidal functions 
of time. This makes the control easier, and we can now de-
vise controls imposing the amplitude and phase of the two 
modes a and b. The next section presents such a control.

Fig. 9. Representation in a rotating reference frame.

Fig. 10. Causal ordering graph in the rotating reference frame. 



IV. Control of the Traveling Wave

A. Control of Wa and W b

The working frequency is fixed, and chosen between the 
eigenfrequency of the two modes. We must control Fkd and 
Fkq to obtain

W jWa bref ref= (17)

automatically. In this way, no optimization loop is neces-
sary at this point to obtain the traveling wave. Hence, the 
four vibration amplitudes must be controlled.

First, we choose to align the rotating frame on mode a. 
This condition leads to Wadref = 0 and Waqref = W, and 
also Wbdref = W and Wbqref = 0. The position of the ampli-
tude reference can be represented in the rotating reference 
frame, as depicted in Fig. 12.

Four control loops are needed, two for mode a (axes d 
and q), and two for mode b (axes d and q also). Integral-
proportional controllers are used. The decoupling of the 
two axes is achieved by imposing very different settling 
times: the dynamics of Wbd and Waq are set faster com-

pared with the dynamics of Waq and Wbd, respectively, to 
align the vectors Wa and W b on their axes.

The closed-loop control of mode a is thus represented in 
Fig. 13, and for purpose of illustration, we give in (18) the 
computation of the force Faqref for the amplitude reference 
along axis q of mode a, Waq, with s the Laplace variable:

F K T s W Wda paq
aq

aq aqref ref= 1
1
( )+







 − .	 (18)

Finally, the input forces F1 and F2 are calculated using 
(7), giving:

F
F K

F jF
F jFab
ad aq

bd bq

1

2

1=( ) +
+









−( ) .ref ref

ref ref
	 (19)

B. Experimental Results of the Control of Modes a and b

For the beam under study, we have chosen the mode a 
at f = 17900 Hz and the mode b at f = 20 200 Hz. We have 
fixed the working frequency in the middle of the eigenfre-
quencies of mode a and mode b, which is f = 19 050 Hz. 
We then applied a step variation of Waqref while the other 
variables are kept constant and equal to 0. We recorded 
the variation of the vibration amplitude, as well as the 
forces F a and F b. The results are presented in Fig. 14.

The results show a closed-loop response time of 250 ms 
for Waq, which will be also the settling time of the travel-
ing wave. Moreover, we can see how axis d and axis q are 

Fig. 11. Simulation (light) compared with experiment (bold), in the case 
of step variation of F1 from 0 N to 3 N, at the frequency of mode a (top) 
and mode b (bottom).

Fig. 12. Amplitude references for modes a and b in the rotating refer-
ence frame.

Fig. 13. Closed-loop control for axis q of mode a.

Fig. 14. Transient response to step variation of Waqref from 20 nm to 
70 nm. 



coupled, because variation of Waq produces a variation of 
Wad immediately. The corrector of axis d detects this vari-
ation, and changes Faq to compensate for the coupling 
produced by axis q. After 100 ms, Wad returns to 0, and 
Wa is then aligned on axis q again. Mode b is not affected 
by these changes, which is a consequence of the decoupling 
of the modes through the use of forces Fa and Fb, as shown 
by the graph of Fig. 10.

We also present the same trial for mode b in Fig. 15, 
showing a similar behavior.

C. Experimental Results of the Control of the Traveling 
Wave in Steady-State

We now control Wa and W b to obtain a traveling wave. 
We conducted two test runs, each at a different frequency. 
For the first test run, we have chosen f = 19 050 Hz, which 
is exactly in the middle between the two modes. For the 
other one, we have chosen f = 19 200 Hz, a value closer to 
the mode b, to check whether or not a traveling wave 
could be obtained. The results for the two frequencies con-
ditions are presented in the space-time plane in Fig. 16, 
and in the rotating reference frame in Fig. 17.

For each test run, the vibration amplitude of each mode 
is placed on the right axis, and the condition Wa = jW b is 
fulfilled. The forces Fa and Fb must be adapted to obtain 
this condition. For f = 19 050 Hz, this condition results in 
two modal forces with almost the same amplitude, and 
phase shifted by approximately π/2, leading to F a � jF b. 
We can note here that this does not lead to F 1 = jF 2 
necessarily; indeed, we obtained for this run F 1 = −0.23 
+ 0.18j and F 2 = 0.15 + 0.14j. This is due to the matrix 
Kab−1, which combines the two modal forces to obtain the 
forces to apply on the beam. Hence, the forces to apply on 
the beam to obtain a traveling wave depend on the loca-
tion of the exciters, which modifies Kab. This conclusion is 
found to be consistent with [10].

For f = 19 200 Hz, the operating point is closer to mode 
b, and farther to mode a. The two modal forces F a and F b 
must adapt to these new conditions: Fa must increase be-
cause the participation of the mode a decreases for fre-
quencies above its eigenfrequency, as shown in Fig. 4. This 
is automatically obtained thanks to the control of Wab. 
Consequently, with this method, the control automatically 
adapts the two exciters’ supply to obtain the traveling 
wave, through a closed-loop control which responds in 
250 ms.

