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an arbitrary property that need not be conserved. Thus, mass is separated
from the material structure. The framework presented here generalizes [13]
by using a setting on general differentiable manifolds rather than a three
dimensional Euclidean space as an ambient space. Furthermore, the variance
properties of the relevant variables with respect to a change of frame in the
physical event space are considered. It is assumed that the event space
has the structure of a fiber bundle over the time axis and a frame is a
trivialization of that bundle. In particular, a material frame is constructed
where the volumetric growth has a simple “canonical” form.

Section 2 describes the basic notation, definitions, assumptions and rele-
vant results to be used in the sequel. In particular, using a frame dependent
definition, volumetric growth is presented as a combination of density rate
of change and boundary interaction for some extensive property. The gen-
eralized Cauchy postulates and theorem are presented together with the
differential version of the balance law. Section 3 specializes the foregoing
results to the case where a volume element is given. In Section 4, the mate-
rial structure is defined and Section 5 introduces the material frames where
there is no boundary interaction term in the expression for the volumetric
growth. The transformation rules for the various quantities associated with
volumetric growth are discussed in Section 6. In particular, it turns out that
the volume term and boundary interaction term used in Section 2 to intro-
duce volumetric growth are not frame invariant independently. Finally, the
variational version of the balance law is introduced in Section 7. This version
is the one suitable for a frame invariant definition of volumetric growth.

2. Volumetric Growth and the Generalized Cauchy theory

The geometric model for the physical event space that we assume here
has an absolute time coordinate. The time axis is assumed to be a one
dimensional manifold T that is identified with R. The collection of physical
events E is the total space of a trivializable fiber bundle

π : E → T .
The typical fiber of the bundle is an oriented manifold S to which we do not
attribute at the moment any additional structure. We will refer to S as the
space manifold and use m to denote its dimension.

A frame F is a (global) trivialization of the bundle, i.e., a diffeomorphism

F : E → S × T .
In the rest of this section it is assumed that a frame F is given. For a given
event e we will loosely use the notation

x = x(e) = F1(e), t = t(e) = F2(e), e ∈ E ,
where F1, F2 are the two components of F .

Definition 2.1. A control volume is a compact m-dimensional submanifold
with corners of S.
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Definition 2.2. A volumetric growth is an assignment of an m-form βR on
R and an (m−1)-form τR on ∂R, for each control volume R. Thus, for any
control volume we may set

IR =
∫
R

βR +
∫
∂R

τR

as a value of a real valued set function defined on the collection of control
volumes.

The set function R 7→ IR is interpreted physically as the production of
a certain property measured in R. The first integral is interpreted as the
growth rate of the property contained in R so the form βR is interpreted as
the rate of change of the density of the property in R. The second integral is
interpreted as the rate at which the property leaves R through the boundary
and τR is referred to as the flux density.

Cauchy’s postulates are concerned with the dependence of the forms βR
and τR on the control volume R under consideration. Usually, Cauchy’s
postulates and the resulting Cauchy theorem are formulated for a three-
dimensional Euclidean space (see for example [4]). Marsden and Hughes [5]
gave a formulation of the theory in the setting of a three dimensional metric
manifold. Here, using the following results of [9], we present a generalized
theory for the case where S is an m-dimensional oriented manifold as stated
above.

Assumption 2.3 (Generalized Cauchy’s Postulates). The volumetric
growth

{(βR, τR)}, for all control volumes R,
satisfies the following conditions.

(i) For every x ∈ S and control volume R, βR(x) = β(x), i.e., the value
is the same for all control volumes containing x. Accordingly, one
can omit the subscript R.

(ii) For every x ∈ S and control volume R such that x ∈ ∂R, τR(x)
depends only on the oriented annihilator f ∈ T ∗xS \ {0} of Tx∂R,
i.e., f(v) > 0, for each element v ∈ TxS pointing “outwards”. Thus,
denoting by T ∗S+ the bundle obtained from T ∗S by the removal of
the zero element on every fiber, we have a section

τ : T ∗S+ →
m−1∧

T ∗S+,

giving τR(x) when evaluated on a form f representing Tx∂R, and sat-
isfying τ(f) = τ(af) for every positive number a. Here,

∧m−1 T ∗S+

is the vector bundle over T ∗S+ whose fiber over the form f at x is the
vector space of (m− 1)-forms on the oriented hyperplane ((m− 1)-
dimensional subspace of TxS) determined by f .

(iii) The section τ is smooth.
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(iv) There is an m-differential form ς on S, such that

IR =
∫
R

ς.

