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Modelling of forging processes assisted by
piezoelectric actuators :

principles and experimental validation
T. H. Nguyen, C. Giraud-Audine, B. Lemaire-Semail, G. Abba, R. Bigot

Abstract—This paper presents the modelling of a forging
processes assisted by a piezoelectric actuator (PA), which is
used to generate specific low frequency vibration waveforms.
Experimental results show that such waveforms reduce the
necessary forging force during upsetting tests. The main prob-
lems which remain are defining the appropriate waveforms,
predicting their influence on the process and the actuator and
designing the control. Due to the complexity of the interactions
between the different components of the system, a complete
model of the process is needed. Such a model is developed
here using an energetic macroscopic representation to preserve
causality throughout the modelling. Simulation results are then
compared to representative experimental results.

Index Terms—Energetic Macroscopic Representation, Forg-
ing, Graphical models, Modelling, Piezoelectric actuator

I. NOMENCLATURE

Displacement q [m]
Force generated by PA F [N]
Piezoelectric force FC [N]
Elastic force FS [N]
Forging load FM [N]
Electrical charge Q [C]
Voltage U [V]
Current entering the actuator i [A]
Motional current iC [A]
Stiffness of PA KS [Nm ]
Electromechanical conversion factor KC [Cm ]
Electrical capacitor of PA C [F]
External radius of workpiece re [m]
Height of workpiece h [m]
Coulomb coefficient µ [-]
Flow stress σ0 [Pa]
Material yield stress σy [Pa]
Hardening stress σH [Pa]
Viscous stress σv [Pa]
Material strain ε [-]
Material strain in plastic domain εp [-]
Material strain in elastic domain εe [-]
Young’s modulus E [Pa]
Hardening modulus H [Pa]
Dynamical viscous coefficient η [Pa.s]
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II. INTRODUCTION

During the last few decades, the use of vibrations in
forming processes has caught the attention of different
researchers. Such vibrations, superimposed to the normal
movement of the die, cause some reduction of the required
force. In the seminal experiment published by Blaha [1],
ultrasonic sinusoidal vibrations (10-15 kHz) were applied
by a Langevin resonator to a zinc specimen during a tensile
test. The results are presented on Fig.(1).

Fig. 1. Stress-strain curve of zinc crystals under ultrasonic action [1]

Since then, other researchers have reproduced this phe-
nomenon on different forming processes. Along with the
reduction of the mean processing effort, vibrations have
been reported to have other beneficial effects, such as
the improvement of the surface’s quality. The effect of
ultrasonically oscillating dies in longitudinal mode studied
on wire drawing by Siegert and Möck [2] and then on
tube drawing by Siegert and Ulmer [3] gives the reduction
of drawing force in function of the amplitude and the
improvement of surface’s quality. Later, Marakawa et al.
[4] found the deformation resistance of the stainless steel
wire reduced and the wiring performance improved when
the ultrasonic vibrations is applied to the die radially. In
the extrusion process, Mousavi et al. [5] investigated the
effects of extrusion speeds, vibration amplitude, vibration
frequency and frictional conditions on the extrusion force
by using the finite element method. Recently, the press
forming is also surveyed by both of numerical simulation and
experiment by Ashida et al. [6]. In this study, the wrinkling
and cracking phenomenon is avoided due to the use of
ultrasonic vibrations. Another recent research by Huang
et al. [7]–[10] on the compression tests of plasticine and
aluminium specimens reported the force’s reduction during
the application of ultrasonic vibrations. This phenomenon
also gives the similar effect in the microforming [11]. The



studies of using ultrasonic vibrations in micro-extrusion [12],
micro-upsetting [13] show a significant load’s reduction and
substantial improvement in the surface of the microforming
parts.

The experiments or simulations presented in the previous
works were conducted with ultrasonic sinusoidal vibrations.
However, recent results seem to indicate that low frequency
waveforms and low amplitude can have a similar effect [14]–
[16]. This observation is important as it means that a wider
range of waveforms can be used. This also indicate that the
power requirement are modest. In this case, the Langevin
resonator is not necessary any more and as a consequence,
a broader bandwidth is possible. The requirement for the vi-
brating assistance are therefore low frequencies, high forces
and low power, where piezoelectric stack actuators are a
good solution. They also have high stiffness and high force
by volume unit. It is thus possible to integrate such actuators
due to their compact size.

