(2) The force on each body is composed of an external force and forces exerted by the other constituents.

(3) The mutual forces between the constituents and the external forces are biadditive. (4) The force exerted by the ith constituent of the body B on the jth constituent of the body A is equal in magnitude and opposite in direction to the force exerted by the jth constituent of the body A on the ith constituent of the body B. (5) The sum of all forces and moments acting on each constituent is zero. In this sum Sampaio includes the external forces, the interaction with the various constituents outside the body and the interaction with other constitutents within the body. (6) Both the interactions between the constituents and the external forces are local in the sense that interactions at a distance are excluded. ( 7) By the previous assumptions, in particular by assumption (l), forces can be represented by measures. It is assumed that the singular parts of these measures are concentrated on the boundaries of the bodies. This assumption is made for the external forces, the interactions between the constituents of different bodies, and the interactions between the various constituents of the same body. Moreover, these singular parts of the forces are assumed to be absolutely continuous with respect to the common area measure of the interacting bodies. (8) Using assumption (7) the author proves that forces are composed of body forces and surface forces. In order to prove the stress principle he further assumes that the body forces are essentially bounded with respect to the volume measure and the surface forces are essentially bounded with respect to the area measure.

We note that the fact that in Sampaio's and most other formulations of mixture theory all constituents occupy the same region in space means that there is no diffusion at the boundaries. If the velocities of the various constituents differ at the boundary, the constituents will occupy different regions in space after any finite time interval. This restriction seems even stronger when we notice that if subbodies of the various constituents that occupy the same region in space at one time will occupy the same region in space at all times, no diffusion at the boundary of any subbody will occur. In other words, either the assumption regarding the constituents does not hold for the subconstituents or diffusion is prohibited altogether.

Here, we present another approach that is based on a general definition of a force in continuum mechanics as an element of the cotangent bundle of an appropriate configuration manifold [8,9]. This approach will be reviewed in Section 2 and in Section 3 we will apply it to the statics of mixtures.

In Section 4 we try to formalize Truesdell's third principle and the notion of total stress to which it leads. It seems to us that the total stress has meaning only in some limited cases. For example, if we have a vessel filled with a mixture of gases we expect the traction on the walls to be that induced by the sum of the partial stresses. However, if some of the gases can diffuse through the walls of the vessel, the traction acting on the walls will be different than that induced by the "total stress". Roughly, the notion of a total stress will not have meaning when the constituents act independently of one another.

Thus, rather than assuming that the mixture behaves as a single body, we introduce simple body models of a mixture, the validity of which is decided upon by the particular case at hand. For a few examples of simple body models of a mixture, we show the relation between the partial stresses and the total stress.

FORCES ON SIMPLE BODIES

In this section we review the basic structure of the mechanics of simple bodies, i.e. bodies having only one constituent. This definition of a configuration of a body is clearly in agreement with the principle of impenetrability which is traditionally postulated in continuum mechanics.

PROPOSITION 2.3. The configuration space QB of the body B, i.e. the set of all configurations of B, is an open subset of the Banach space C'(B, 6%') of continuously differentiable mappings B + 94' equipped with the norm For the proof of this proposition see [lo]. We note that if we use the norm of uniform convergence proposition 2.3 does not hold and for any configuration K there exist mappings which are arbitrarily close to K that violate the principle of impenetrability.

Proposition 2.3 implies that as an open subset of the Banach space C'(B, S3), QB has a differentiable structure of a Banach manifold and that its tangent space TKQB at any configuration K in QB is naturally isomorphic to C'(B, 6R3). We recall that the elements of TKQB can be thought of as Lagrangian velocity fields or virtual displacements.

DEFINITION. 2.4. A force on the simple body B is an element of the cotangent bundle T*QB. Thus, a force on B is a continuous linear functional defined on TKQB for some K E QB, or in other words, forces can be naturally identified with elements of the dual space C'(B, S%')*. Given a force f and a virtual displacement u, the evaluation f(u) will be referred to as the virtual work performed by the force f through the virtual displacement u.

Let C'(B, %!3 x L(CB3, LB3)) d enote the space of continuous mappings

B-S3 x L(.%', %'),
where L(%', 9') is the vector space of linear transformations S3-, S3, equipped with the norm of uniform convergence. We define the mapping Since the image of the mapping D' is not a dense subset of C"(B, ?4)12 its adjoint is not injective. This fact explains the lack of uniqueness in the relation between forces and stresses.