We then measured the deflection at several positions 
on the beam to estimate the SWR. Measurements were 
carried out over 30 cm in the middle of the beam, and a 
spline interpolation was made between the measurements. 
The results are presented in Fig. 18.

Hence, the traveling wave is not perfect, despite the 
condition Wa = jW b. To decompose the motion into the 
traveling and standing components, [15] proposes to fit 
the measured complex amplitude by an ellipse. With this 
method, we found SWR = 1.27 at f = 19 050 Hz and SWR 
= 1.30 at f = 19 200 Hz. A perfect traveling wave would 
result in SWR = 1.0. These higher values obtained in our 
case can be due to several reasons.

For instance, the condition Wa = jW b could be badly 
set, but Fig. 17 shows that is not the case thanks to the 
control loop.

Still, the values of Wa and Wb could be badly estimated 
in our test bench. In this case, although the control per-

Fig. 15. Transient response to step variation of Wbdref from 10 nm to 
50 nm. 

Fig. 16. Deflection as a function of time and space for the two frequency conditions (interpolated).



forms correctly in the rotating frame, a steady-state error 
would remain in the fixed frame. Another explanation is 
that, for this operating point, the modes higher than mode 
b may have a negative influence on the SWR. However, we 
note that the SWR is not improved, nor increased when 
changing the frequency. Indeed, changing the frequency 
also changes the repartition of the modes above b.

In this paper, we settle for the values of SWR experi-
mentally found, and we do not try to obtain a better SWR, 
which would lead us to modify the position of the exciters, 
as shown in [9] and [10]. We note, however, that despite 
the change in frequency, the SWR of the traveling wave is 
found to be almost constant for the two runs. Hence, the 
method allows a traveling wave to be obtained at different 
frequency conditions, as shown in Fig. 16, which presents 
the deflection measured with a laser interferometer as a 
function of time and the position. The two figures are very 
similar.

We have presented our results on steady-state opera-
tions, and we have shown that the control can adapt to 
different conditions of frequency without changing the 
SWR. The next section of the paper deals with the tran-
sient response of the control.

D. Direction Change of the Traveling Wave

Opposite direction of the traveling wave can be ob-
tained by setting an opposite value for Waref or W bref. This 
is experimentally checked and presented in Fig. 19, when 
Wbdref = −Wbdref.

This figure shows the transient response time; we can 
observe that a direction reversal is obtained in 150 ms. We 
also show the trajectory in the rotating reference frame of 
the vectors Wa and W b; Wa is not affected by the direction 
change, because only Wbref is reversed. Moreover, at the 
end of the direction change, the two vectors are in quadra-
ture.

Fig. 17. Diagram in the rotating reference frame of the vibration ampli-
tude and the forces for two frequency conditions. 

Fig. 18. (a) Deflection as a function of space and for 15 different instants (interpolated) (b) complex deflection and the fitted ellipses; stars represent 
the actual measurements.



E. Frequency Change of the Traveling Wave

In this test run, we test whether the method is ro-
bust regarding frequency changes. For that purpose, at t 
= 0.05 s, the frequency of the traveling wave is changed 
from f = 18 500 Hz to f = 19 500 Hz. The results presented 
in Figs. 20 and 21 show no unstable behavior: the defor-
mation amplitude of modes a and b return to their refer-
ence values after the perturbation. Mode b is clearly more 
sensitive to this perturbation. This may be due to the fact 
that in this run, the frequency reaches a value which is 
very close to the resonant frequency of mode b: the modal 
forces must adapt accordingly.

V. Conclusion

This paper presents a vector control of two vibration 
modes to obtain a traveling wave in the middle of a rect-

angular beam. For that purpose, a specific model in a 
rotating reference frame is established. In this reference 
frame, the vibration amplitudes of the two modes are rep-
resented by vectors whose magnitudes are the vibration 
amplitudes, and the angular position is the associated 
phase. A validation of this model was proposed by com-
parison with experimental runs.

Then, a control based on this model was presented. It 
was used to control the magnitude and the phase of the 
vibration amplitude of the two modes to obtain the travel-
ing wave. We obtained an SWR of 1.3 for two frequency 
conditions. This result was obtained over 31 cm in the 
middle of the beam, corresponding to approximately 66% 
of the total length. Dynamic responses to direction change 
or frequency change were also presented. The advantage 
of the method is that it doesn’t need an optimization loop 
to tune the excitation parameters of the actuators, which 
leads to a dynamic behavior.

This result was obtained by controlling two modes only, 
which are measured in the middle of the beam, where 
the higher modes have less influence. On one hand, this 
clearly changes compared with some authors’ conclusions, 
which advise optimization of the participation of up to ten 
modes. On other the hand, we measured the same SWR 
for two frequencies, and then with other participation of 
the higher modes, showing that for the studied beam, 
these higher modes don’t have a strong influence. This is 
why we think that the proposed method can produce a 
traveling wave on other beams, but with non-optimized 
SWR. Further work should clarify this point.