However, the effectiveness of this effect is affected by
many other complicated factors. Izumi et al [17] observed
the dependence of the flow stress’s reduction on the char-
acteristics of materials and the compression velocity during
the compressive deformation of different metals superim-
posed by ultrasonic vibration. The reduction was related to
different material’s parameters in this survey. Many other
researches in numerical and experimental methods [18]–[21]
have been carried out to find out the parameter’s influence
for different processes but a full model for mechanism’s
explanation has not been achieved.

Moreover, the global energetic reduction of the whole
process has not been defined and optimised because of com-
plexity of the interaction between the different components
in the process and their own comportments. Mainly, the
load is very non-linear due to the plastic behaviour of the
workpiece. Therefore, there is a need for simulation of the
whole process in order to:

• Evaluate the effects of a specific waveform on the
forging force,

• Estimate the effect of vibrations on different materials,
• Study the perturbation of the load on the actuator,
• Design the control for the process,
• Predict the interaction with the power supply,
• Investigate the sophisticated interaction’s model be-

tween material and environment.
The contribution of this paper is to propose a model of the

complete forging process using the assistance of vibration,
that can be exploited to study the effect of low frequency
waveform on the process. The description of the process is
exposed in the first section. The second part deals with the
modelling principles that will be explained and then applied
to the different parts of the system. Some simulation results
and comparison with experimental results are presented in
the third part.

III. EXPERIMENTAL SYSTEM

A. Experiment setup

The process studied is the upsetting of a cylindrical
workpiece. Fig.10 shows the experimental equipment used
for the test that will be compared to the simulation results. A
workpiece is placed between two dies fixed to the machine.
The upper die is assumed to move down at constant speed,

while the lower die is animated by periodic vibration due to a
device integrating a PA. Since the two steel dies are assumed
to be rigid, the relative displacements of the two workpiece
surfaces are calculated from the displacements of the two
dies, which are measured by displacement sensors. The force
generated by the PA is measured by a force sensor between
the lower die and the vibrating device. The measured signals
of voltage, current and force are passed through a 4th

order 1 kHz-anti-aliasing filter before being sampled by an
acquisition card at 2 kHz, which is synchronised with the
counter card that acquires the displacement measurements.
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Fig. 2. Experimental setup

The specific elements of equipment are listed in table I.

TABLE I
EXPERIMENTAL EQUIPMENTS

Displacement sensor Heidenhain MT2581
Counter card Heidenhain IK220
Force sensor Kistler 9351B
Charge amplifier Kistler 5015A
Current sensor LEM PR30
Voltage sensor LEM
Piezoelectric actuator Piezomechanik Pst1000/16/60
Acquisition card NI 6124

B. Vibrating device

To ensure that the force applied to the PA (1) during the
process is only on its longitudinal axis, a vibrating device
is designed as in Fig.3. This aim is achieved by using a
punctual contact (6) in order to transfer the vibrations from
the PA to the plate (5), which is in contact with the force
sensor. A cylinder (2) is fastened to the plate to create a
linear slide for the punctual contact. The movement of this
cylinder is guided by the flexible linkages (4) connected to
the outer fixed cylinder (3).

C. Power supply

The voltage inverter is used in this dynamic application
due to its fast response and high accuracy for the AC supply
[22]. Moreover, the use of current control technique for
this solution is also an advantage to drive a PA because of
its nature as a capacity load. The scheme of power supply
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Fig. 3. Device integrating a PA

circuit for the PA is presented in the Fig. 4. The input voltage
is connected to the branch U of the voltage inverter through
an inductor 100 mH. By using Pulse Width Modulation
(PWM) method at 3 kHz with a pre-defined duty cycle,
the output voltage is modulated to the required waveform
voltage for the PA, which is connected in series with an
inductor 10 mH in the branch V.

Fig. 4. Power supply’s scheme

The values of waveform and the duty cycle used in the
voltage inverter are calculated and generated by a com-
puter. These values are then transferred into a digital signal
processor through an interface RS232. The PWM function
in this processor will automatically generate the required
controlling signal for the voltage inverter. These equipments
are shown in the Fig.5.

Fig. 5. Electrical equipments

IV. MODELLING

In order to carry out the modelling, the Energetic Macro-
scopic Representation (EMR) [23] developed by the Labora-
tory of Electrical Engineering and Power Electronics (L2EP-
France) is a helpful tool for visualizing causality and clearly
understanding the power flows inside the system from the
source to dissipating system through power variables. EMR
takes no assumptions from mathematical systems into ac-
count but concentrates solely on power conversion by using
a limited set of symbolic representations (power sources,
storage, conversion and coupling, presented in Appendix
VII) to highlight the system’s energetic properties. Since the
nature of each block imposes what can be applied (action)
and how the block responds (reaction), causality is revealed
naturally throughout the modelling process. Moreover, it
gives an easy and solid method of designing the control.