We note that any given collection of stress measures can be restricted to subbodies of B. Given a subbody P of B, the restrictions of the stress measures to P induce a unique force _& on P that is represented in the form Mw) = I, wi do, + I wi,, dril,

P for any w E C'(P, S3

). This possibility to restrict forces to subbodies is the reason for the representation of forces by stresses.

PROPOSITION 2.7. Assume that the stress measures are given in terms of the differentiable densities si, zi,, defined on K(B) and called Cuuchy's stress densities, in the form lsUido,+jgUi.,d4,=~~(R) ((uoK-')~s~ + (u~K-')i,jTj) dv.

Then, the force on any subbody P is given by a body force field b : K(P)+-6%' and a surface force field t : SK(P) + 92' in the form where nj are the components of the unit normal to the boundary of OK.

Here, Y is the volume measure on K(P) and a is the area measure on OK.

We note that by the properties of the configuration K, the measures are completely continuous with respect to the volume measure in K(B) if and only if they are completely continuous with respect to the volume measure in B. In addition, since ui,l = u~,~K~,~, the introduction of ui,j instead of u~,~ in the above equation is insignificant. The proposition can be easily proven by integrating by parts the term Ui,j~~ in the above equation and using Gauss' theorem. Here and in Section 4 we use the following convention: (1) Composition of functions precedes all other operations and the operation denoted by a dot (" * ") is preceded by all other operation except for addition.

(2) If A and B are two functions defined in the same domain whose values are linear mappings, AB is the mapping whose value at any point is the composition of the values of A and B. If u is a vector field, then Au will denote the vector field obtained by pointwise evaluation. As we have mentioned these operations are preceded by composition of functions. (3) DK-' is the function defined on B whose value at any point is the inverse of the value of DK at that point.

REMARKS

(1) We note that with the suggested structure the existence of stresses as entities that allow the restriction of forces to subbodies is an immediate result of the definition of forces. Stresses may be as irregular as measures and the condition f = D'*(S) is the most general form of the "equilibrium equations" in continuum mechanics.

(2) The traditional assumption that forces are composed of body forces and surface forces was obtained mathematically using the additional mild assumption of smoothness of the representing measures. Cauchy's formula and the equilibrium equation, with the additional term si, was obtained without using any equilibrium assumption.

(3) Assuming that each subbody is in equilibrium one can easily prove that si = 0 and that Ti is symmetric. (4) The structure that we introduced here may be generalized to the geometry of differentiable manifolds and to the case of continuum mechanics of grade higher than one (see [9]).

DEFINITION 2.8. A force system is a mapping F : B + T*Q. We say that a force system is consistent with the stress measures oi, ril if the force on each subbody P is represented by the restrictions of the stress measures to P. It can be shown (see [9]) that there is at most one collection of stress measures oi, ril that is consistent with a force system and so there is a one to one relation between consistent force systems and stresses.

DEFINITION 2.9. A loading is a section ~1: Q-, T*Q, i.e., it is a mapping that assigns a force to any configuration. A constitutive relation is a mapping 1~ : Q+ C'(B, 92' x L(9.3, .S'))*

and it gives the stress measures ai, ZiI, corresponding to any configuration. We can now formulate the problem of continuum mechanics. Given r# and 111 find K E Q such that the force represented by

V(K) is Q)(K).
Clearly, a solution of the problem will give us the force acting on each subbody of B at the configuration K.

STRESSES IN MIXTURES

As we mentioned in the introduction the basic idea that we follow is that with the definition of a force as an element of the cotangent bundle of the configuration space, the properties of forces follow from the kinematical properties of the system. For example the choice of the topology for the configuration space for simple bodies which lead to all the properties of forces and stresses was a result of the principle of impenetrability. It seems to us that it is the first instance where the principle of impenetrability is directly related with the stress theory. Similarly, we will show here how some properties of forces and stresses in mixtures, in particular, the existence of partial stresses, are related to the fact that the various constituents may interpenetrate. DEFINITION 3.1. A mixture of sets is a set M together with a surjective mapping p : M-A where A is called the indexing set and 1~ is called the constituent mapping. For IX E A,,) is called the (Y constituent of the mixture. It may happen that the various constitutents are subsets of the same set (.%!' for example) but clearly, they are always disjoint subsets of M.

Alternatively, a mixture could have been defined as a partition of M (which might be generated by an equivalence class on M). The restriction of a function t defined on M to the cr constituent will be called the LY component of the function and will be denoted by t,. Clearly, functions defined on the constituents of a mixture induce a unique function on the mixture. It follows that the set CM of all functions t : M + C (C is an arbitrary set) is isomorphic to the product I-I&Y'(?