The form ς is interpreted as a source (production density) term for
the property under consideration and it reflects the fact that the
property is not conserved. In the sequel we will refer to this as-
sumption as the balance law.

Let IH : H → TxS be the inclusion of an oriented subspace H. The basic
result is

Proposition 2.4 (Generalized Cauchy Theorem). There is a unique
(m− 1)-odd form σ on S such that at every point x ∈ TxS

τ(f) = I∗H(σ),

for any oriented hyperplane H ⊂ TxS, where f represents H and I∗H denotes
the pull-back of forms induced by IH .

Remark 2.5. The fact that σ is odd is written traditionally (where a metric
is available) as t(−n) = −t(n) and in our notation τ(−f) = −τ(f).

Remark 2.6. In the sequel we will refer to σ as the kinetic flux field.

Using the kinetic flux field, the balance law may be rewritten in the form
of a differential equation as follows.

Proposition 2.7 (The differential version of the balance law). Given
the kinetic flux field form σ, the balance law (Assumption 2.3(iv)), is equiv-
alent to

dσ + β = ς

in S.

3. The Case of Volume Manifolds

It is now assumed that S is a volume manifold so, in addition to an orien-
tation, a volume element ρ is given on S. We recall that if ρ is represented
locally as

r(xi) dx1∧ . . .∧dxm,
then, for a vector field v represented by its coordinates vi, the contraction
vy ρ is represented by

m∑
i=1

(−1)i+1rvi dx1∧ . . .∧d̂xi∧ . . .∧dxm.

Consider a local representation for the kinetic flux σ (for the orientation
induced by ρ) in the form

m∑
i=1

σidx
1∧ . . .∧d̂xi∧ . . .∧dxm.
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Thus we have

Proposition 3.1. Given a volume element ρ and a kinetic flux form σ,
there is a unique vector field v, called the kinematic flux, satisfying

vy ρ = σ.

With the notation introduced above, the local representation of v is given
by

vi =
(−1)i+1σi

r
.

Remark 3.2. We note that the kinematic flux depends upon the choice of
volume element only by the particular choice of the vector field in a one
dimensional sub-bundle of TS. Thus, σ determines a unique one dimensional
sub-bundle of TS. We will refer to this sub-bundle as the flux bundle.

Remark 3.3. Let {v1, . . . ,vm−1} be any collection of m − 1 vectors in a
hyperplane containing the fiber of the flux bundle at x ∈ S. Then, since for
any non-zero element v of the flux bundle, the collection {v, v1, . . . ,vm−1}
contains m linearly dependent vectors in TS,

σ(v1, . . . ,vm−1) = vy ρ(v1, . . . ,vm−1)

= ρ(v, v1, . . . ,vm−1)
= 0.

We conclude that the flux density through any hyperplane containing the
flux bundle vanishes.

We note that for a given volume element ρ, the differential version of the
balance equation dσ + β = ς may also be written in terms of the kinematic
flux vector field. We have

dσ = d(vy ρ)
= Lvρ− vy dρ

= Lvρ.
Since Lvρ is an m-form there is unique real valued function div v, the diver-
gence of v (see [1] p. 455), defined on S, satisfying

Lvρ = ρdiv v.

Thus, using b and s to denote the unique functions such that β = bρ and
ς = sρ, respectively, we have

Proposition 3.4. Given a volume element ρ on S, the differential balance
law may be written in terms of the kinematic flux in one of the following
equivalent forms

(i) Lvρ+ β = ς,

(ii) div v + b = s.
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4. Material Elements and Bodies

The existence of a manifold B containing as elements the identifiable
material points, is the standard assumption of continuum mechanics allowing
the definition of a configuration of a body as an embedding

κ : B → S.

With the previous observations it is possible now to define material ele-
ments and bodies as derived notions. We note first that all the considerations
of the previous sections hold for any particular time t. (The frame where
the variables are defined has been kept fixed so far.) We assume now that
the forms β, ς, ρ, and section τ vary smoothly with time. As a result, the
kinematic flux v(x, t) varies smoothly with time and as such, it determines
a time dependent differential equation in space.

For (x, t0) ∈ S × T , we will use Xx,t0(t) to denote the value at the time t
of the the integral curve passing through x at time t0.

Definition 4.1. An integral line of v is a body element. The collection of
all body elements is the universal body B.

