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aGipsa-lab, Grenoble Campus, 11 rue des Mathématiques, BP 46, 38402 Saint Martin d’Hères Cedex, France
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Abstract

Systems modelled by linear singularly perturbed partial differential equations are considered in this paper. Precisely, a class of
linear systems of conservation laws with a small perturbation parameter is introduced. By setting the perturbation parameter
to zero, two subsystems, the reduced system standing for the slow dynamics and the boundary-layer system representing the
fast dynamics, are computed. It is first proved that the exponential stability of the full system implies the stability of both
subsystems. Secondly, a counter example is given to indicate that the converse is not true. Moreover a new Tikhonov theorem
for this class of the infinite dimensional systems is stated. The solution of the full system can be approximated by that of
the reduced system, and this is proved by Lyapunov techniques. An application to boundary feedback stabilization of gas
transport model is used to illustrate the results.
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1 Introduction

The early interests in singular perturbation techniques
arose from the physical problems exhibiting both fast
and slow dynamics, such as DC-motors in Kokotović
et al. (1986) where the inductance in the armature circuit
plays the role of a perturbation parameter or semicon-
ducting diodes in Smith (1985) where the Debye length
is seen as the perturbation parameter. The decompo-
sition of a singularly perturbed system into lower or-
der subsystems, namely the reduced system and the
boundary-layer system, provides a powerful tool for sta-
bility analysis (e.g. Habets (1974), Chow (1978), Gru-
jic (1981) and Chow and Kokotović (1981)). From late
1980s, singularly perturbed partial differential equations
(PDEs) have been considered in research works. This
kind of systems describes numerous phenomenon in var-
ious fields in physics and engineering, such as fluid dy-
namics, chemical-reactor, aerodynamics etc. (see Kadal-
bajoo and Patidar (2003)).

In this paper, we consider a class of linear systems of
conservation laws with a small perturbation parameter.
The principal motivation for this paper is the model
of gas transport through a constant cross section tube
represented by Euler equations (see (Winterbone, 2000,

1 E-mail adresses: ying.tang@gipsa-lab.fr,
christophe.prieur@gipsa-lab.fr, antoine.girard@imag.fr

Chapter 2)). Two time scales for propagation speed ex-
hibit in this model, which can thus be described by a
singularly perturbed system of conservation laws.

A first contribution of this paper concerns the stability
analysis between a linear singularly perturbed system
of conservation laws and its two subsystems. The expo-
nential stability analysis for hyperbolic systems of con-
servation laws has been considered by many researchers.
For instance, a stability criterion for linear hyperbolic
systems by characteristics method has been given in Li
(1994) and the stability condition considered in Hale and
Lunel (1993) relies on the frequency domain. In Coron
et al. (2008), a stability condition for the quasilinear
systems of conservation laws is introduced by Lyapunov
method. In this paper, the first proposition gives a suffi-
cient stability condition for both subsystems. Moreover
a counter example is used to illustrate that the expo-
nential stability of the two subsystems does not indicate
the stability of the full system. This shows a major dif-
ference with what is well known for linear finite dimen-
sional systems (e.g. (Kokotović et al., 1986, Chapter 2)).

A second contribution of our work relates to the approx-
imation of the solution for the singularly perturbed sys-
tem of conservation laws by the solution for the reduced
system. A Tikhonov like theorem is established for the
infinite dimensional systems in this paper. Tikhonov the-
orem describes the limiting behaviour of solutions of the
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perturbed system. It is a powerful tool for analysis of
singular perturbation systems. This theorem has been
studied in many works for finite dimensional singularly
perturbed systems (ODEs) (Verhulst (2007)), (Khalil,
1996, Chapter 9). The approximation of the full sys-
tem by the reduced subsystem on the finite interval is
based on the exponential stability of the boundary-layer
subsystem, and that on the infinite interval is achieved
by the exponential stability of both subsystems. In the
present paper the infinite dimensional case on the in-
finite interval is stated. This method of approximation
can lead the new boundary control strategy for linear
hyperbolic systems. For instance, in Tang et al. (2014)
boundary control synthesis has been studied based on
the singular perturbation method and the slow dynam-
ics is stabilized in finite time.

The paper is organized as follows. The linear singu-
larly perturbed system of conservation laws under con-
sideration is presented in Section 2. The reduced and
boundary-layer subsystems are also introduced in this
section. In Section 3, we link the exponential stability of
the full system of conservation laws with the stability of
each of the two subsystems. Section 4 gives a Tikhonov
theorem for linear hyperbolic systems of conservation
laws. In Section 5, an application to a gas transport
model is studied to illustrate the results. Finally, con-
cluding remarks end the paper.

Notation. For a positive integer n, In is the identity
matrix in Rn×n. Given a matrix A in Rn×n, A−1 and AT

represent the inverse and the transpose matrix of A re-
spectively. For a symmetric matrix B in Rn×n, λmin(B)
is the minimum eigenvalue of the matrix B. The symbol
? in partitioned symmetric matrix stands for the sym-
metric block. | | denotes the usual Euclidean norm in Rn
and ‖ ‖ is associated with the usual 2-norm of matrices
in Rn×n. ‖ ‖L2 denotes the associated norm in L2(0, 1)

space, defined by ‖ξ‖L2 =
(∫ 1

0
|ξ|2dx

) 1
2

for all functions

ξ ∈ L2(0, 1). Similarly, the associated norm in H2(0, 1)
space is denoted by ‖ ‖H2 , defined for all functions ψ ∈

H2(0, 1), by ‖ψ‖H2 =
(∫ 1

0
|ψ|2 + |ψx|2 + |ψxx|2dx

) 1
2

.

Given a real interval I and a normed space J , C0(I, J)
denotes the set of continuous functions from I to J .