If for a mixture M, the constituents are topological spaces, the collection of open sets of all the constituents can serve as a basis for a topology on M that will be referred to as the mixture topology. The mixture topology is clearly the finest topology that makes all the inclusions of the various constituents in M continuous. A function defined on M is continuous with respect to the mixture topology if its restrictions to the various constituents are continuous. Conversely, a collection of continuous functions on the constituents defines a continuous function on the mixture. DEF~N~T~~N 3.2. A mixture of bodies is a mixture of sets M whose constitutents are simple bodies and whose indexing set is { 1,2, . . . , a}. We will denote the a constituent of M and by B, and the configuration space of B, by Qn. If N, MEI N, is a mixture of bodies such that for each (Y, the (Y constituent of N is a subbody of the a constituent of M, we say that N is a s&mixture of M. The collection of all submixtures of M will be denoted by M.

We note that the mixture topology for a mixture of bodies induces on M a structure of a 3-dimensional compact differentiable manifold with a boundary which is not a subset of 3'. DEFINITION 3.3. A mixed configuration of M is a mapping K: M-, 3' whose components are configurations of the constituents. We will denote the (Y component of K by K,. Thus, the configuration space of the mixture, QM, can be identified with Qi X Q2 X ---x QO endowed with the product topology. we will denote by nE the projection QM+= Qn.

Note that the basic property of mixtures is that we do not exclude mixed configurations such that for distinct (Y, p E (1, . . . , a}, &(B,) fl KP(&) Z 0. Since each Qn is an open subset of C'(B,, %;I") is follows that QM is an open subset of IIaC1(BE, 6%') and thus it has the induced differentiable structure. In particular, for any mixed configuration A, &QM, can be identified with &C'(B,, 6%'). The previous definition does not require that all the constituents will occupy the same region in space as for example is assumed in [3]. As we mentioned in the introduction such a requirement is inconsistent with processes in which diffusion occur. In addition, a necessary and sufficient condition that the partial stresses {a,, r,} represent the force g is that the equations div T, + b, = s, in K,(P,)

L(G)=L on %4P,)

hold for each (Y (n, is the unit normal to the boundary of K,(P,)).

Again, this proposition can be proven easily by integrating by parts the terms involving the derivative D(u,oK;~) of the Eulerian partial virtual displacements, and using Gauss' theorem on K,(P,) for each a: Dn~r~r-rro~ 3.7. A force system for the mixture is a mapping FM::+= T*Q,+,. We say that a force system is consistent with the collection of partial stresses {a,, rL+} if the force on any submixture is represented by the restrictions of the stresses to the submixture. Again, it is clear from the result for simple bodies that there is at most one collection of partial stresses that is consistent with a given force system. DEFIN~I-ION 3.8. A loading for the mixture is a section of T*QM, i.e. it gives the force on the mixture in terms of the force on the various constituents for any configuration of the mixture. We note that it is possible to have coupling between the configuration of the constituent m and the force acting on the constituent /3.

As in the case of a simple body a constitutive relation for a mixture is a mapping I/J : QM-I&C?@,, 92' x L(L!B3, 93'))* and it gives the stress measures {a,, rn} corresponding to any configuration. The problem of continuum mechanics is formulated in analogy with the case of a simple body as finding, for given loading and constitutive relation, a configuration K such that the stress given by the constitutive relation at K represents the force given by the loading at K.

An important problem that one faces when attempting to solve the problem of continuum mechanics for a mixture is that the interaction forces and boundary conditions for the various constituents are not known. Clearly, these boundary conditions reflect the mechanism of the possible diffusion between the various constituents at the boundary and are of constitutive nature. As such, their specification whould be made on the basis of additional physical assumptions describing the particular case at hand. Such a model and the boundary conditions that follow are given for a class of physical situations by Rajagopal et al. [ll] on the basis of an assumption regarding the thermodynamic processes involved.

In this section we formulate mathematically the process of modeling a mixture by a simple body. Traditionally, the notion of a total stress is introduced in mixture theory in order to 4. SIMPLE BODY MODELS OF A MIXTURE assign to the mixtures some overall properties that can be measured or properties that are analogous to those of simple bodies. The total stress is usually shown to be the sum of the partial stresses by adding up the equilibrium equations for the various constituents.

We would like to mention that the addition of the stress fields does not make sense if the stress fields are not defined on the same domain. In addition, the forces acting on the various constituents are members of distinct vector spaces (fa E T*Qa) and their addition is not possible. Hence, for diffusive mixtures, it is questionable whether the notion of a total stress makes sense. We treat the representation of a mixture by a simple body as a model that may approximate in some sense the behavior of the mixture and whose validity should be examined in each particular application at hand according to the assumptions that we will make. DEFINITION 4.1. Let M be a mixture. We say that the body B is a simple body model of M if the following structure is given.