We note that by the theory of differential equations, for any instant t0 ∈ T
there is a neighborhood U ⊂ T , t0 ∈ U , where the flow of v

φt0 : S × U → π−1(U), φt0(x, t) =
(
Xx,t0(t), t

)
,

is a fiber bundle diffeomorphism. For the sake of simplicity we assume that
φ0 is a fiber bundle diffeomorphism for which U = T . Thus, the integral lines
can be parametrized by the initial conditions at t0 = 0. As a result, we may
identify a body element X with its unique initial condition in S. Similarly,
the universal body is diffeomorphic to S. Traditionally, the identification of
body elements with the respective initial conditions is referred to as reference
configuration. For this reason, in the sequel we will often omit the t0 index
and use φt : S → S to denote the mapping such that φt(x) = Xx,0(t).

These enable us to make the following definition.

Definition 4.2. A body B is a compact m-dimensional submanifold with
corners of B. A configuration of a body B is an embedding B → S. A
motion of a body B is a fiber bundle morphism B ×U → π−1(U), where U
is open in R, whose restriction to B × {t} is a configuration for all t ∈ U .

Clearly, the restrictions of φt to bodies are configurations of these bodies.

5. Time Dependent Volume Elements and Material Frames

For the fixed frame F on space-time, consider a smoothly time dependent
volume element ρ(t) on S. The flow φ of the kinematic flux v induces another
smoothly time dependent volume element

ρ0(t) = φ∗t (ρ(t)).
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We will refer to ρ0 as the reference description of the volume element ρ.
Given any body B, the definition of ρ0 implies that∫

B

ρ0(t) =
∫

φt(B)

ρ(t),

for any instant t.
Since the integral on the left is over a fixed region, we have

d

dt

∫
B

ρ0(t) =
∫
B

∂ρ0

∂t
(t)

On the other hand, a generalized version of the transport theorem (see [1]
p. 471) implies that

d

dt

∫
φt(B)

ρ(t) =
∫

φt(B)

(
∂ρ

∂t
+ Lvρ

)
.

Thus we arrive at the following

Proposition 5.1. The reference description ρ0 of the time dependent vol-
ume element ρ satisfies the following equivalent equations

φ−1∗
t

(
∂ρ0

∂t

)
=
∂ρ

∂t
+ Lvρ,(i)

φ−1∗
t

(
∂ρ0

∂t

)
=
∂ρ

∂t
+ ρdiv v,(ii)

φ−1∗
t

(
∂ρ0

∂t

)
=
∂ρ

∂t
+ dσ.(iii)

So far, the interpretation of the form β as a rate of change of the density of
a certain physical extensive property, as mentioned in its introduction, was
not considered any further. In addition, no physical motivation was given
to the introduction of the volume element ρ. The two can be combined now
by assuming that ρ is the density whose rate of change is β so

β =
∂ρ

∂t
.

By comparing Proposition 5.1 with the differential version of the balance
law (Proposition 2.7) it follows that

ς = φ−1∗
t

(
∂ρ0

∂t

)
,
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and we may write for the volumetric growth of the property

Iφt(B) =
∫

φt(B)

β +
∫

∂φt(B)

τ =
∫

φt(B)

φ−1∗
t

(
∂ρ0

∂t

)

=
∫
B

∂ρ0

∂t
.

The last equation is interpreted as follows. In the expression for the
set function I in terms of the forms β and τ , the boundary term indicates
interaction. One could ask whether there is a frame where no interaction
term appears. We note that the inverse of the flow φ : S × R → E is a
global frame where B and φt(B) represent the same control volume and
where the expression for the volumetric growth has the required property.
In other words, the kinematic flux, whose existence is a result of of Cauchy’s
postulates, induces a canonical frame, the material frame where growth has
a particular simple form—no interaction term is present and the source
density is identical to the rate of change of the property’s density.

6. Variance Properties

So far we restricted ourselves to one frame F : S×T → E and constructed
the material frame for it. We did not consider the variance properties of the
forms β, τ , and ς. This section discusses these issues.

Assume that in addition to the frame F we are given a frame F ′. Thus,

F ′ ◦ F−1 : S × T → S × T

is a fiber bundle morphism whose base mapping T → T is the identity. Let

ψ : S × T → S,

be the first component of F ′◦F−1 and denote its restriction to S×{t} by ψt.
The identification of T with R implies that we can regard F ′ ◦F−1 as a flow
whose generating vector field is (u, 1), where u = T2ψ is the second partial
derivative of ψ. Clearly, ψ is a flow on S whose generating time dependent
vector field is u.

Given a control volume R ⊂ S that is fixed in the frame F and an m-form
ω′ on S, setting ω = ψ∗t (ω

′), we have∫
R

ω =
∫

ψt(R)

ω′.