2 Linear singularly perturbed systems of con-
servation laws

Firstly, let us consider the following linear singularly
perturbed system of conservation laws:

yt(x, t) + Λ1yx(x, t) = 0, (1a)

εzt(x, t) + Λ2zx(x, t) = 0, (1b)

where x ∈ [0, 1], t ∈ [0,+∞), y : [0, 1]× [0,+∞)→ Rn,
z : [0, 1]× [0,+∞)→ Rm, Λ1 is a diagonal positive ma-
trix in Rn×n, Λ2 is a diagonal positive matrix in Rm×m,

the perturbation parameter ε is a small positive value.
Moreover, we consider the following boundary condi-
tions: (

y(0, t)

z(0, t)

)
= G

(
y(1, t)

z(1, t)

)
, t ∈ [0,+∞), (2)

where G =

(
G11 G12

G21 G22

)
is a constant matrix in

R(n+m)×(n+m) with the matrices G11 in Rn×n, G12 in
Rn×m, G21 in Rm×n and G22 in Rm×m.
Given two functions y0 : [0, 1] → Rn and z0 : [0, 1] →
Rm, the initial conditions are:(

y(x, 0)

z(x, 0)

)
=

(
y0(x)

z0(x)

)
, x ∈ [0, 1]. (3)

Remark 1 Let us recall the existence of the solutions
to the Cauchy problem (1)-(3). According to Section 2.1

in Coron (2007), for all

(
y0

z0

)
∈ L2(0, 1), there exists

a unique solution

(
y

z

)
∈ C0([0,+∞), L2(0, 1)) for the

Cauchy problem (1)-(3). By Proposition 2.1 in Coron

et al. (2008), for every

(
y0

z0

)
∈ H2(0, 1) satisfying the

following compatibility conditions:(
y0(0)

z0(0)

)
= G

(
y0(1)

z0(1)

)
, (4)

(
Λ1y

0
x(0)

ε−1Λ2z
0
x(0)

)
= G

(
Λ1y

0
x(1)

ε−1Λ2z
0
x(1)

)
, (5)

the Cauchy problem (1)-(3) has a unique maximal clas-

sical solution

(
y

z

)
∈ C0([0,+∞), H2(0, 1)). ◦

Remark 2 In Perrollaz and Rosier (2014), a 2×2 quasi-
linear hyperbolic system is considered in C0([0, T ] ×
[0, 1];R2) instead of H2(0, 1), avoiding so strong com-
patibility conditions. However, in the following of the
present paper, theH2 convergence of a system is manda-
tory thus the compatibility conditions should be consid-
ered. ◦

Considering infinite dimensional systems (PDEs), let us
compute the two subsystems for (1)-(2), the reduced and
the boundary-layer systems. Inspired by the approach
for finite dimensional systems (ODEs) in (Saberi and
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Khalil (1984)) and (Khalil, 1996, Chapter 9), the two
subsystems are formally calculated as follows. Setting
ε = 0 in system (1) yields

yt(x, t) + Λ1yx(x, t) = 0, (6a)

zx(x, t) = 0. (6b)

Substituting (6b) into the boundary conditions (2) and
assuming (Im −G22) invertible yields

y(0, t) = (G11 +G12(Im −G22)−1G21)y(1, t),

z(., t) = (Im −G22)−1G21y(1, t).
(7)

Then, the reduced system is defined as

ȳt(x, t) + Λ1ȳx(x, t) = 0, x ∈ [0, 1], t ∈ [0,+∞), (8)

with the boundary condition

ȳ(0, t) = Grȳ(1, t), t ∈ [0,+∞), (9)

where Gr = G11 + G12(Im − G22)−1G21, whereas the
initial condition is given as

ȳ(x, 0) = ȳ0(x) = y0(x), x ∈ [0, 1]. (10)

To define the boundary-layer system, let first perform
the change of variable

z̄(x, t) = z(x, t)− (Im −G22)−1G21y(1, t). (11)

This shifts the equilibrium of z to the origin. Let us use
a new time variable τ = t

ε . In the τ time scale, y(1, t) in
(11) is considered as a fixed parameter with respect to
time. Then, the boundary-layer system is defined as

z̄τ (x, τ)+Λ2z̄x(x, τ) = 0, x ∈ [0, 1], τ ∈ [0,+∞), (12)

with the boundary condition

z̄(0, τ) = G22z̄(1, τ), τ ∈ [0,+∞), (13)

whereas the initial condition is given as

z̄(x, 0) = z̄0(x) = z0(x)−(Im−G22)−1G21y
0(1), x ∈ [0, 1].

(14)

3 Stability of reduced and boundary-layer sys-
tems

In this section, our aim is to show how the stability of
the singularly perturbed system of conservation laws (1)-
(2) is related to the stability of the two subsystems, the
reduced system (8)-(9) and the boundary-layer system
(12)-(13).

Let us recall the following definition introduced in Coron
et al. (2008):

Definition 1 For all matrices G ∈ R(n+m)×(n+m),

ρ1(G) = inf{‖∆G∆−1‖,∆ ∈ D(n+m),+}, (15)

where D(n+m),+ denotes the set of diagonal positive ma-

trix in R(n+m)×(n+m).

The following definition is adopted for the exponential
stability of the linear singularly perturbed system of con-
servation laws (1)-(2) in L2-norm.

Definition 2 The linear system of conservation laws
(1)-(2) is exponentially stable to the origin in L2-norm
if there exist γ1 > 0 and C1 > 0, such that for every(
y0

z0

)
∈ L2(0, 1), the solution to the system (1)-(2) sat-

isfies∥∥∥∥∥
(
y(., t)

z(., t)

)∥∥∥∥∥
L2

6 C1e
−γ1t

∥∥∥∥∥
(
y0

z0

)∥∥∥∥∥
L2

, t ∈ [0,+∞).

Similarly the exponential stability of the linear system
of conservation laws (1)-(2) inH2-norm is defined by the
following definition.

Definition 3 The linear system of conservation laws
(1)-(2) is exponentially stable to the origin in H2-norm
if there exist γ2 > 0 and C2 > 0, such that for every(
y0

z0

)
∈ H2(0, 1) satisfying the compatibility conditions

(4)-(5), the solution to the system (1)-(2) satisfies∥∥∥∥∥
(
y(., t)

z(., t)

)∥∥∥∥∥
H2

6 C2e
−γ2t

∥∥∥∥∥
(
y0

z0

)∥∥∥∥∥
H2

, t ∈ [0,+∞).