The objective of this section is to model the whole system
in order to study the feasibility of using the waveforms and
to evaluate their influence on the workpiece’s reaction force
during the process. The system’s modelling is achieved by
the symbolic representations of the piezoelectric actuator and
workpiece presented in the following parts.

A. Energetic Macroscopic Representation of a piezoelectric
actuator

At this stage of the study, a sophisticated model of
the piezoelectric is not required. In order to describe the
actuator’s comportment, the following quasi-static equations,
widely used by most commercial PA suppliers, are applied
in this model:

Q = KC .q + C.U (1)

F = KS .q +KC .U (2)

Considering these equations from the view of physical
quantity causality, they can be rewritten in the following
natural integral causal forms:∫

idt = KC

∫
q̇dt+ C.U (3)

F = KS

∫
q̇dt+KC .U (4)

The terms KC

∫
q̇dt in (3) and KC .U in (4) express the

electromechanical conversion inside the PA. This piezoelec-
tric phenomenon is illustrated by a conversion element (see
Appendix VII) with a conversion factor KC . The relations
between the inputs and outputs are defined as follows:

FC = KC .U (5)

iC = KC .q̇ (6)

where iC is the motional current, and FC is the piezoelectric
force.

The mechanical energy generated from this conversion,
defined by

∫
FC q̇dt, is stored partly under material’s elastic

energy, defined by
∫
FS q̇dt, and results partly in the output

force F , defined by
∫
F q̇dt. Therefore, this energetic relation

can be determined by a coupling element and the force
generated by the PA is derived from (2) :

F = FC − FS (7)



where FS = −KS

∫
q̇dt is elastic force inside the PA, which

is represented by a mechanical accumulator.
Besides, the electrical charge KC .

∫
q̇dt generated by the

PA contributes partly to the total electrical charge Q. The
output voltage is calculated from (1):

U =
1

C

∫
(i− iC)dt (8)

This relation is expressed by an electrical accumulator.
Using the EMR symbols given in Appendix VII, the EMR

model of the PA will be constructed step by step from the
starting point of the entering variables and exiting variables
with all components defined above (see Fig.6).

 

    

  
   

      

   
   

   

  

   

   

 
   

Fig. 6. EMR model for a piezoelectric actuator in the quasi-static mode

B. Modelling of cylindrical workpiece

The objective of this model is to determine the forging
load during the FP. This is achieved using the slab method
[24]. Assuming that the material flows radially, the resulting
stress field depends solely on the current radius.

In this model, friction is taken into account using the
Coulomb model and the sample’s geometry is assumed to
be conserved during the FP, which means that our sample
will retain its cylindrical form. It also means that when the
displacement is imposed on the sample by the rigid die, the
sliding phenomenon will occur right at the interface during
deformation. Writing the equilibrium of slab, the forging
load can be obtained by the following equation:

Ffp =
πreh

µ
σ0

(
eA − 1

A
− 1

)
(9)

where we introduce A = 2µre
h . Rewriting this equation as:

Ffp(t) = Ψ (h(t))σ0 [ε(t), ε̇(t)] (10)

reveals that the forging load is equal to the ma-
terial’s flow stress σ0 modulated by the function
ε(t) = πreh

µ

(
eA−1
A − 1

)
, which depends on the Coulomb

friction coefficient µ and the geometric parameters of the
workpiece h(t) and re(t) (see Fig.7). The latter are imposed
by the distance separating the dies h(t) and the volume
conservation of the workpiece.

Therefore, in order to calculate the reaction force, it
is essential to estimate the current stress of the cylinder
during the FP. This can be accomplished by introducing the
constitutive law of the material which relates the flow stress’s
value to the strain and the strain rate, which are already
functions of time:

σ0(t) = σ0 [ε, ε̇] (11)

where ε(t) and ε̇(t) are imposed by the distance between
the dies h(t) [24]:

Fig. 7. Schematic of vibration assistance during upsetting of a cylindrical
sample

{
ε(t) = 1− h0

h(t)

ε̇(t) = dε(t)
dt

(12)

Different analytical models can be applied to describe
the behaviour of material during the forming process In
the present work, a uni-axial Bingham generalized elasto-
viscoplastic model (Fig.8) is applied, as it describes the
material behaviours both in the elastic and viscoplastic
domains. This is obtained by introducing a slider which
imposes ε̇(t) = 0 as long as |σ0(t) ≤ σy| where σy is
the yield stress of the material. In such a case, the material
is in the elastic domain and thus behaves like a spring with
stiffness E. Otherwise, plastic flow occurs, and the slider
imposes the stress σy . The material reacts like a system
including a spring in parallel with a viscous damper of
damping coefficient η submitted to stress σ0(t)− σy .