Appendix A 
The Experimental Test Bench

The experimental verification was carried out using the 
experimental test bench of Fig. 22. The constitutive ele-
ments of the test bench are shown in Fig. 23. The beam 
used in this experiment is a 6 × 6 mm square beam with 

Fig. 19. Direction change of the traveling wave at t = 0.02 s. 

Fig. 20. Transient response of the vibration amplitude to a frequency 
change f = 18 500 Hz to f = 19 500 Hz. 

Fig. 21. Response of the system in the rotating reference frame to a fre-
quency change from f = 18 500 Hz to f = 19 500 Hz. 



L = 493 mm. Two piezoelectric actuators are used to ex-
cite the beam. We used two multistack actuators (CMAP, 
Noliac, Kvistgaard, Denmark). These actuators have a low 
rated voltage (about 30 V) and a resonating frequency 
well above our working frequency (700 kHz). Thus, we 
consider that the forces F1 and F2 are directly propor-
tional to the supply voltages applied to the piezoelectric 
actuators named V1 and V2. The actuators are clamped 

on the beam by using two specific clamps. The actuators 
are supplied by two linear amplifiers.

A DSP f2812 (Texas Instruments Inc., Dallas, TX) 
equipped with a digital-to-analog converter produces the 
voltage references to the amplifiers. In the DSP, a direct 
frequency synthesizer is running, and produces two signals 
proportional to r(t) = cos (ωt) and i(t) = sin (ωt). These 
two signals are then multiplied by the real and imaginary 
parts, respectively, of F 1. The same computation is also 
achieved for F 2. Hence, it is possible to not only synchro-
nize the forces F1 and F2, but we can also impose their 
real and imaginary parts.

We also measure the deformation amplitude at specific 
points xA and xB with piezoelectric patches bonded on the 
beam. These patches are used as sensors because the volt-
age they produce is directly proportional to w(x, t). The 
analog-to-digital conversion is synchronized on the signals 
r and i of the synthesizer. This way, we can measure the 
real and imaginary parts of these signals. A method de-
tailed in the next section is used to deduce Wa and W b 
from these measurements.

Fig. 23 presents an overview of the experimental setup.
Finally, a control GUI made using Matlab (The Math-

Works Inc., Natick, MA) was created to easily control the 
parameters of the DSP. A laser interferometer is used to 
identify the deformation along the whole beam.

Appendix B 
Identification of Wa and Wb

To achieve the estimation of each mode’s vibration am-
plitude, Riaz and Feeny [16] propose a method based on 
the proper orthogonal decomposition of the beam by writ-
ing a matrix Φ, which is based on the measurement of 
the displacement at several position and the deformation 
mode shape. A minimum number of sensors equal to the 
number of modes to be identified is required.

In this paper, we assume that in the measurements we 
only have contributions from the two wanted modes a and 
b, the others being negligible. We then need two sensors, 
which are piezo patches located at x = xA and x = xB. 
Hence, we can write:

W x t W x e W xm m a a m
j t

b a m( , ) = ( ) ( )Φ Φω + ,	 (20)

where m = {A, B}. This yields

W
W

W
WAB
a

b

1

2
=( ) ⋅ ( )Φ , (21)

where

Φ Φ Φ
Φ ΦAB
a A b A

a B b B

x x
x x= ( ) ( )
( ) ( )( ). (22)

Fig. 22. Experimental test bench showing the studied beam, the exciters 
and the voltage amplifier. 

Fig. 23. Architecture of the experimental setup.



We then choose to place the sensors in positions such that 
ΦAB is nonsingular. Then, it is possible to calculate the 
two contributions of each mode, by

W
W

W
W

a

b
AB( ) ⋅ ( )−= 1 1

2
Φ . (23)

Hence, the identification of Wa and W b can be obtained 
from the measurements of the deformations at xA and xB 
given the deformation mode shapes Φ(x) at each position.

In Fig. 24, we present the results of the estimation. For 
that test, we choose two working frequencies to obtain 
modes a and b successively. We also chose to supply actua-
tor 1 or 2 independently.

From this figure, we can see that when we supply the 
actuators at the resonance of mode a, then we have W b 
which is very small compared with Wa and vice versa. 
Moreover, when we compare the cases where F2 = 0 to the 
cases where F1 = 0, we obtain two results symmetrical for 
W b, while they are almost concentrated for Wa. This is 
due to the fact that mode a is a symmetric mode, and thus 
Φa(x1) = Φa(x2) (because we chose x2 = L − x1), and thus 
Ka1 = Ka2, whereas mode b is antisymmetric, leading to 
Kb1 = −Kb2. The results found are thus consistent with 
the theory, and we have a way to identify the deformation 
amplitude for each mode.
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