Similarly, we can define the exponential stability in L2-
norm and H2-norm for the reduced and boundary-layer
systems.
Let us recall the following result for linear hyperbolic
systems:

Theorem 1 (Coron et al. (2008), Diagne et al. (2012))
If ρ1(G) < 1 (resp. ρ1(Gr) < 1, ρ1(G22) < 1), then the
linear system (1)-(2) (resp. the reduced system (8)-(9),
the boundary-layer system (12)-(13)) is exponentially
stable to the origin in L2-norm and H2-norm.

With the above theorem, we are ready to give a proposi-
tion which is about the stability of the reduced and the
boundary-layer systems.

Proposition 1 If ρ1(G) < 1, then the reduced system
(8)-(9) and the boundary-layer system (12)-(13) are ex-
ponentially stable to the origin inL2-norm andH2-norm.
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Proof. Let first prove the stability of the reduced system
(8)-(9). Let ρ1(G) < α∗ < 1 and ∆ ∈ D(n+m),+ such

that ‖∆G∆−1‖ 6 α∗. Let ∆1 ∈ Dn,+ and ∆2 ∈ Dm,+,
∆ be such that

∆ =

(
∆1 0

0 ∆2

)
.

Consider

Ỹ =

(
Y

∆2(Im −G22)−1G21∆−1
1 Y

)
, Ỹ ∈ Rn+m,

where Y is an arbitrary vector of Rn. It follows directly

∆G∆−1Ỹ =

(
∆1(G11 +G12(Im −G22)−1G21)∆−1

1 Y

∆2(Im −G22)−1G21∆−1
1 Y

)
.

(16)
Since ‖∆G∆−1‖ 6 α∗, and it follows from (16)

|∆G∆−1Ỹ | 6 α∗|Ỹ |,

hence

|∆1(G11 +G12(Im −G22)−1G21)∆−1
1 Y | 6 α∗|Y |.

The previous inequality holds for all Y ∈ Rn, therefore

‖∆1(G11 +G12(Im−G22)−1G21)∆−1
1 ‖ 6 α∗ < 1, (17)

which implies ρ1(Gr) < 1. Therefore, with Theorem 1,
the reduced system (8)-(9) is exponentially stable in L2-
norm and H2-norm.
Next let prove the stability of the boundary-layer system
(12)-(13). Similarly, consider

Z̃ =

(
0

Z

)
, Z̃ ∈ Rn+m,

where Z is an arbitrary vector of Rm. It follows directly

∆G∆−1Z̃ =

(
∆1G12∆−1

2 Z

∆2G22∆−1
2 Z

)
. (18)

Since ‖∆G∆−1‖ 6 α∗, (18) follows

|∆G∆−1Z̃| 6 α∗|Z̃|,

hence
|∆2G22∆−1

2 Z| 6 α∗|Z|.

The previous inequality holds for all Z ∈ Rm, therefore

‖∆2G22∆−1
2 ‖ 6 α∗ < 1, (19)

which implies ρ1(G22) < 1. Therefore, with Theorem
1, the boundary-layer system (12)-(13) is exponentially
stable in L2-norm and H2-norm. This concludes the
proof of Proposition 1. 2

The stability criterion ρ1(G) < 1 is a sufficient condi-
tion for stability of the reduced system (8)-(9) and the
boundary-layer system (12)-(13). On the other hand, the
stability of the two subsystems does not guarantee the
stability of the overall system (1)-(2). To see this, let us
consider the following example. Let Λ1 = Λ2 = 1 in (1)
with n = m = 1. The boundary condition of the sin-
gularly perturbed system in (2) is chosen as G11 = 2.5,
G12 = −1, G21 = 1, G22 = 0.5. The boundary condition
of the reduced system in (9) is computed as Gr = 0.5.
It holds ρ1(Gr) < 1. By Theorem 1 the reduced sys-
tem (8)-(9) is exponentially stable in L2-norm and H2-
norm. The boundary condition of the boundary-layer
system in (13) is G22 = 0.5. It holds ρ1(G22) < 1. The
boundary-layer system (12)-(13) is exponentially stable
in L2-norm and H2-norm according to Theorem 1. Now
let us check the stability condition ρ1(G) < 1, which is
equivalent to find a diagonal positive matrix ∆ such that
‖∆G∆−1‖ < 1 and it is in fact equivalent to (see Coron
et al. (2008) section 4)

GT∆2G < ∆2. (20)

There is no loss of generality to look for ∆ =

(
1 0

0 b

)
.

Straightforward computations show that there is no
such matrix ∆ which satisfies the condition (20), thus
ρ1(G) > 1. Note that, Proposition 3.7 in Coron et al.
(2008) implies that ρ1(G) < 1 is a necessary and suffi-
cient condition for stability of linear hyperbolic systems
with dimension 1 to 5. As this example is a linear sin-
gularly perturbed system of two conservation laws, it
is not exponentially stable neither in L2-norm nor in
H2-norm, although the reduced and boundary-layer
systems are both exponentially stable.
See also Tang et al. (2013) where under the exponential
stability of the both subsystems, an additional condi-
tion is introduced for the exponential stability of the
linear singularly perturbed system.

4 Approximation theorem for linear singularly
perturbed system of conservation laws

A Tikhonov like theorem is given in this section. It
presents how solutions to the linear singularly perturbed
system of conservation laws (1)-(2) can be approximated
by solutions to the reduced system (8)-(9). It is based on
the stability condition we considered in the last section.