Fig. 8. Bingham’s generalized analytical elasto-viscoplastic model

The model’s input is the material strain, which is the sum
of the elastic strain and the plastic strain:

ε(t) = εp(t) + εe(t) (13)

The two states can be discriminated with the help of a
control function:

1) |E.ε − σH | < σy: elastic domain which corresponds
to the EMR in Fig.9a, where εp = 0 (no plastic flow),

2) |E.ε − σH | > σy: plastic domain, in which the
plastic flow appears and the plastic stress σv can be
determined by:{

σv = σ0 − σH − σy if E.ε− σH > σy
σv = σ0 − σH + σy if E.ε− σH < −σy

(14)

and in this case, the corresponding EMR is presented
in Fig.9b.

In Fig.9, two springs in the Bingham model are repre-
sented by two mechanical accumulators, where the material
elastic energy is acquired during the process; while the two
other component including the viscous damper and slider are
considered as mechanical sources where energy dissipates.
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(b) Plastic domain

Fig. 9. Material behaviour’s EMR

Note that in the current implementation, the non-linear
elements for hardening stress and viscous stress were used,
namely: {

σv = η|ε̇p|n sgn(ε̇p)
σH = H|εp|m sgn(εp)

(m,n > 0) (15)

where sgn(·) is the sign function.
Parameters E,H, σy,m, n are assumed to be constant for

a specific material. The solution of equation (14) returns the
value of plastic strain εp as a function of the input ε. The
elastic strain εe can then be deduced according to (13).
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Fig. 10. Complete system’s EMR

Finally, the two models described are connected to the
model of the mechanical system including the lower die
and the elastic links (described in the next section). This
electromechanical system is powered by an electrical source
through a filter to create a complete model (Fig.10) for the
experimental system. Note that the upper die is supposed to
be in contact with the workpiece continuously. However, it
is the case in practice since the vibrations’ amplitude is very
small.

V. RESULTS AND DISCUSSION

A. Copper specimen

The test was carried out on a Lloyd LR30K material
testing machine with a load capacity of 30 kN and a speed
range of 0.001 to 508 mm/min.

The workpiece used in this experiment is an annealed
copper cylindrical sample geometrically defined in table II.
The material parameters provided in this table are identified
and validated in other tests with different samples. These
values were obtained through previous tests with various
waveforms, but the identification procedure is beyond the
scope of this paper. The Coulomb friction coefficient µ is
coarsely estimated. Indeed, a relatively short time at the
beginning of the test is considered for the identification.
Therefore, the A term in Eq.9 is almost constant and difficult
to identify.

TABLE II
COPPER SPECIMEN’S PARAMETERS

h 7.9 [mm]
re 6 [mm]
σy 46.7 [MPa]
E 22.3 [GPa]
H 1.24 [MPa]
µ 1 -
η 4.83 [GPa.s]
n 0.958 -
m 0.33 -

Fig. 11. Inverted output voltage and current in the PA

The voltage is a square wave of duty ration 10 % with the
frequency 1.25 Hz. The peak to peak voltage is 400 V, and
the bias voltage of 50 V is superimposed in order to respect
the PA voltage rating. A pulsed current with a peak value
of 1 A is thus applied to the PA (see Fig.11). The upper die
moves down at a speed of 1 mm/min at t = 4 s. The measured
displacements and distance variations between the two dies
are presented in Fig.12. Results show that the machine is not
rigid enough, and in the simulation, the displacement must
be adjusted to obtain a displacement of ca. 4 µm.

The measured forging load is compared with the simulated
one in Fig.13. First, the simulated variations of the force are
of the same magnitude as the measured ones (ca. 250 to
300 N depending on whether the beginning or the end of
the curve is considered). However, the oscillations in the
simulation are exaggerated, which could be a consequence
of the value of η that was identified. As a matter of fact, the
waveform used for the identification was triangular, and the
speed involved was much lower. It can also be noticed that
the initial elasto-plastic transition is a lot faster according to
the model. This is known as the limitation of the Bingham
model. The results at the end of the test present a departure



Fig. 12. Displacement and distance’s variation between two dies

of the predicted values from the actual ones. This separation
can be attributed to the kinematic assumption of the slab
model which ignores the barrelling effect common in the
upsetting test.