(1) There is a mapping n : B-, M that will be called the subbody mapping, satisfying n(B) = M, and n(P) I> n(P') for P 3 P'. We will denote by n, the component of n that assigns to P the cy constituent of n(P).

(2) There is a differentiable injective mapping called the conjiguration mapping which is local in the sense that if K IP = ~'1 P for some subbody P then mg(K) In(P) = mS(K')I n(P). The mapping mB induces similar mappings mp : QP+ QncP), for the various subbodies by mp(K) = ma(K') I QYj where K' is any configuration of B extending K. mp(rc) is independent of the extension K' by the locality assumption. Conversely, if for every subbody P of B there is a differentiable injective mapping mp : QP --, en(p) satisfying mp(K) 1 n(P') = mpr(K 1 P'), for any subbody P' of P, then m, satisfies the locality assumption above. Thus, we may omit the index P for local configuration mappings. We will use the notation m, for JG,O~.

While the general theory presented in the previous section allowed arbitrary diffusion of the constituents, i.e. arbitrary motion of any constituent with respect to the others, a simple body model allows diffusion in specific modes only: The configurations of the various constituents are all related to that of the body model.

We note that a simple body model induces the tangent mapping TmP: TQP+ TQncp) for every subbody P and again the velocity fields of the constituents are not independent. Since mP is assumed to be injective, the same holds for (Tm,), for each K E Qp. From condition 2 above it follows immediately that (Tmp),Ju) ) n(P') = (Tmpf)Klpf(u 1 P').

In In the general setting presented so far it is impossible to write a more explicit relation between the measures a,, rB and a,, r,. where J,(u,) and J,(r,) are the measures on P induced by J, and the stress measures for the mixture. We note that if a force system F on B corresponds to a force system FIGI on M, the equation above holds for each subbody, the uniqueness of the relation between force systems and stress measures implies that F is induced by the stress measures T J,(G) and c DJwoJ~'Jm(~,>. Ly 

  DEFINITION 2.1. A simple body is the closure of a bounded open subset of LB3 having a smooth boundary. The physical space is the Euclidean space 5?3. A body P which is a subset of the body B is a subbody of B. Given a body B we will denote the collection of its subbodies by B.DEFINITION 2.2. A configuration of the body B is a C' embedding K : B + .S3.

  D': C'(B, S')-+ C'(B, 9Z3 x L(.%', 9Z3)) by D'(u) = (u, Du), where Du is the derivative of u. PROPOSITION 2.5. Any force f E C'(B, 9Z3)* is given in the form f = D'*(S), for some SE C'(B, a3 x L(PA', $R'))*, where D'* is the adjoint map of D'. Conversely, any element S E C'(B, 3' x L(S3, .GR3))* represents a unique force f E C'(B, S3)* by the equation f = D'*(S). PROOF. The mapping D' is linear, injective, continuous and norm preserving. Thus, it is an isomorphism of C'(B, 9X2') onto a closed subspace of C'(B, 9' x L(93, 5%')). It follows that the mapping D'*:C'(B, S3 x L(S3, S3))* -+ C'(B, %')* is onto so that every force is of the required form. An element S E C'(B, S3 X L(S3, 9X3))* will be referred to as a stress representation and if f = Dl'(S), for f E C'(B, %!3)*, we say that S represents 5 Thus, S represents f if f(u) = S(zl, Du) for all u E C'(B, 9Z3). Identifying C'(B, S?3 X L(9Z3, %')) with C'(B, Se)'*, we can clearly identify the space C"(B, 99' x L(B, G!&!', 9Z3))* with C"(B, 92)*'2 which by Riesz representation theorem is the space of collections of 12 Radon measures over the body. Thus, for each stress representation S there exist 12 Radon measures ai, ri,, i, I = 1, 2, 3, such that for any element Y of C'(B, S3 x L(%f3, 9Z3)) whose components are vi, v;,, S(v)=~~vido,+~~vi,dr,,, where we use the summation convention. Using proposition 2.5 we have proven the following proposition. PROPOSITION 2.6. Every force acting on the body B can be represented by 12 Radon measures uj, ri,, called the stress measures, in the form u E C'(B, 9Z3), where ui are the components of u and a comma denotes partial differentiation. Conversely, any collection of 12 measures represents by the equation above a unique force on B.

  in such a case, the stress S represents the force fp if and only if zj,j + bi = Si in K(P

NOTATION.