Theorem 2 Consider the linear singularly perturbed
system of conservation laws (1)-(2). Assume that the
boundary conditions G satisfy ρ1(G) < 1, then, for all
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initial conditions y0 ∈ H2(0, 1) satisfying the compatibil-
ity conditions y0(0) = Gry

0(1), Λ1y
0
x(0) = GrΛ1y

0
x(1),

and z ∈ L2(0, 1), there exists positive values ε∗, C, C
′

and ω such that for all 0 < ε < ε∗ and for all t > 0,

‖y(., t)− ȳ(., t)‖2L2 6 Cεe−ωt, (21)∫ ∞
0

‖z(., t)− (I −G22)−1G21ȳ(1, t)‖2L2dt 6 C
′
ε. (22)

Before stating the proof of Theorem 2, let us first perform
the following change of variables

η(x, t) = y(x, t)− ȳ(x, t),

δ(x, t) = z(x, t)− (Im −G22)−1G21ȳ(1, t),

where η is the error between y in the full system and ȳ in
the reduced system, δ is the error between z in the full
system and its equilibrium point (Im−G22)−1G21ȳ(1, t).
In the new variables (η, δ), the system is

ηt + Λ1ηx = 0, (23a)

εδt + Λ2δx = ε(Im −G22)−1G21Λ1ȳx(1, t). (23b)

The boundary conditions are calculated as follows

η(0, t) = y(0, t)− ȳ(0, t)

=G11y(1, t) +G12z(1, t)−Grȳ(1, t)

=G11

(
y(1, t)− ȳ(1, t)

)
+G12

(
z(1, t)− (Im −G22)−1G21ȳ(1, t)

)
=G11η(1, t) +G12δ(1, t),

and

δ(0, t) = z(0, t)− (Im −G22)−1G21ȳ(1, t)

=G21y(1, t) +G22z(1, t)− (Im −G22)−1G21ȳ(1, t)

=G21

(
y(1, t)− ȳ(1, t)

)
+G22z(1, t) +

((
Im − (Im −G22)−1

)
G21ȳ(1, t)

)
=G21η(1, t) +G22δ(1, t).

We summarize the boundary conditions for system (23)
as follows (

η(0, t)

δ(0, t)

)
= G

(
η(1, t)

δ(1, t)

)
. (24)

Let consider the following Lyapunov function candidate
for system (23)-(24)

Vε(η, δ) =

∫ 1

0

e−µx
(
ηTQη + εδTPδ

)
dx, (25)

with µ > 0, Q a diagonal positive matrix in Rn×n and
P a diagonal positive matrix in Rm×m.

The time derivative of Vε(η, δ) is estimated in Lemma 1.

Lemma 1 If the boundary conditions satisfy ρ1(G) < 1,
then there exist a positive value µ and diagonal positive
matrices P and Q such that for all ε > 0 and κ > 0, it
holds

V̇ε(η, δ) 6−µ
∫ 1

0

e−µxηTQΛ1ηdx

−
(
µ− εκ‖P (Im −G22)−1G21Λ1‖

λmin(PΛ2)

)∫ 1

0

e−µxδTPΛ2δdx

+
ε‖P (Im −G22)−1G21Λ1‖

κ
|ȳx(1, t)|2. (26)

Proof. Computing the time derivative of Vε(η, δ) along
(23) and integrating by parts yield (see Diagne et al.
(2012))

V̇ε(η, δ) = N1 +N2 +N3 (27)

with:

N1 =−
(
e−µxηTQΛ1η

)x=1

x=0
−
(
e−µxδTPΛ2δ

)x=1

x=0
, (28)

N2 =−µ
∫ 1

0

e−µx
(
ηTQΛ1η + δTPΛ2δ

)
dx, (29)

N3 = 2ε

∫ 1

0

e−µxδTP (Im −G22)−1G21Λ1ȳx(1, t)dx.(30)

Using boundary conditions (24), the first termN1 follows

N1 =−
(
e−µηT (1)QΛ1η(1)

−(G11η(1) +G12δ(1))TQΛ1(G11η(1) +G12δ(1))

)
−
(
e−µδT (1)PΛ2δ(1)

−(G21η(1) +G22δ(1))TPΛ2(G21η(1) +G22δ(1))

)
.

(31)

Developing and reorganizing (31), we obtain

N1 =−

(
η(1)

δ(1)

)T (
e−µQΛ1 0

0 e−µPΛ2

)(
η(1)

δ(1)

)

+

(
η(1)

δ(1)

)T (
GT11QΛ1G11 +GT21PΛ2G21

?

GT11QΛ1G12 +GT21PΛ2G22

GT22PΛ2G22 +GT12QΛ1G12

)(
η(1)

δ(1)

)
.
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(32)

Since ρ1(G) < 1, let ∆ =

(
∆1 0

0 ∆2

)
, such that

‖∆G∆−1‖ = σ∗ < 1, there exists 0 < µ 6 −2 lnσ∗.
Choosing matrices Q and P such that Q = ∆2

1Λ−1
1 ,

P = ∆2
2Λ−1

2 , it follows

N1 6−

(
η(1)

δ(1)

)T (
e−µ∆2 − σ∗2∆2

)(η(1)

δ(1)

)
6 0. (33)

The second term N2 is always non positive.
According to Cauchy-Schwarz inequality, the third term
N3 is bounded as follows

N3 6 2ε‖P (Im −G22)−1G21Λ1‖
∫ 1

0

e−µx|δ| |ȳx(1, t)|dx.

By Young’s inequality, for all κ > 0, it holds

N3 6 εκ‖P (Im −G22)−1G21Λ1‖
∫ 1

0

e−µx|δ|2dx

+
ε‖P (Im −G22)−1G21Λ1‖

κ

∫ 1

0

e−µx|ȳx(1, t)|2dx.

(34)

Combining (29), (33) and (34), we obtain

V̇ε(η, δ) 6−µ
∫ 1

0

e−µxηTQΛ1ηdx

−
(
µ− εκ‖P (Im −G22)−1G21Λ1‖

λmin(PΛ2)

)∫ 1

0

e−µxδTPΛ2δdx

+
ε‖P (Im −G22)−1G21Λ1‖

κ

∫ 1

0

e−µx|ȳx(1, t)|2dx.

This concludes the proof of Lemma 1. 2

By Poincaré inequality |ȳx(1, t)| is bounded as follows

|ȳx(1, t)| =
∣∣∣∣∫ 1

0

(
xȳxx + ȳx

)
dx

∣∣∣∣
6
∫ 1

0

(
|ȳxx|+ |ȳx|+ |ȳ|

)
dx

6
√

3‖ȳ(., t)‖H2 . (35)

Thus, in order to bound the term |ȳx(1, t)|, it is necessary
to analyze the stability of the reduced system in H2-
norm.