Fig. 13. Measured forging load in comparison with the simulated value
in the copper’s test

The results are nonetheless encouraging, in particular
considering the details visible in Fig.14. The vibration is
suppressed around 38 s then put back around 46 s. In both
cases this results in an increase of the forging load when
the vibration is stopped, then a decrease of the forging load
when the vibration is restored. This observation validates
the model and the use of vibration. It also offers a practical
way to study the influence of the waveforms and their
parameters on reducing forging load in future works. Fig.15
gives an example of the influence of the change in waveform
amplitude, period, and duty ratio (respectively 6 µm, 50 ms
and 40 %) on the forging force.

B. Aluminium specimen

The testing machine Zwick/Roell Z1200 with a load ca-
pacity of 1200 kN and a speed range of 0.001 to 400 mm/min

Fig. 14. Detail measured forging load in comparison with the simulated
value in the copper’s test

Fig. 15. Influence of waveform parameter change

is used for the test with aluminium specimen. This cylindri-
cal aluminium sample’s parameters are defined in table III
by a similar identification procedure.

TABLE III
ALUMINIUM SPECIMEN’S PARAMETERS

h 16 [mm]
re 8 [mm]
σy 58.1 [MPa]
E 1.897 [GPa]
H 362 [MPa]
µ 1 -
η 21.3 [GPa.s]
n 0.96 -
m 0.15 -

The upper die moves down at a speed of 1.5 mm/min.
The measured displacements of the two dies are presented
in Fig.16. With this larger testing machine, the system’s
stiffness is significantly improved. Results show the upper
die get no influence from the vibrations of the lower die.

The supply voltage in this test is a sinusoidal wave
with the voltage peak to peak 550 V and the frequency
2 Hz. The measuring force is presented in the Fig.17 and
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Fig. 17. Measured forging load in comparison with the simulated value
in the aluminium’s test
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Fig. 18. Detail measured forging load in comparison with the simulated
value in the aluminium’s test

its detail in the Fig.18. The simulated force shows us the
similar effect found in the copper’s test. Because of the
specimen’s imperfectness and the model’s limitation, the
differences between two results can be found in the elasto-
plastic transition and the curve’s form. However, the force’s
variations are found at the same magnitude (ca. 400 N to
550 N). It validates the use of different waveform to reduce
the mean force during the forging and the method to predict
the influence of vibrations on the different materials.

VI. CONCLUSION

In this work, the forging process assisted by a piezo-
electric actuator in low frequency has been modelled by
using Energetic Macroscopic Representation. This model
has evaluated approximately the experimental forging load’s
reduction in the upsetting test with copper and aluminium
specimen. The comparison between the simulated and ex-
perimental results reveals that the model seems to capture
the main features of the process, which could facilitate the
study of the impact of different waveforms on forging load.
It seems to be a promising tool to study the influence
of waveform’s parameters on the effectiveness of using
vibrations in the forging process.

According to the results obtained, a finer model of mate-
rial must be achieved to adapt to its sophisticated comport-
ments. The model of the piezoelectric actuator should be
also improved. Additionally, the material’s parameters must
be identified better to have a preciser prediction.

VII. APPENDIX

EMR’s basic elements
Element Symbol Description

Variable

 x 

y Action/ reaction variable
(x/y)

Source

 

Energetic source

Accumulator

 

Accumulator

Converters

 

Mono-physic converter
 

Multi-physic converter

Couplings

 

Mono-physic coupling
 

 

Multi-physic coupling
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[2] K. Siegert and A. Möck, “Wire drawing with ultrasonically oscillating
dies,” Journal of Materials Processing Technology, vol. 60, pp. 657–
660, 1996.

[3] K. Siegert and J. Ulmer, “Superimposing ultrasonic waves on the
dies in tube and wire drawing,” Journal of Engineering Materials
and Technology, vol. 123, oct 2001.

[4] M. Murakawa and M. Jin, “The utility of radially and ultrasonically
vibrated dies in the wire drawing process,” Journal of Materials
Processing Technology, vol. 113, no. 1-3, pp. 81–86, 2001.

[5] S. Mousavi, H. Feizi, and R. Madoliat, “Investigations on the effects
of ultrasonic vibrations in the extrusion process,” Journal of materials
processing technology, vol. 187, pp. 657–661, 2007.