  Using the notation u and r for the collections {oi}, {ril} respectively, we write the expression on the right hand side of the equation in Proposition 2.6 as jgl(.du+IBDU.dr. Denoting the collections of densities {s;} and {Tj} by s and T, respectively, we write (UOK-l)iVi + (UOK-l)i,jTj as where UOK-l. s + (DUO K-'DK-') . T, D(u 0 K-') = DU 0 K-~ D(K-~) = DUO K-~ DK-~ 0 K-~.

  DEFINITION 3.4. A force on a mixture of bodies M is an element of the cotangent bundle T*QM. It follows that forces on the mixture can be identified with elements of {rIaC'(B,, %2")}* = &C'(B,, c!a3)*. PROPOSITION 3.5. Any force g E T*Q,,, can be represented in the form where U, is the virtual displacement of the LX constituent (the (Y component of u), a, is a collection of three Radon measures defined on B, and t, is a collection of 9 Radon measures defined on B,, (Y = 1, . . , a. The measures a,, r, are the partial stress measures of the (Y constituent. PROOF. Since {II,C1(Ba, %!')}* = II,Cl(B,, LB3)* via the relation g(u) = z&(G), where g, E C'(B,, s3)* and u, is the virtual displacement of the (Y constituent, the assertion. follows by the results of the previous section. As in the case of simple bodies, the stress measures induce forces on the submixtures by restricting the stresses to the subconstituents, i.e. by PROPOSITION 3.6: Assume that the partial stress measures a,, ra are given in terms of the differentiable densities s, : K,(B,) + LB3 and T, : K,(B,) + L(W3, $4') in the form I u, -da, + Du, -dr, = ( U,OK,l . s, + D(u,oK,~) . T,) force g on any submixture N = {P,; B, 3 P,, (Y = 1, . . . , a} is given by the partial body force fields b,: K,(P,.)-+ 3' and the partial surface force fields rn :

  addition, the simple body model induces the mapping T*mp : T*(QncpJ 1 m(Qp)-+ T*QP that assigns forces on the simple body model to forces acting on the mixture. Here, T*(Qn,p)) 1 m(Qp> is th e restriction of the cotangent bundle to the image of m. Thus, if f = T*m,(g), we have f(u) = c &OYmp)&)) aand we call f the total force acting on the simple body model corresponding to the force g on the mixture. In analogy, a force system F on B corresponds to a force system FM on M if F(P) = T*mP(F.&(P))) f or every P. We see again that the notion of total force has meaning only when the motions of the constituents are not independent.Let og, tg be measures that represent the force f = T*m,(g), where g is represented by the measures a,, r,. Then,

  EXAMPLE 4.2. Let M be a mixture and B a simple body. A Mapping J: M+ B whose components are embeddings induces a subbody mapping for the mixture as follows. For any subbody P E B we set n(P) =J-'({P}).S ince the components of J are embeddings J,'(P) is indeed a subbody of B, for each my. In such a case the relation between stress measures can be rewritten as ju . da, + j-Dudt, = c( j-(D&),(u)) 0 J,' . dJa(c~,) + /PW(~P)

  EXAMPLE 4.3. Let J be as in the previous example. For any subbody P E B set VZ(K) = KOJ for all K E Qp. Again, m is well defined by the requirement that the components of J are embeddings. It follows immediately that DmK(u) = UOJ, and for the relation between the measures representing g and f = T*m(g), we have It follows that the force f = T*m,(g) may be represented by the measures a, = c Jol(a,) and rB = c DJ,oJ;'J,(t,). a a

EXAMPLE 4. 4 .

 4 Consider the case where B, = B and n, is the identity. Let m be given in terms of a collection of C* diffeomorphisms I = (I,, . . . , I,) : S3 ---, C?jZ3 in the form m(K) = IO K. In this case we have DmK(u)(X) = DZK&u(X)) or alternatively DmK(u) = DZo KU. Using the notation of tangent mappings and vector fields we can write Tm,(u) = TZKou. Thus, for any y E S3 D(D%(u))&) = D*Z,&Y, u(X)) + DZK,,,Du,(y) so that D(DmK(u)) = D*ZOKU + DZo K Du and with the notation of tangent mappings It follows that the relation between the stress measures assumes the form If a force system F on B corresponds to a force system F,+, on M, the equation above holds for each subbody and we have aB=C(u,Dz,o~+t,D2Z,0~), zB =c z, D&OK. a Ly EXAMPLE 4.5. We now consider the case where the stresses are given in terms of the densities s, T, s,, T, as in Propositions 2.7 and 3.6.