Since we choose the initial condition of the reduced sys-
tem ȳ0 = y0, thus ȳ0 ∈ H2(0, 1) and the compatibility

conditions ȳ0(0) = Grȳ
0(1) and Λ1ȳ

0
x(0) = GrΛ1ȳ

0
x(1)

are satisfied. The estimate of ‖ȳ(., t)‖2H2 is given in the
following Lemma 2.

Lemma 2 If ρ1(G) < 1, let µ as in Lemma 1, there ex-
ists a positive value C0 such that for any initial condi-
tion ȳ0 ∈ H2(0, 1) satisfying the compatibility conditions
ȳ0(0) = Grȳ

0(1) and Λ1ȳ
0
x(0) = GrΛ1ȳ

0
x(1), it holds

‖ȳ(., t)‖2H2 6 C0e
−µλmin(Λ1)t‖ȳ0‖2H2 , t > 0. (36)

Proof. ȳ0 ∈ H2(0, 1) and the compatibility conditions
imply that ȳ(., t) ∈ H2(0, 1) for all t > 0. Therefore we
consider the following Lyapunov function candidate for
the reduced system (8)-(9)

V1(ȳ) =

∫ 1

0

e−µx
(
ȳT Q̄1ȳ + ȳTx Q̄2ȳx + ȳTxxQ̄3ȳxx

)
dx,

(37)
where Q̄1, Q̄2, Q̄3 are diagonal positive matrices inRn×n.
We rewrite V1(ȳ) as

V1(ȳ) = V10 + V11 + V12,

with

V10 =

∫ 1

0

e−µxȳT Q̄1ȳdx,

V11 =

∫ 1

0

e−µxȳTx Q̄2ȳxdx,

V12 =

∫ 1

0

e−µxȳTxxQ̄3ȳxxdx.

Computing the time derivative of V10 along (8) and in-
tegrating by parts we have

V̇10 = −
[
e−µxȳT Q̄1Λ1ȳ

]x=1

x=0
− µ

∫ 1

0

e−µxȳT Q̄1Λ1ȳdx.

(38)
Using the boundary condition (9), it follows from (38)

V̇10 = −

(
e−µȳT (1)Q̄1Λ1ȳ(1)− (Grȳ(1))T Q̄1Λ1(Grȳ(1))

)

− µ
∫ 1

0

e−µxȳT Q̄1Λ1ȳdx. (39)

Developing and reorganizing (39) we get

V̇10 = −ȳT (1)

(
e−µQ̄1Λ1 −GTr Q̄1Λ1Gr

)
ȳ(1)

− µ
∫ 1

0

e−µxȳT Q̄1Λ1ȳdx. (40)
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Similar to the proof of Proposition 1, we show that
‖∆G∆−1‖ < 1 implies ‖∆1Gr∆

−1
1 ‖ < 1 which is equiv-

alent to ∆2
1 −GTr ∆2

1Gr > 0. By selecting Q̄1 = ∆2
1Λ−1

1 ,
it is deduced from (40)

V̇10 6 −µ
∫ 1

0

e−µxȳT Q̄1Λ1ȳdx. (41)

Differentiating system (8) with respect to x yields

ȳxt + Λ1ȳxx = 0, (42)

differentiating (9) with respect to t and using (8), the
boundary condition is calculated as

ȳx(0, t) = Λ−1
1 GrΛ1ȳx(1, t). (43)

Computing the time derivative of V11 along (42) and
integrating by parts we have

V̇11 = −
[
e−µxȳTx Q̄2Λ1ȳx

]x=1

x=0
−µ

∫ 1

0

e−µxȳTx Q̄2Λ1ȳxdx.

(44)
Using the boundary condition (43), it follows from (44)

V̇11 = −

(
e−µȳTx (1)Q̄2Λ1ȳx(1)

− (Λ−1
1 GrΛ1ȳx(1))T Q̄2Λ1(Λ−1

1 GrΛ1ȳx(1))

)

− µ
∫ 1

0

e−µxȳTx Q̄2Λ1ȳxdx. (45)

Developing and reorganizing (45) we get

V̇11 = −ȳTx (1)Λ1

(
e−µΛ−1

1 Q̄2 −GTr Λ−1
1 Q̄2Gr

)
Λ1ȳx(1)

− µ
∫ 1

0

e−µxȳTx Q̄2Λ1ȳxdx. (46)

Similarly, by selecting Q̄2 = Λ1∆2
1, it is deduced from

(46)

V̇11 6 −µ
∫ 1

0

e−µxȳTx Q̄2Λ1ȳxdx. (47)

Differentiating system (42) with respect to x yields

ȳxxt + Λ1ȳxxx = 0, (48)

differentiating (43) with respect to t and using (42), the
boundary condition is calculated as

ȳxx(0, t) = Λ−2
1 GrΛ

2
1ȳxx(1, t). (49)

Computing the time derivative of V12 along (48) and
integrating by parts we have

V̇12 = −
[
e−µxȳTxxQ̄3Λ1ȳxx)

]x=1

x=0

− µ
∫ 1

0

e−µxȳTxxQ̄3Λ1ȳxxdx. (50)

Using the boundary condition (49), it follows from (50)

V̇12 = −

(
e−µyTxx(1)Q̄3Λ1ȳxx(1)

− (Λ−2
1 GrΛ

2
1ȳxx(1))T Q̄3Λ1(Λ−2

1 GrΛ
2
1ȳxx(1))

)

− µ
∫ 1

0

e−µxȳTxxQ̄3Λ1ȳxxdx. (51)

Developing and reorganizing (51) we get

V̇12 = −ȳTxx(1)Λ2
1

(
e−µΛ−2

1 Q̄3Λ−1
1

−GTr Λ−2
1 Q̄3Λ−1

1 Gr

)
Λ2

1ȳxx(1)

− µ
∫ 1

0

e−µxȳTxxQ̄3Λ1ȳxxdx. (52)

By selecting Q̄3 = Λ2
1∆2

1Λ1, it is deduced from (52)

V̇12 6 −µ
∫ 1

0

e−µxȳTxxQ̄3Λ1ȳxxdx. (53)

Combining (41), (47) and (53), V̇1(ȳ) follows

V̇1(ȳ) 6 −µλmin(Λ1)V1(ȳ). (54)

Therefore, there exists a positive value C0 such that

‖ȳ(., t)‖2H2 6 C0e
−µλmin(Λ1)t‖ȳ0‖2H2 .