[6] Y. Ashida and H. Aoyama, “Press forming using ultrasonic vibration,”
Journal of Materials Processing Technology, no. 187-188, pp. 118–
122, 2007.

[7] Z. Huang, M. Lucas, and M. J. Adams, “Influence of ultrasonics on
upsetting of a model paste,” Ultrasonics, vol. 40, pp. 43–48, 2002.



[8] ——, “Modelling wall boundary conditions in an elasto-viscoplastic
material forming process,” Journal of Materials Processing Technol-
ogy, no. 107, pp. 267–275, 2000.

[9] D. Yusof, M. Lucas, and Z. Huang, “Superimposed ultrasonic oscil-
lations in compression tests of aluminium,” Ultrasonics, vol. 44, pp.
e511–e515, 2006.

[10] ——, “Modelling the effects of superimposed ultrasonic vibrations on
tension and compression tests of aluminium,” Journal of Materials
Processing Technology, vol. 186, pp. 179–190, 2007.

[11] G. Ngaile and C. Bunget, “Influence of ultrasonic vibration on
microforming,” Transactions of NAMRI/SME, vol. 36, pp. 137–144,
2008.

[12] C. Bunget and G. Ngaile, “Influence of ultrasonic vibration on micro-
extrusion,” Ultrasonics, vol. 51, 2011.

[13] Z. Yao, G.-Y. Kim, L. Faidley, Q. Zou, D. Mei, and Z. Chen,
“Effects of superimposed high-frequency vibration on deformation
of aluminum in micro/meso-scale upsetting,” Journal of Materials
Processing Technology, vol. 212, pp. 640–646, 2012.

[14] R. Ly, C. Giraud-Audine, G. Abba, and R. Bigot, “Longitudinal
vibrations modeling of a piezoelectric actuator used in forming
process,” in Proceedings of the 2009 IEEE International Conference
on Mechatronics, 2009.

[15] ——, “Experimentally valided approach for the simulation of the
forging process using mechanical vibration,” International Journal on
Material Forming, vol. 2, pp. 133–136, 2009.

[16] A. Khan, C. Giraud-Audine, G. Abba, and R. Bigot, “Effects of vibra-
tions on metal forming process: analytical approach and finite element
simulations,” International Conference on Advances in Materials and
Processing Technologies, 2010.

[17] O. Izumi, K. Oyama, and Y. Suzuki, “Effects of superimposed ultra-
sonic vibration on compressive deformation of metals,” Transactions
of the Japan Institute of Metal, vol. 7, 1966.

[18] J.-C. Hung and C. Hung, “The influence of ultrasonic-vibration on hot
upsetting of aluminum alloy,” Ultrasonics, no. 43, p. 692698, 2005.

[19] J.-C. Hung, Y.-C. Tsai, and C. Hung, “Frictional effect of ultrasonic-
vibration on upsetting,” Ultrasonics, no. 46, pp. 277–284, 2007.

[20] J.-C. Hung and C.-C. Lin, “Investigations on the material property
changes of ultrasonic-vibration assisted aluminum alloy upsetting,”
Materials and Design, no. 45, pp. 412–420, 2013.

[21] M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J.-C. Hung, Y.-C.
Tsai, and C.-H. Hung, “Simulation of ultrasonic-vibration drawing us-
ing the finite element method (fem),” Journal of Materials Processing
Technology, no. 140, pp. 30–35, 2003.

[22] L. Malesani and P. Tomasin, “PWM current control techniques of
voltage source converters - a survey,” Proceedings of the IECON
’93, International Conference on Industrial Electronics, Control, and
Instrumentation, nov 1993.

[23] P. J. Barre, A. Bouscayrol, P. Delarue, E. Dumetz, F. Giraud, J. P.
Hautier, X. Kestelyn, B. Lemaire-Semail, and E. Semail, “Inversion
based control of electromechanical systems using causal graphical
descriptions,” IEEE-IECON06 (Paris), nov 2006.

[24] K. Lange, Handbook of metal forming. McGraw-Hill, 1985.

Thanh Hung Nguyen was born in Vietnam in 1983. He received his
B.S. degree in Mechatronics from the Ho Chi Minh University of Tech-
nology, Vietnam, in 2006 and his M.S. degree from the École Nationale
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and the Hochschule Karlsruhe Technik und Wirtschaft, Germany in 2010.
He is currently working towards the Ph.D degree at the École Nationale
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