This transformation rule applies to the density ρ and to the production rate
ς. However, although β is an m-form, being the time derivative of ρ, it
transforms differently. Using the generalized transport theorem and Stokes’
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theorem, one has
d

dt

∫
ψt(R)

ρ′ =
∫

ψt(R)

(
∂ρ′

∂t
+ Luρ

)

=
∫

ψt(R)

(
∂ρ′

∂t
+ d(uy ρ)

)

=
∫

ψt(R)

∂ρ′

∂t
+

∫
∂ψt(R)

I∗(uy ρ).

On the other hand, since R is fixed in the frame F ,
d

dt

∫
ψt(R)

ρ′ =
d

dt

∫
R

ρ

=
∫
R

∂ρ

∂t

=
∫
R

β.

Hence,

IR =
∫
R

β +
∫
∂R

τ =
∫

ψt(R)

∂ρ′

∂t
+

∫
∂ψt(R)

(
I∗(uy ρ′) + ψ−1∗(τ)

)
.

It is assumed now that IR is frame invariant (frame indifferent in the
continuum mechanics terminology), i.e., that IR = Iψt(R). In addition, the
expression of I for the frame F ′ should be the same as that for F ; so there
is an m-form β′ on ψt(R) and an (m− 1)-form τ ′ on ∂ψt(R), such that

Iψt(R) = IR =
∫

ψt(R)

β′ +
∫

∂ψt(R)

τ ′.

It follows that

β′ =
∂ρ′

∂t
= ψ−1∗

t (β),

τ ′ = I∗(uy ρ′) + ψ−1∗
t (τ).

It is apparent from the last equation that one cannot treat β and τ as
independent frame invariant objects.

One concludes that if u satisfies the equation

I∗(uy ρ′) + ψ−1∗
t (τ) = 0,

then, u is a vector field generating a frame for which there is no boundary
interaction. The existence of one vector field that satisfies this equation for
all control volumes is a result of Cauchy’s theorem.
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7. The Variational Version of the Balance Law

Consider a fixed frame F on E . Multiplying the differential version of the
balance law (see Proposition 2.7) dσ + β = ς by a differentiable function
w : S → R and integrating over a typical control volume R, we obtain∫

R

wdσ +
∫
R

wβ =
∫
R

wς.

Since, ∫
R

wdσ =
∫
R

d(wσ)−
∫
R

dw ∧ σ

=
∫
∂R

I∗(wσ)−
∫
R

dw ∧ σ,

we have using I∗(wσ) = wI∗(σ) = wτ ,∫
R

wβ +
∫
∂R

wτ =
∫
R

wς +
∫
R

dw ∧ σ,

to which we will refer as the variational form of the balance law. The varia-
tional form of the balance law regards IR as a linear functional, the growth
functional, on the space of differentiable functions on S, that is continuous
with respect to the C1 topology. Thus, we will use IR(w) to denote either
side of the last equation.

Assume that a volume element ρ is given so there is a kinematic flux field
v, with σ = vy ρ. Then,

0 = vy (dw ∧ ρ) = (vy dw) ∧ ρ− dw ∧ (vy ρ),

and one concludes that in this case

dw ∧ σ = dw ∧ (vy ρ) = dw(v)ρ.

Thus, for the case of volume manifolds, the growth functional may be rep-
resented in the form

IR(w) =
∫
R

wς +
∫
R

dw(v)ρ.

The significance of the variational version of the balance law is that it
allows a frame invariant characterization of growth. Consider the frames F ,
F ′ with transformation mapping ψt, and a control volume R ⊂ S at time t
under F whose image under F ′ is R′ = ψt(R). Then, the requirement that
the evaluation of the growth functional is frame invariant, i.e., IR(w) =
IR′(w′), w′ = ψ−1∗

t (w), implies∫
R

wς +
∫
R

dw ∧ σ =
∫
R′

w′ς ′ +
∫
R′

dw′ ∧ σ′.



ON VOLUMETRIC GROWTH AND MATERIAL FRAMES 11

As this should hold for an arbitrary control volume and arbitrary test func-
tion w, we conclude that ς and σ indeed transform according to the rules
ς ′ = ψ−1∗

t (ς) and σ′ = ψ−1∗
t (σ). Thus, for a given control volume in

Et = π−1(t), all the quantities in the last equation are defined independently
of the choice of frame. Hence we arrive at the following frame indifferent
characterization of growth that includes Cauchy’s postulates.

Definition 7.1. A volumetric growth at time t consists of an m-form ς and
an (m − 1)-form σ on Et that represent, for each control volume R ⊂ Et, a
growth functional

IR(w) =
∫
R

wς +
∫
R

dw ∧ σ

on the space of differentiable real valued functions C1(R).
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