This concludes the proof of Lemma 2. 2

Let us state the proof of Theorem 2.

Proof. Combining (26) in Lemma 1, (35) and (36) in
Lemma 2 yields

V̇ε(η, δ) 6−µ
∫ 1

0

e−µxηTQΛ1ηdx

−
(
µ− εκ‖P (Im −G22)−1G21Λ1‖

λmin(PΛ2)

)∫ 1

0

e−µxδTPΛ2δdx

+
3εC0‖P (Im −G22)−1G21Λ1‖

κ
e−µλmin(Λ1)t‖ȳ0‖2H2 . (55)

7



By choosing κ = µλmin(PΛ2)
2ε‖P (Im−G22)−1G21Λ1‖ , we get

V̇ε(η, δ) 6−
µβ

2
Vε(η, δ)

+
6ε2C0‖P (Im −G22)−1G21Λ1‖2

µλmin(PΛ2)
e−µλmin(Λ1)t‖ȳ0‖2H2 ,

(56)

where β = min
(
λmin(Λ1), λmin(Λ2)

)
.

With λmin(Λ1) > β
2 , it follows from (56)

Vε(η, δ) 6 e−
µβ
2 tVε(η

0, δ0)

+
6ε2C0‖P (Im −G22)−1G21Λ1‖2

µ2λmin(PΛ2)
(
λmin(Λ1)− β

2

) e−µβ2 t‖ȳ0‖2H2 .

(57)

Note that

e−µλmin(Q)‖η‖2L2 + εe−µλmin(P )‖δ‖2L2

6 Vε(η, δ)

6 ‖Q‖ ‖η‖2L2 + ε‖P‖ ‖δ‖2L2 . (58)

It follows that

‖η(., t)‖2L2 6
eµ

λmin(Q)
Vε(η, δ)

6
eµ

λmin(Q)

(
e−

µβ
2 tVε(η

0, δ0)

+
6ε2C0‖P (Im −G22)−1G21Λ1‖2

µ2λmin(PΛ2)
(
λmin(Λ1)− β

2

) e−µβ2 t‖ȳ0‖2H2

)

6
eµ

λmin(Q)

(
e−

µβ
2 t

(
‖Q‖ ‖η0‖2L2 + ε‖P‖ ‖δ0‖2L2

)

+
6ε2C0‖P (Im −G22)−1G21Λ1‖2

µ2λmin(PΛ2)
(
λmin(Λ1)− β

2

) e−µβ2 t‖ȳ0‖2H2

)
,

as y0 = ȳ0, i.e. η0 = 0, therefore

‖η(., t)‖2L2 6 εCae
−µβ2 t‖δ0‖2L2

+
6ε2C0Ca‖P (Im −G22)−1G21Λ1‖2

µ2‖P‖λmin(PΛ2)
(
λmin(Λ1)− β

2

)e−µβ2 t‖ȳ0‖2H2 .

where Ca is a given positive value. Thus we get the esti-
mate

‖y(., t)− ȳ(., t)‖2L2 6 εCae
−µβ2 t‖δ0‖2L2

+
6ε2C0Ca‖P (Im −G22)−1G21Λ1‖2

µ2‖P‖λmin(PΛ2)
(
λmin(Λ1)− β

2

)e−µβ2 t‖ȳ0‖2H2 .

This proves (21).

Remarking the first term in the right hand side
part in (55) is negative and taking the same κ =

µλmin(PΛ2)
2ε‖P (Im−G22)−1G21Λ1‖ yield

V̇ε(η, δ) 6−
µ

2
e−µλmin(PΛ2)‖δ(., t)‖2L2

+
6ε2C0‖P (Im −G22)−1G21Λ1‖2

µλmin(PΛ2)
e−µλmin(Λ1)t‖ȳ0‖2H2 .

(59)

Performing the time integration of both sides of (59) and
using lim

t→+∞
Vε(η, δ) = 0, we get

0− Vε(η0, δ0) 6−µ
2
e−µλmin(PΛ2)

∫ ∞
0

‖δ(., t)‖2L2dt

+
6ε2C0‖P (Im −G22)−1G21Λ1‖2

µ2λmin(PΛ2)λmin(Λ1)
‖ȳ0‖2H2 .

(60)

Reorganizing (60), we have

∫ ∞
0

‖δ(., t)‖2L2dt6
2eµ

µλmin(PΛ2)

(
Vε(η

0, δ0)

+
6ε2C0‖P (Im −G22)−1G21Λ1‖2

µ2λmin(PΛ2)λmin(Λ1)
‖ȳ0‖2H2

)
.

Therefore with (58) and η0 = 0, it follows∫ ∞
0

‖δ(., t)‖2L2dt6 εCb1‖δ0‖2L2 + ε2Cb2‖ȳ0‖2H2 ,

where Cb1 and Cb2 are positive constants. This is equiv-
alent to∫ ∞

0

‖z(., t)− (Im −G22)−1G21ȳ(1, t)‖2L2dt

6 εCb1‖δ0‖2L2 + ε2Cb2‖ȳ0‖2H2 ,

and proves (22). This concludes the proof of Theorem 2.
2

Corollary 1 There exists C ′′ > 0 such that if z0 is the
equilibrium point, that is z0 = (Im − G22)−1G21ȳ

0(1),
then for any ȳ0 ∈ H2(0, 1) and for t > 0, the following
estimate holds,

‖z(., t)− (Im −G22)−1G21ȳ(1, t)‖2L2 6 C ′′εe−ωt. (61)

Proof. The proof of this corollary is similar to that of
Theorem 2. Due to (57) and (58), since η0 = 0 and
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δ0 = 0, therefore

‖δ(., t)‖2L2

6 ε
6C0Cb‖P (I −G22)−1G21Λ1‖2

µ2λmin(PΛ2)
(
λmin(Λ1)− β

2

)e−µβ2 t‖ȳ0‖2H2 ,

where Cb > 0. This proves (61). 2

5 Application to a gas transport model

5.1 System description

In this section, we consider a gas transport model which
is an example of linear singularly perturbed system of
conservation laws to illustrate the results of Sections 3
and 4.
The gas dynamics through a tube with constant cross
section, where all the friction losses and heat trans-
fers are neglected, are usually modelled by the follow-
ing Euler equations as considered in Winterbone (2000),
Castillo et al. (2012).

Wt +AWx = 0, (62)

with W =


u

ρ

p

, A =


u 0 1

ρ

ρ u 0

a2ρ 0 u

.

where
• u = u(x, t) stands for the gas velocity at location x in
[0, 1] (we assume that the length of the tube equals 1)
and at time t,
• ρ = ρ(x, t) represents the gas density,
• p = p(x, t) is the gas pressure,
• a is sound speed in ideal gas.
The system (62) admits a steady-state u∗, ρ∗, p∗. The
deviations of the state u, ρ, p with respect to the steady-
state are defined as

û = u− u∗,
ρ̂ = ρ− ρ∗,
p̂ = p− p∗.

Then the linearization of system (62) at this equilibrium
is

Ŵt +A∗Ŵx = 0, (63)

with Ŵ =


û

ρ̂

p̂

, A∗ =


u∗ 0 1

ρ∗

ρ∗ u∗ 0

a∗2ρ∗ 0 u∗

.

Let perform a change of coordinates for (63) to diago-
nalize A∗,

S = L−1Ŵ , Λ = L−1A∗L. (64)

where L =


0 1 1

1 − ρ
∗

a∗
ρ∗

a∗

0 −a∗ρ∗ a∗ρ∗

.

We obtain the following diagonal hyperbolic system of
conservation laws

St + ΛSx = 0, (65)

with Λ =


u∗ 0 0

0 u∗ − a∗ 0

0 0 u∗ + a∗

.

Assume that the propagation speed of gas is much slower
than the sound speed, i.e. u << a. By performing the
change of spatial variable S′2(1 − x, t) = S2(x, t), we
may assume without loss of generality that the matrix
Λ > 0. A small positive value can be defined as ε = u∗

a∗

and we use a new time scale t̃ = u∗t, then (65) can be
approximated by a linear singularly perturbed system of
conservation laws

S1

S′2

S3


t̃

+


1 0 0

0 1
ε 0

0 0 1
ε



S1

S′2

S3


x

= 0. (66)

The boundary conditions needed to be imposed in sys-
tem (66) can be expressed as follows

S1(0, t̃)

S′2(0, t̃)

S3(0, t̃)

 = G


S1(1, t̃)

S′2(1, t̃)

S3(1, t̃)

 , (67)

where G =


g11 g12 g13

g21 g22 g23

g31 g32 g33

.

In system (66), S1 stands for the slow dynamics and S′2,
S3 stand for the fast dynamics. Following the definitions
of the two subsystems in Section 2, the reduced system
of (66) and (67) is computed as follows

S̄
1̃t

+ S̄1x = 0, (68)

with the boundary condition

S̄1(0, t̃) = GrS̄1(1, t̃), (69)

whereGr = g11+
(
g12 g13

)(
I2 −

(
g22 g23

g32 g33

))−1(
g21

g31

)
.

The boundary-layer system is(
S̄′2

S̄3

)
τ̃

+

(
S̄′2

S̄3

)
x

= 0, (70)
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with the boundary conditions(
S̄′2(0, τ̃)

S̄3(0, τ̃)

)
= G22

(
S̄′2(1, τ̃)

S̄3(1, τ̃)

)
, (71)

where G22 =

(
g22 g23

g32 g33

)
, τ̃ = t̃

ε .

5.2 Boundary conditions

The plant is equipped with two fans located at each end
of the tube, the rotation speed of each fan is seen as
control action. The gas mass density at the output and
the gas pressure at both ends of the tube are assumed to
be measured. Precisely, we consider here the following
boundary conditions for system (62):
1. The first boundary condition describes the operation
of the inflow fan (see the fan specification map in Witrant
et al. (2008)). It controls the input flow:

u(0, t̃)α = gfc0(t̃)(p(0, t̃)− pin), (72)

where α is the constant cross section of the tube, gf is

a constant coefficient, c0(t̃) denotes the rotation speed
which is a control input, and pin is a constant pressure
before the inflow fan.
2.The second boundary condition is given by the outflow
fan which is used to control the output flow:

u(1, t̃)α = gfc1(t̃)(pout − p(1, t̃)), (73)

the control input is noted c1(t̃) and pout is a constant
pressure behind the outflow fan.
3. The third boundary condition is a physical constraint,
noting that the change of gas density through the input
fan is small because of the pressure at the boundary
x = 0 is near atmospheric pressure, (see Castillo et al.
(2012)):

ρ(0, t̃) = ρ′, (74)

where ρ′ is a constant value.
After the linearization of the above three boundary con-
ditions, we have the following boundary conditions for
system (63):

û(0, t̃)α = gf [ĉ0(t̃)(p∗ − pin) + c∗0p̂(0, t̃)], (75)

û(1, t̃)α = gf [ĉ1(t̃)(pout − p∗)− c∗1p̂(1, t̃)], (76)

ρ̂(0, t̃) = 0, (77)

where c∗0, c∗1 are the constant control actions at the

equilibrium (u∗, ρ∗, p∗). ĉ0(t̃) = c0(t̃) − c∗0 and ĉ1(t̃) =

c1(t̃)− c∗1.

For a suitable choice of the control inputs c0(t̃) and c1(t̃),

and for constant values g21, g23 6= 1, g32 6= 1 in R, the
following conditions are equivalent to (75)-(77).

S1(0, t̃) =
ρ∗(1− g32)

a∗
S′2(1, t̃), (78)

S′2(0, t̃) = g21S1(1, t̃) + g23S3(1, t̃), (79)

S3(0, t̃) = g32S
′
2(1, t̃). (80)

More precisely from (64) and (80), under the condition

g32 − 1 6= 0, we can compute û(0, t̃) as a function of

p̂(0, t̃),

û(0, t̃) =
1 + g32

a∗ρ∗(g32 − 1)
p̂(0, t̃), (81)

and substituting (81) into (75), the control action at
input of the tube is

c0(t̃) = c∗0 +

α(1+g32)
gfa∗ρ∗(g32−1) − c

∗
0

p∗ − pin
p̂(0, t̃). (82)

Similarly, due to (64), (76) and (79), under the condition
1 − g23 6= 0, the control action at output of the tube is
given by

c1(t̃) = c∗1 +

α(a∗(1+g23)−2ρ∗g21)
gfa∗2ρ∗(1−g23) + c∗1

pout − p∗
p̂(1, t̃)

+

2αg21
gf (1−g23)

pout − p∗
ρ̂(1, t̃). (83)

Since the outputs of (62) are the gas pressure at both
ends of the tube and the gas mass density at the output,
the control actions c0(t̃) in (82) and c1(t̃) in (83) are the
feedback laws.
The boundary condition G in (67) is written as follows

G =


0 ρ∗(1−g32)

a∗ 0

g21 0 g23

0 g32 0

 . (84)

To ensure that the boundary conditions matrix G satis-
fies ρ1(G) < 1, a straightforward choice for ∆ is ∆ = I3,
then

∆G∆−1 =


0 ρ∗(1−g32)

a∗ 0

g21 0 g23

0 g32 0

 .

Straightforward calculations show that ‖∆G∆−1‖ < 1
holds if and only if g21, g23 and g32 can be selected as

g2
21 + g2

23 < 1,

ρ∗2(1− g32)2

a∗2
+ g2

32 < 1.
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5.3 Numerical solutions

To numerically compute the solutions of (66) and (68),
let us discretize them using a two-step variant of the
Lax-Wendroff method which is presented in Shampine
(2005b) and the solver on Matlab in Shampine (2005a).
More precisely, we divide the space domain [0, 1] into
100 intervals of identical length, and 3 as final time. We
choose a time-step dt = 0.9εdx that satisfies the CFL
condition for the stability and select the following initial
functions:

S0
1 = S̄0

1 = cos(4πx)− 1,

S′02 = sin(5πx),

S0
3 = − sin(5πx).

The boundary conditions (84) are given by g21 = 0.1,
g23 = 0, g32 = 0.2, a∗ = 340, ρ∗ = 1.2. The condition
ρ1(G) < 1 holds, thus Proposition 1 and Theorem 2 ap-
ply.
In the following figures and tables, η, δ1 and δ2 denote:
· η = S1 − S̄1,
· δ1 = S′2 −

g21
1−g23g32 S̄1(1, t̃),

· δ2 = S3 − g21g32
1−g23g32 S̄1(1, t̃).

Figure 1 shows the time evolution of the solution S̄1 for
the reduced system (68)-(69). It is observed that S̄1 con-
verges to the origin as time increases, as expected from
Proposition 1. Time evolution of η is shown in Figure 2.
It is found that the error between S1 in the singularly
perturbed system (66)-(67) and S̄1 in the reduced sys-
tem (68)-(69) is small and close to 0 as time increases.
Figure 3 and Figure 4 represent the time evolutions
of δ1 and δ2, which are the differences between S′2, S3

and their equilibriums g21
1−g23g32 S̄1(1, t̃), g21g32

1−g23g32 S̄1(1, t̃)

respectively. The differences decrease to 0 as time in-
creases.
Table 1 gives the evolution of square of L2-norm of η
with the different values of ε. It indicates that the dif-
ference between S1 in (66)-(67) and S̄1 in (68)-(69) is
near zero, and it decreases as ε decreases. Table 2 shows
that the time integrals of square of L2-norm of δ1 and
δ2 decrease as ε decreases, and they are close to zero, as
expected from Theorem 2.
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Fig. 1. Time evolution of the solution S̄1 in the reduced
system (68)-(69).
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in the full system (66)-(67) and S̄1 in the reduced system
(68)-(69).
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Table 1
Evolution of square of L2-norm of η for different ε

ε 0.004 0.003 0.001

‖η(., t = 1.5)‖2L2 7.0× 10−11 3.1× 10−11 7.9× 10−12

Let us define ι, which is the difference of the solution
of the slow dynamics between (66) and (65) with the
same boundary conditions matrix (84). Table 3 shows
the value of square of L2-norm of ι for different ε. It is
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Table 2
Evolutions of time integral of square of L2-norms of δ1 and
δ2 for different ε

ε 0.004 0.003 0.001∫ 3

0
‖δ1‖2L2dt 5.2× 10−6 2.3× 10−6 5.8× 10−7∫ 3

0
‖δ2|‖2L2dt 1.5× 10−6 6.5× 10−7 1.6× 10−7

observed that ι is small and close to zero. This motivates
the approximation of (65) by (66).

Table 3
Evolution of square of L2-norm of ι for different ε

ε 0.004 0.003 0.001

‖ι(., t = 1.5)‖2L2 1.3× 10−15 2.7× 10−16 1.7× 10−17

6 Conclusion

It has been considered a linear singularly perturbed sys-
tem of conservation laws. The reduced system and the
boundary-layer system have been computed. In Propo-
sition 1 it has been first explained how to apply the sta-
bility condition for the full singularly perturbed system,
ρ1(G) < 1, to the two subsystems stability analysis.
However, a counter example has been given to show that
the stability of the two subsystems does not guarantee
the stability of the overall system.

Then in Theorem 2 it has been shown that, under the
stability condition ρ1(G) < 1, the solution of the linear
singularly perturbed system of conservation laws can be
approximated by the solution of the reduced system.
This theorem has been applied to a gas transport setup
which can be modelled by a singularly perturbed system
by employing the fact that the propagation speed of gas
is much slower than the sound speed.

This work leaves many open questions. It is natural to
extend this work to systems of balance laws. Another in-
teresting point is to consider some other physical appli-
cations, like open channels as considered in Dos Santos
and Prieur (2008). The nonlinear case in Coron et al.
(2008) will be also considered in the future works.
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